• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple sclerosis: why we should focus on both sides of the (auto)antibody

    2021-04-30 11:42:28JeroendenDunnenLynnMesWillianneHoepelJoostSmolders

    Jeroen den Dunnen, Lynn Mes, Willianne Hoepel, Joost Smolders

    Various clinical and experimental findings suggest a pathogenic role of antibodies in multiple sclerosis (MS). Yet, whether antibodies contribute to the pathogenesis or progression of MS is still a subject of intense debate. This controversy particularly results from unclarity regarding the target antigens of the antibodies that are found in the central nervous system (CNS) of MS patients. The identification of such target antigen(s) at disease onset remains an important topic of investigation, but these antigens may be heterogeneous and not the decisive factor for the initiation of MS development. In addition to antigen-specific binding of IgG, IgG may also promote pathology in MS patients by binding in an antigen nonspecific manner. Therefore, we propose that we should not only focus on the antigen-binding part of MS antibodies,but also should pay attention to the other side of the antibodies in the CNS of MS patients, i.e. the fragment crystallizable(Fc) tail (Figure 1A). The characteristics of the Fc tail, particularly the (combination of) IgG subclass, allotype, and glycosylation determine the pathogenicity of IgG, but these characteristics are still poorly defined in MS. Unraveling these characteristics may not only lead to better understanding of MS pathogenesis, but may also yield new strategies for therapy.The efficacy of CD20-targeted therapies indicates a role for B cells and their multiple effector functions in the disease process of MS, including their differentiation towards antibodysecreting plasma cells. While antibody concentrations are very low in healthy CNS,IgG antibodies are present in increased concentrations in the cerebrospinal fluid(CSF) in the majority of MS patients. Using immune electrophoresis, these IgGs show a CSF-unique oligoclonal pattern in more than 90% of MS patients. These oligoclonal bands are important for MS diagnosis, but are not specific for this disease. They also appear in CSF in infections and several other immune-mediated diseases, such as autoimmune encephalitis, and incidentally in demyelinating disorders, such as MOG-associated disease and aquaporin 4-positive neuromyelitis optica spectrum disease. For the latter CNS autoimmune disorder, antibodies are known to directly contribute to pathology and chronicity.Similarly, there are indications for a pathogenic role of antibodies in MS. In a study on early MS biopsies/autopsies, the majority of included patients showed a distinct histological profile comprising IgG and complement deposition (classified as a pattern II lesion), while this was lacking in other patients (Lucchinetti et al., 2000).In a retrospective study, only MS patients with a pattern II pathological profile at diagnostic biopsy and/or autopsy had a documented favorable clinical response to plasma exchange (Keegan et al., 2005),suggesting the involvement of antibodies.Accordingly, distinct circulating antibody signatures with a higher reactivity against Nogo-A peptides (which are expressed by oligodendrocytes and neurons)were found in patients with pattern II lesions compared to patients with other lesion patterns (Stork et al., 2020). In addition, in a myelinating culture-system,complement-dependent demyelinating IgG-antibodies were detected in 30% of MS patients versus none in controls (Elliottet al., 2012).

