趙 雪,鄭 一,付彩霞,裘文慧,王文科,段 磊,趙 婷
雄安新區(qū)水環(huán)境中對羥基苯甲酸酯含量及風險
趙 雪1,2,鄭 一2*,付彩霞2,裘文慧2,王文科3,段 磊3,趙 婷2
(1.哈爾濱工業(yè)大學環(huán)境學院,黑龍江 哈爾濱 150090;2.南方科技大學環(huán)境科學與工程學院,廣東 深圳 518055;3.長安大學環(huán)境科學與工程學院,陜西 西安 710054)
于2019年6月對雄安新區(qū)和保定市周邊地區(qū)地表水和地下水進行采樣,分析水環(huán)境中7種對羥基苯甲酸酯(parabens)組分的含量水平及生態(tài)風險.結(jié)果表明:對羥基苯甲酸甲酯(MeP)和對羥基苯甲酸丙酯(PrP)的檢出率為100%;地表水中的主要組分為MeP,占比達93.4%,地下水中的主要組分為MeP,對羥基苯甲酸乙酯(EtP)和PrP,三者占比達98.0%;地下水中parabens的含量水平高于地表水;地表水中parabens的濃度呈白洋淀下游高于上游的空間分布特征,而地下水中的parabens總量在安新縣境內(nèi)較高,平均濃度可達10.1ng/L;總體而言,當前雄安新區(qū)水環(huán)境中parabens的污染程度較低、生態(tài)風險較小.本文可為未來雄安新區(qū)建設(shè)中的水環(huán)境管理提供污染水平參比值和決策依據(jù),也可為雄安新區(qū)水環(huán)境中其它藥品和個人護理品(PPCPs)的污染研究提供參考.
對羥基苯甲酸酯;藥品和個人護理品;雄安新區(qū);地表水;地下水;生態(tài)風險;白洋淀
對羥基苯甲酸酯(parabens)是一類被廣泛使用的防腐劑,因其具有用量少、成本低、無氣味等特點,被廣泛添加于食品、藥品和化妝品中[1].歐盟、美國食品藥品管理局(USFDA)、加拿大衛(wèi)生部已批準parabens作為食品和化妝品的防腐劑使用,我國的食品添加劑使用衛(wèi)生標準[GB2760-2007][2]也規(guī)定對羥基苯甲酸甲酯(MeP)和丙酯(PrP)可用于食品中.食物、藥品和個人護理品(PPCPs)在日常生活及農(nóng)業(yè)畜禽養(yǎng)殖中的應(yīng)用導(dǎo)致parabens在污水中富集,使其成為水環(huán)境中的主要污染來源[3].國內(nèi)外研究表明,parabens已普遍存在于地表水體,其中MeP、對羥基苯甲酸乙酯(EtP)和PrP是檢出率及濃度較高的3種組分,濃度范圍在ng/L~μg/L[4-6]之間.地下水中也檢出了相應(yīng)濃度的parabens[7-8].近期研究發(fā)現(xiàn)人體血清和尿液中均可檢測到parabens[9-10],動物實驗結(jié)果表明parabens具有雌激素活性[11-13],且其暴露與過敏、哮喘、糖尿病、狼瘡以及乳腺癌等免疫相關(guān)疾病有關(guān)[14-16].因此,parabens類防腐劑的生態(tài)風險及其使用安全性已引起了廣泛關(guān)注.
2017年4月1日,我國正式宣布設(shè)立“雄安新區(qū)”,旨在建設(shè)北京非首都功能集中承載地、京津冀城市群重要一極、高質(zhì)量高水平社會主義現(xiàn)代化城市.水質(zhì)安全保障對于雄安新區(qū)未來的建設(shè)發(fā)展至關(guān)重要.被譽為“華北明珠”的白洋淀將成為雄安新區(qū)的重要水源地之一.由于工業(yè)企業(yè)和旅游業(yè)的發(fā)展,以及生活垃圾和生活污水的粗放管理,近年來白洋淀水質(zhì)惡化[17],重金屬[18]、多溴聯(lián)苯醚[19]、多環(huán)芳烴[21]、抗生素[21]等污染物在白洋淀水體中均有檢出.總體而言,針對雄安新區(qū)水環(huán)境中PPCPs類污染物的研究還較為缺乏,而關(guān)于地下水環(huán)境中parabens的研究尚未見報道.