    Despite these studies and a clear role of IgG in aforementioned autoimmune disorders, a causative role for IgG antibodies in the pathogenesis of MS remains controversial. This controversy is catalyzed by uncertainty regarding the target specificity of the oligoclonal IgG in MS patients. A broad spectrum of technical approaches has been used in studies to elucidate the target antigens of whole CSF IgG. These studies reported antibodies directed against different viruses (measles, VZV, HTLV-1 and HHV6),myelin proteins (MBP, MOG), ion channels(Kir4.1), glycolipids, and fatty acids(excellently discussed in an editorial by Winger and Zamvill (Winger and Zamvil,2016)). An elegant study by Br?ndle et al. combined the transcriptome of CSF B cell lineage cells as assessed by next generation sequencing, and the peptidome of oligoclonal IgG-fractions among purified IgG as identified with 2D gel electrophoresis and mass-spectrometry(Brandle et al., 2016). Matching IgG-heavy and -light chain pairs were expressed in a recombinant expression system, and produced oligoclonal band IgGs were characterized with a protein array. The four oligoclonal IgGs identified recognized non CNS-specific intracellular antigens in relapsing remitting MS patients with a median disease duration of 17.5 months. These observations collectively provide several interesting clues. First,IgG responses to intracellular antigens may be a secondary effect that is induced in response to MS-associated tissue damage. This suggests that if we want to study the most relevant antigens that are involved in the initiation of disease,we need to focus on the oligoclonal IgG that emerges in the CSF as early in the disease process as possible. Second, there may be substantial heterogeneity in the contribution of antigen-specific IgGs to disease among donors, as has been shown for the pathology of MS (Lucchinetti et al., 2000) and is known for the clinical course of MS. The presence of a B cell dominant subset of MS patients has been suggested, showing distinct profiles of IgG antibodies directed against a broad range of CNS antigens both in circulation and in supernatants ofin vitrostimulated B cells (Kuerten et al., 2020). These antigens are highly variable between patients, as illustrated by the absence of shared CSF oligoclonal IgG antigens between 20 MS patients in a phage-displayed random peptide libraries-screen (Graner et al.,2020). Therefore, an extensive analysis of CNS antigens may not lead to a single common antigen for MS. And third, it may not be the antigen-specificity that defines the role of these antibodies in MS. Of note, phagocytosed CNS antigens have been encountered in cervical lymph nodes of people with and without MS (van Zwam et al., 2009). Since cervical lymph nodes are a major site of CNS B cell maturation,not the presence of CNS antigens per se,but rather an increased responsivity and/or dysfunctional effector mechanism of the adaptive immune response could be the critical driver of intrathecal oligoclonal IgG-secreting plasma cell populations in MS.

    While the (initial) target antigens could be relevant to understand the origin of MS pathogenesis, it is important to realize that not only antigen-specific,but also antigen non-specific IgG binding could promote pathology in MS patients.Notably, the key mechanism for the activation of IgG effector functions is not necessarily antigen binding, but instead the formation of IgG immune complexes.While these two events often go hand in hand, immune complex formation can also occur in an antigen-independent manner (Pryce and Baker, 2018), for example by aggregate formation or nonspecific binding to sticky compounds such as myelin. Previous studies in the last decades that used (heat-)aggregates,coated beads, plate-bound antibodies, and therapeutic Fc-containing constructs have demonstrated that these antigen nonspecific immune complexes are equally potent in activating IgG effector functions as antigen-specific immune complexes. In contrast, unbound (monomeric) IgG does not activate IgG effector functions, and can even suppress immune activation.Therefore, when discussing a potential role for oligoclonal antibodies in the pathogenesis of MS, it is critical to know whether IgG is present in unbound or complexed form. Interestingly, recent findings by us and others indeed indicate the presence of IgG immune complexes in the CNS of MS patients. For example,myelin of the majority of MS patients is bound by IgG, while these complexes are only found in a small number of non-MS controls (van der Poel et al., 2020).These data demonstrate that IgG indeed forms immune complexes in the CNS of the majority of MS patients, and therefore could contribute to (pathological) immune activation.

    IgG immune complexes in the CNS of MS patients could induce pathological immune responses by activating a variety of antibody effector functions. In general,the most important IgG effector functions are complement activation, phagocytosis,antibody-dependent cellular cytotoxicity(ADCC), and cytokine induction (Figure 1B). Complement activation is indeed observed in MS patients (Lucchinetti et al., 2000) (Elliott et al., 2012). There is also evidence that the other three IgG effector functions (i.e. phagocytosis, ADCC, and cytokine induction) are activated in the CNS of MS patients, which all require the activation of Fc gamma receptors that are expressed by myeloid immune cells such as microglia. For example, binding of IgG to myelin promotes myelin uptake through phagocytosis by microglia (Hendrickx et al., 2014; van der Poel et al., 2020).In addition, IgG immune complexes can induce the production of high levels of pro-inflammatory cytokines by primary human microglia (van der Poel et al.,2020), which is in strong contrast to the general immunological tolerance of microglia to microbial stimuli. However,which of these IgG effector functions are particularly activated, and therefore are most likely to contribute to MS pathology,is still far from clear.

    Importantly, the IgG effector functions that are activated upon immune complex formation in MS patients critically depend on the composition of the IgG Fc tail.The most important variables in the Fc tail composition that determine to which extent IgG effector functions are activated are (1) IgG subclass, (2) allotype, and (3)glycosylation (Figure 1C). First, IgG can be divided in into four different subclasses(IgG1–4). While it was initially thought that some subclasses are pro-inflammatory(IgG3 > IgG1) and others anti-inflammatory(IgG2 and IgG4), recent findings indicate a “division of labor”, in which every subclass is efficient in activating particular immune functions (Figure 1C) (Hoepel et al., 2020). For example, IgG3 is a very potent inducer of complement activation and phagocytosis, while IgG2 is the main subclass that promotes pro-inflammatory cytokine production (Hoepel et al., 2020).IgG1 is able to activate most effector functions, albeit at a somewhat lower level than IgG2 and IgG3 (Hoepel et al.,2020). The oligoclonal IgG that is found in CSF of MS patients is mostly of the IgG1 subclass, although also IgG3 and low levels of IgG2 have been found (Losy et al., 1990). Second, IgG subclasses can be further divided into allotypes. Particularly for IgG3, these genetic polymorphisms can affect IgG3 half-life and effector functions such as complement activation and ADCC. The potential correlation of particular IgG(3) allotypes and MS (or MS severity) is understudied and still not completely clear. Third, IgG glycosylation of a conserved glycan at position N297 has a major effect on the activation of IgG effector functions. These differences in IgG glycosylation mostly depend on the expression of glycosyltransferases and glycosidases in local B cells, which are affected by various factors such as age,hormones, inflammatory conditions, and food metabolites. The glycosylation of IgG in CSF (but not in serum) of MS patientsvs.controls is clearly different, and alterations of glycosylation coincide with MS relapses(Wuhrer et al., 2015). The glycosylation pattern of IgG from CSF of MS patients mostly differs in levels of fucose, galactose,and bisecting N-acetylglucosamine (Figure 1C), which are associated with increased inflammation and complement activation.Several dozens of different glyco-forms of IgG have already been identified, many of which have different binding affinities for Fc gamma receptors and therefore a different potential to activate IgG effector functions.

    Figure 1|The Fc tail determines the pathogenicity of oligoclonal IgG in MS.

    Taken together, the combination of IgG subclass, allotype, and glycosylation provide a very large variety in Fc tail composition and consequent immune activation, which ranges from practically inert to extremely inflammatory, or specifically equipped to (over-)activate particular IgG effector functions such as complement activation or cytokine production. Therefore, to truly understand how intrathecal IgG contributes to MS pathogenesis, we postulate that it is essential to fully characterize the Fc tail composition of IgG antibodies in the CNS of MS patients. Importantly, for this characterization it would not suffice to simply analyze the IgG that is present in CSF. As explained above, unbound monomeric IgG does not lead to immune activation, only IgG immune complexes do. Therefore, specifically these tissuebound IgG immune complexes hold the key to unraveling the role of IgG in MS pathogenesis. Although obtaining these antibodies will be extremely challenging,it may be possible by studying biopsies or post-mortem tissue from MS patients,or to use experimental MS (auto)antibody animal models with IgGs that have distinct Fc tail compositions. When these experiments would indeed confirm pathogenicity by IgG in MS, subsequent steps could be taken to specifically counteract these pathogenic IgG effector functions. For this, we could apply therapies that are already in practice for other antibody-related disorders,such as immune thrombocytopenia and rheumatoid arthritis, where FcγR activation is suppressed by e.g. therapeutic inhibition of the upstream kinase Syk. Although it would still be a long way to potential therapies (also because drug delivery to the CNS is always more challenging because of the blood brain barrier), the characterization of the exact composition of IgG immune complexes in the CNS of MS patients may provide the first critical stepping stone.