本研究于2019年6月對雄安新區(qū)地表水和地下水進行采樣,檢測樣品中7種parabens組分的濃度,在此基礎(chǔ)上分析了地表水和地下水中parabens的污染現(xiàn)狀、空間分布特征以及生態(tài)風險,以期為未來雄安新區(qū)的水環(huán)境管理提供污染水平參比值和決策依據(jù),并為當?shù)厮h(huán)境中其它PPCPs的污染研究提供參考.
雄安新區(qū)位于河北省中部,保定市內(nèi),由雄縣、安新縣和容城縣三縣及周邊區(qū)域組成,總面積1566km2,屬大清河水系(圖1).大清河水系分南北支,上游南支包括萍河、瀑河、漕河、府河、唐河、孝義河和潴龍河等支流,匯入白洋淀西淀;下游北支主要為拒馬河,河水由白溝引河入東淀;出淀水經(jīng)趙王新河進入大清河干流[22].采樣時間于2019年6月18 ~ 26日進行,采樣點位置如圖1所示.地表水樣主要采自于白洋淀、入淀河流(南拒馬河、白溝引河、瀑河、府河、唐河和孝義河)和大清河干流,共38個采樣點,標記為SW1~SW38,其中府河6個(SW1~SW6),瀑河1個(SW7),唐河1個(SW8),孝義河3個(SW9~SW11),白洋淀21個(SW12~ SW32),南拒馬河1個(SW33),白溝引河3個(SW34~SW36),大清河干流2個(SW37和SW38).地下水樣取自雄安新區(qū)三縣及保定市周邊35口灌溉地下水井,標記UW1~UW35,其中雄縣6個(UW1~UW6),容城縣5個(UW7~UW11),安新縣15個(UW12~UW26),保定市周邊地區(qū)9個(UW27~ UW35).所采水樣置于1L棕色玻璃瓶中,冷藏運至實驗室于-4℃冰箱冷藏至樣品分析.
圖1 研究區(qū)域水系及采樣點示意
本研究分析了7種parabens目標物,分別為:對羥基苯甲酸甲酯(MeP)、對羥基苯甲酸乙酯(EtP)、對羥基苯甲酸丙酯(PrP)、對羥基苯甲酸異丙酯(iso-PrP)、對羥基苯甲酸丁酯(BuP)、對羥基苯甲酸異丁酯(iso-BuP)和對羥基苯甲酸芐酯(BzP).
樣品處理采用固相萃取法,詳細步驟為:取800mL水樣過0.45μm濾膜(Millipore),過濾后水相加入50ng13C標記的混合代標(13C-MeP、13C-EtP、13C-PrP、13C-iso-PrP、13C-BuP、13C-iso-BuP和13C-BzP),平衡0.5h.加標后的水樣,用隔膜泵抽取上樣于經(jīng)6mL甲醇和6mL超純水活化后的MCX (6cm3;500mg;Waters)固相萃取柱,流速為1滴/s.上樣結(jié)束后,固相萃取柱在真空下抽干30min.最后,用14mL甲醇進行洗脫,洗脫液收集于玻璃試管中,氮吹至0.5mL后定容至1mL,轉(zhuǎn)移至2mL棕色色譜瓶中密封低溫保存,待上機檢測.
采用Agilent 公司的液相色譜質(zhì)譜聯(lián)用儀(HPLC-MS/MS)對paraben進行定性和定量分析,色譜柱型號為ZORBAX RRHD Eclipse Plus C18(100× 2.1mm,1.8μm).柱溫為30℃,流動相為含0.05%甲酸和5mmol/L醋酸銨的超純水溶液(取5mmol/L, 0.3854g醋酸銨,500μL甲酸溶解在1L超純水中)和甲醇,梯度洗脫程序如表1所示.質(zhì)譜選擇Dynamic MRM負離子模式,電噴霧電離(ESI),各物質(zhì)裂解電壓、碰撞能量、特征離子對以及保留時間經(jīng)過優(yōu)化如表2所示.