    We sincerely thank Dr. J?rg Hamann and Prof. Dr. Inge Huitinga from the Netherlands Institute for Neuroscience and University of Amsterdam, Amsterdam, The Netherlands for their provoking thoughts,extensive feedback, and proofreading of the manuscript.

    The present work was supported by ZonMw Open Competition grant(project No. 09120011910035) and ZonMw Second Wave grant (project No.10430012010008), both awarded to JdD.

    Jeroen den Dunnen*, Lynn Mes,Willianne Hoepel, Joost Smolders

    Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands (den Dunnen J, Mes L, Hoepel W)Department of Medical Microbiology, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands (Mes L)Neuroimmunology Research group, Netherlands Institute for Neuroscience, Amsterdam; MS Center ErasMS, Departments of Neurology and Immunology, Erasmus Medical Center, Rotterdam,The Netherlands (Smolders J)

    *Correspondence to:Jeroen den Dunnen, PhD,j.dendunnen@amsterdamumc.nl.https://orcid.org/0000-0002-7199-8619(Jeroen den Dunnen)

    Date of submission:December 16, 2020

    Date of decision:January 19, 2021

    Date of acceptance:March 12, 2021

    Date of web publication:April 23, 2021

    https://doi.org/10.4103/1673-5374.313045

    How to cite this article:den Dunnen J, Mes L,Hoepel W, Smolders J (2021) Multiple sclerosis:why we should focus on both sides of the (auto)antibody. Neural Regen Res 16(12):2422-2424.

    Copyright license agreement:The Copyright License Agreement has been signed by all authors before publication.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally peer reviewed.

    Open access statement:This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

    国产成人aa在线观看| 国产日韩欧美在线精品| 亚洲中文av在线| 亚洲激情五月婷婷啪啪| 伦理电影免费视频| 欧美精品亚洲一区二区| 乱人伦中国视频| 亚洲欧美成人精品一区二区| 国产精品成人在线| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 在线看a的网站| 国产成人免费观看mmmm| 大片免费播放器 马上看| 一级av片app| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 一级a做视频免费观看| 免费观看的影片在线观看| 免费黄网站久久成人精品| 伊人久久精品亚洲午夜| 街头女战士在线观看网站| 成人特级av手机在线观看| 国产精品久久久久成人av| 午夜精品国产一区二区电影| 精品酒店卫生间| 日本色播在线视频| 久久国产亚洲av麻豆专区| 国产69精品久久久久777片| 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 狂野欧美激情性xxxx在线观看| 国产精品一区www在线观看| 黄色欧美视频在线观看| 男人舔奶头视频| 国产精品人妻久久久影院| 亚洲综合精品二区| 日本91视频免费播放| 女性生殖器流出的白浆| 成人国产麻豆网| 中文字幕av电影在线播放| 丝袜脚勾引网站| 丰满饥渴人妻一区二区三| 亚洲av成人精品一区久久| 日韩视频在线欧美| 一级,二级,三级黄色视频| 精品久久国产蜜桃| 日本黄色片子视频| 国产一区二区三区综合在线观看 | 国产欧美亚洲国产| 观看av在线不卡| 久久青草综合色| 亚洲国产欧美日韩在线播放 | 插阴视频在线观看视频| 亚洲三级黄色毛片| 国产黄色免费在线视频| 天美传媒精品一区二区| 伊人久久国产一区二区| 99精国产麻豆久久婷婷| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| tube8黄色片| 日本免费在线观看一区| 一级a做视频免费观看| 日韩 亚洲 欧美在线| 日韩一区二区视频免费看| 亚洲av欧美aⅴ国产| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 麻豆乱淫一区二区| 国产成人freesex在线| av免费观看日本| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美 | 国产伦精品一区二区三区视频9| 久久韩国三级中文字幕| 久久久久久久亚洲中文字幕| 男女边摸边吃奶| 欧美国产精品一级二级三级 | 久久精品国产自在天天线| 91精品伊人久久大香线蕉| 亚洲图色成人| 亚洲第一区二区三区不卡| 啦啦啦在线观看免费高清www| 在现免费观看毛片| 国产av一区二区精品久久| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃| 日韩av免费高清视频| 国产 精品1| 久久久久网色| 免费观看无遮挡的男女| 性色avwww在线观看| 少妇裸体淫交视频免费看高清| 亚洲va在线va天堂va国产| 免费看av在线观看网站| 在线观看一区二区三区激情| 欧美激情国产日韩精品一区| 日韩欧美 国产精品| 看非洲黑人一级黄片| 夫妻午夜视频| 精品国产国语对白av| 日本黄色片子视频| 两个人免费观看高清视频 | 成人18禁高潮啪啪吃奶动态图 | 精品亚洲成国产av| 亚洲精品视频女| 免费大片18禁| 乱人伦中国视频| 午夜福利在线观看免费完整高清在| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 看免费成人av毛片| 最近最新中文字幕免费大全7| 亚洲四区av| 秋霞伦理黄片| 日本午夜av视频| 亚洲成人手机| 久久狼人影院| 国产一区二区三区av在线| 国精品久久久久久国模美| 亚洲国产精品国产精品| 亚洲精品亚洲一区二区| 热re99久久国产66热| 精品亚洲成国产av| 91aial.com中文字幕在线观看| 亚洲,一卡二卡三卡| 涩涩av久久男人的天堂| a级毛片在线看网站| 在线观看国产h片| 亚洲精品国产av蜜桃| 99精国产麻豆久久婷婷| 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 亚洲第一区二区三区不卡| 欧美少妇被猛烈插入视频| 啦啦啦啦在线视频资源| 人体艺术视频欧美日本| 国产精品一区二区在线不卡| 亚洲国产成人一精品久久久| 亚洲第一区二区三区不卡| av一本久久久久| 中文字幕制服av| 人体艺术视频欧美日本| 偷拍熟女少妇极品色| 极品教师在线视频| av网站免费在线观看视频| 18禁在线播放成人免费| 在线观看一区二区三区激情| 免费观看a级毛片全部| 人妻人人澡人人爽人人| 少妇的逼水好多| 日本色播在线视频| 丝袜脚勾引网站| 在线精品无人区一区二区三| 中国三级夫妇交换| 欧美3d第一页| 国产免费一级a男人的天堂| 国产日韩一区二区三区精品不卡 | 日韩视频在线欧美| 日韩精品有码人妻一区| 亚洲欧美日韩另类电影网站| 99精国产麻豆久久婷婷| 综合色丁香网| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 啦啦啦视频在线资源免费观看| 国产高清三级在线| 国产黄频视频在线观看| 日韩欧美精品免费久久| 色5月婷婷丁香| 日本wwww免费看| 欧美精品亚洲一区二区| 人体艺术视频欧美日本| 校园人妻丝袜中文字幕| 国产伦精品一区二区三区四那| 一区在线观看完整版| 国产精品久久久久成人av| 蜜桃在线观看..| 亚洲怡红院男人天堂| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 国产精品99久久久久久久久| 欧美精品国产亚洲| 亚洲国产欧美日韩在线播放 | 婷婷色av中文字幕| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 蜜桃在线观看..| 精品国产一区二区久久| 国产精品久久久久久精品古装| 全区人妻精品视频| av国产精品久久久久影院| 日本欧美视频一区| 亚洲欧洲国产日韩| av女优亚洲男人天堂| 亚洲国产毛片av蜜桃av| 亚洲三级黄色毛片| 免费观看的影片在线观看| 午夜激情福利司机影院| 国产成人精品一,二区| 久久精品国产亚洲av涩爱| 国产永久视频网站| 九色成人免费人妻av| 五月天丁香电影| 一个人免费看片子| 国产黄片美女视频| 一区二区av电影网| 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| .国产精品久久| 亚洲av男天堂| 午夜老司机福利剧场| 新久久久久国产一级毛片| 国产有黄有色有爽视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲性久久影院| 国产高清有码在线观看视频| 国产免费又黄又爽又色| 日韩中字成人| 一本久久精品| 九草在线视频观看| 免费久久久久久久精品成人欧美视频 | 久久久久久久久久久久大奶| 卡戴珊不雅视频在线播放| h视频一区二区三区| 亚洲av成人精品一二三区| 在线免费观看不下载黄p国产| 色网站视频免费| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| 桃花免费在线播放| 国产爽快片一区二区三区| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 人妻制服诱惑在线中文字幕| 久久综合国产亚洲精品| kizo精华| 多毛熟女@视频| 精品亚洲成a人片在线观看| 91aial.com中文字幕在线观看| 亚洲精品日本国产第一区| 少妇高潮的动态图| 日韩成人av中文字幕在线观看| 成年女人在线观看亚洲视频| 五月玫瑰六月丁香| 日日啪夜夜爽| 欧美日韩视频精品一区| 国产乱来视频区| 精品熟女少妇av免费看| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| 夫妻午夜视频| 亚洲丝袜综合中文字幕| 国产精品人妻久久久影院| 亚洲人成网站在线播| 一级,二级,三级黄色视频| 婷婷色综合www| 伦理电影大哥的女人| 久久ye,这里只有精品| 欧美精品高潮呻吟av久久| 视频区图区小说| 天堂俺去俺来也www色官网| 两个人的视频大全免费| 老司机亚洲免费影院| 久久久久久久久久久免费av| 视频中文字幕在线观看| 亚洲性久久影院| 一级a做视频免费观看| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频 | 亚洲自偷自拍三级| 久久久国产欧美日韩av| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 国产欧美日韩精品一区二区| 乱人伦中国视频| 亚洲电影在线观看av| 日日撸夜夜添| 青春草国产在线视频| 岛国毛片在线播放| 日日撸夜夜添| 国产精品伦人一区二区| 免费看光身美女| 亚洲自偷自拍三级| 美女视频免费永久观看网站| 高清午夜精品一区二区三区| 亚洲av电影在线观看一区二区三区| videos熟女内射| 婷婷色麻豆天堂久久| 午夜免费鲁丝| 国产色爽女视频免费观看| av在线观看视频网站免费| 日日爽夜夜爽网站| 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 精品久久久精品久久久| 亚洲欧美成人精品一区二区| 久久精品国产自在天天线| 午夜91福利影院| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 国国产精品蜜臀av免费| 超碰97精品在线观看| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 国产69精品久久久久777片| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 日韩一区二区视频免费看| 两个人的视频大全免费| 亚洲av电影在线观看一区二区三区| 老司机影院成人| 亚洲精品一二三| 深夜a级毛片| 国产老妇伦熟女老妇高清| 日韩,欧美,国产一区二区三区| 我要看日韩黄色一级片| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 久久狼人影院| 免费av中文字幕在线| 日韩精品免费视频一区二区三区 | 99re6热这里在线精品视频| 一级毛片电影观看| 国产在线男女| 男女国产视频网站| 国产成人午夜福利电影在线观看| 97在线视频观看| 国产色爽女视频免费观看| 国产成人免费观看mmmm| 亚洲精品一区蜜桃| 国产成人91sexporn| 久久精品国产亚洲av天美| 深夜a级毛片| 亚洲成人一二三区av| 欧美亚洲 丝袜 人妻 在线| 国产成人aa在线观看| 欧美三级亚洲精品| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 日本午夜av视频| 春色校园在线视频观看| 在线观看人妻少妇| 国产黄频视频在线观看| av不卡在线播放| 国产精品99久久久久久久久| 丰满人妻一区二区三区视频av| 国产日韩欧美视频二区| 国产精品久久久久久久电影| 丰满迷人的少妇在线观看| 老熟女久久久| 久久热精品热| 视频区图区小说| 免费观看av网站的网址| 中国三级夫妇交换| 99热这里只有是精品在线观看| 精品酒店卫生间| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 夜夜看夜夜爽夜夜摸| 亚洲成人手机| 人妻 亚洲 视频| 久久久久国产精品人妻一区二区| 亚洲欧美成人精品一区二区| 精品午夜福利在线看| 人妻系列 视频| 永久网站在线| a级片在线免费高清观看视频| 99久久精品热视频| 亚洲av综合色区一区| 婷婷色麻豆天堂久久| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 久久影院123| 十八禁高潮呻吟视频 | 国产高清国产精品国产三级| 在线观看一区二区三区激情| 国产成人精品久久久久久| 一级二级三级毛片免费看| 又爽又黄a免费视频| 男女啪啪激烈高潮av片| 人人妻人人添人人爽欧美一区卜| av在线老鸭窝| 草草在线视频免费看| 中文字幕免费在线视频6| 久久99精品国语久久久| 性色avwww在线观看| 亚洲,欧美,日韩| 久久ye,这里只有精品| 成人美女网站在线观看视频| 日本与韩国留学比较| 久久韩国三级中文字幕| 久久久欧美国产精品| 一区二区三区精品91| 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 男女国产视频网站| 日本欧美视频一区| 搡女人真爽免费视频火全软件| 人妻系列 视频| 国产精品一区二区性色av| 18禁在线无遮挡免费观看视频| 人人妻人人爽人人添夜夜欢视频 | 高清欧美精品videossex| 国产成人精品福利久久| 伦理电影免费视频| 欧美一级a爱片免费观看看| 亚洲怡红院男人天堂| 美女视频免费永久观看网站| 男人舔奶头视频| 国产精品熟女久久久久浪| .国产精品久久| 免费观看无遮挡的男女| 国产亚洲精品久久久com| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 黄色怎么调成土黄色| 高清毛片免费看| 午夜日本视频在线| 五月天丁香电影| 国产黄片美女视频| 亚洲精品国产成人久久av| 男人添女人高潮全过程视频| 夜夜看夜夜爽夜夜摸| 搡老乐熟女国产| 免费看不卡的av| √禁漫天堂资源中文www| 亚洲三级黄色毛片| www.色视频.com| 欧美成人精品欧美一级黄| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 久久亚洲国产成人精品v| 少妇的逼好多水| 亚洲图色成人| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 在线播放无遮挡| 十分钟在线观看高清视频www | 国产91av在线免费观看| 国产精品偷伦视频观看了| 久久精品国产亚洲网站| 在线观看av片永久免费下载| 曰老女人黄片| 国产成人精品无人区| 中文乱码字字幕精品一区二区三区| 一级毛片黄色毛片免费观看视频| 国产成人免费无遮挡视频| 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| 日韩制服骚丝袜av| 国产男女内射视频| 熟妇人妻不卡中文字幕| 如日韩欧美国产精品一区二区三区 | 五月开心婷婷网| 久久久久久久精品精品| 国产精品人妻久久久久久| 一级毛片电影观看| 日本欧美视频一区| 97超视频在线观看视频| 97在线人人人人妻| 久久久久精品久久久久真实原创| 如何舔出高潮| 中文欧美无线码| 国产精品国产三级国产专区5o| 亚洲精品视频女| 国产成人aa在线观看| 成人毛片60女人毛片免费| 热99国产精品久久久久久7| 熟女电影av网| videossex国产| 久久99一区二区三区| 性色av一级| 亚洲美女视频黄频| 欧美97在线视频| 国产日韩一区二区三区精品不卡 | 精品熟女少妇av免费看| 插阴视频在线观看视频| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频| videossex国产| 十八禁高潮呻吟视频 | 久久久久网色| 制服丝袜香蕉在线| 久久国内精品自在自线图片| 全区人妻精品视频| 国产在视频线精品| 中文字幕人妻丝袜制服| 最近手机中文字幕大全| 欧美区成人在线视频| 中文字幕av电影在线播放| 不卡视频在线观看欧美| 国精品久久久久久国模美| 国产成人一区二区在线| 视频中文字幕在线观看| 亚洲欧美日韩东京热| 精品少妇久久久久久888优播| 亚洲久久久国产精品| 欧美日韩视频高清一区二区三区二| 日韩成人伦理影院| 久久午夜综合久久蜜桃| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| 尾随美女入室| 久久午夜综合久久蜜桃| 午夜视频国产福利| 成人特级av手机在线观看| 中文字幕免费在线视频6| 国产欧美日韩综合在线一区二区 | 精品卡一卡二卡四卡免费| 三级国产精品欧美在线观看| 91精品国产九色| 亚州av有码| 熟女av电影| 国产精品久久久久久av不卡| 天堂中文最新版在线下载| 亚洲av综合色区一区| 美女国产视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲婷婷狠狠爱综合网| 最新的欧美精品一区二区| 亚洲av在线观看美女高潮| 国产亚洲最大av| av天堂中文字幕网| 久久精品夜色国产| 美女国产视频在线观看| 久久婷婷青草| 精品少妇内射三级| 男女边摸边吃奶| 久久精品国产a三级三级三级| 在线观看三级黄色| 岛国毛片在线播放| 最近2019中文字幕mv第一页| 99久久精品热视频| 91精品一卡2卡3卡4卡| 一级毛片我不卡| 日产精品乱码卡一卡2卡三| 久久久久久久久久久丰满| 少妇的逼好多水| 精品酒店卫生间| 欧美精品亚洲一区二区| 极品人妻少妇av视频| 国产伦理片在线播放av一区| 国内精品宾馆在线| 99热国产这里只有精品6| 精品一区二区三卡| 毛片一级片免费看久久久久| 日韩一本色道免费dvd| 老熟女久久久| 18禁在线播放成人免费| 在线看a的网站| 成年av动漫网址| 丰满乱子伦码专区| 三级经典国产精品| 国产精品国产三级国产专区5o| 十分钟在线观看高清视频www | 精品一区在线观看国产| 久久女婷五月综合色啪小说| 麻豆乱淫一区二区| 中国三级夫妇交换| 久久久久国产网址| 在线免费观看不下载黄p国产| 99久久中文字幕三级久久日本| 国产精品99久久久久久久久| 日本欧美国产在线视频| 婷婷色综合大香蕉| 80岁老熟妇乱子伦牲交| 最后的刺客免费高清国语| 久久久亚洲精品成人影院| 自线自在国产av| 伦理电影免费视频| 黑丝袜美女国产一区| 久久99热6这里只有精品| 亚洲一级一片aⅴ在线观看| 国产精品99久久久久久久久| 下体分泌物呈黄色| 亚洲欧洲国产日韩| 熟女av电影| 麻豆成人午夜福利视频| 亚洲怡红院男人天堂| 欧美人与善性xxx| 国产精品久久久久久精品电影小说| 菩萨蛮人人尽说江南好唐韦庄| 熟女av电影| 老司机影院成人| 亚洲国产av新网站| 亚洲在久久综合| 亚洲国产色片| 久久久久久伊人网av| 日韩,欧美,国产一区二区三区| 在线免费观看不下载黄p国产| 一本色道久久久久久精品综合| 亚洲在久久综合| 最近的中文字幕免费完整| 丰满人妻一区二区三区视频av| 欧美+日韩+精品| 黄色视频在线播放观看不卡| 亚洲综合色惰| 黄色配什么色好看|