在樣品處理過程中,同時進行2個空白實驗和2個基質(zhì)加標實驗,處理方法與水體樣品的處理方法相同,用以檢測方法回收率和基質(zhì)干擾.空白樣品中parabens的檢出濃度遠低于其在真實樣品中的濃度,本文所報道的濃度數(shù)據(jù)均已扣除空白值.基質(zhì)加標樣品中7種parabens的回收率范圍為89%~135%,表明基質(zhì)影響較小.另外,為考察方法的回收率,所有樣品在處理前均加入7種parabens的代標,其回收率范圍為80.6%~103%,表明該方法的回收率較好,本文所報道的濃度數(shù)據(jù)均經(jīng)過了代標回收率校正.按照信噪比為10時的標樣濃度作為方法定量限,檢測方法中目標物的定量限為0.02ng/mL,根據(jù)《水環(huán)境監(jiān)測規(guī)范》[SL219-2013][23],低于定量限的按照1/2定量限進行計算.
地表水和地下水中parabens的潛在生態(tài)風險采用風險商(RQ)進行分析,計算公式見式(1)和(2). RQ<0.1表示低風險;0.1£RQ<1表示中度風險;RQ31表示重度風險[24-25].
RQ=MECW/PNEC(1)
PNEC=LC50/AF(2)
式中: RQ是風險商;MECW是地表水或地下水中parabens的濃度;PNEC是預(yù)測無效應(yīng)濃度;LC50是半致死濃度(即半最大效應(yīng)濃度),MeP、EtP、PrP、iso-PrP、BuP和BzP的LC50分別是24.6, 18.7, 12.3, 8.5, 5.3和4.0mg/L[25];AF是評價因子,取值為1000.
表1 HPLC梯度洗脫程序
注:流動相A為甲醇,流動相B為超純水(含0.05%甲酸和0.5%醋酸銨).
表2 Parabens的MRM參數(shù)
注: *表示定量離子對.
本研究區(qū)域樣品中普遍檢出parabens. MeP和PrP在所有地表水樣中均有檢出(即檢出率為100%),而BuP和iso-BuP的檢出率較低,分別為7.89%和2.63%.Parabens在地表水樣中的濃度和組分構(gòu)成分別見圖2和圖3(a).可見, MeP的濃度最高,平均值為2.80ng/L,其次是PrP(0.06ng/L)、iso-PrP (0.05ng/L)、EtP(0.04ng/L)、BzP(0.03ng/L)、BuP (0.01ng/L)和iso-BuP(0.01ng/L).從組成分布來看, MeP是地表水中最主要的成分,占比高達93.4%,這是由于MeP是應(yīng)用最廣泛的一種parabens類防腐劑[26],也間接表明當前城鎮(zhèn)化水平很低的雄安新區(qū)使用較為單一的parabens類產(chǎn)品.與國內(nèi)外其它地區(qū)地表水研究結(jié)果對比發(fā)現(xiàn),雄安新區(qū)地表水中MeP (0.92~7.70ng/L)的濃度處于較低水平,遠低于北京市內(nèi)河流(0.81~920ng/L)[27]、湘江(ND~ 3170ng/L)[28]、珠江(ND~1060ng/L)[29]、長江(4.34~ 28.8ng/L)[30]和海河(43.9~241ng/L)[31]等中國境內(nèi)河流,也低于泰國湄南河(357~2270ng/L)[32]、日本德島、京都和埼玉縣境內(nèi)河流(ND~525ng/L)[33]、英國塔夫河和伊利河(ND~400ng/L)[34]、瑞士格拉特河(3.10~17.0ng/L)[35]等境外河流.其它幾種parabens的污染水平也與MeP類似.綜上所述,現(xiàn)階段雄安新區(qū)地表水中parabens的污染水平較低,本研究測得的濃度值可作為未來新區(qū)建設(shè)發(fā)展中parabens污染管控的參比值.
圖2 樣品中parabens的濃度水平
MeP、EtP和PrP在地下水樣中的檢出率為100%,而iso-PrP和iso-BuP的檢出率較低,分別為14.3%和22.9%.Parabens在地下水樣中的濃度和組成分布分別見圖2和圖3(b).與地表水不同,地下水中主要組分是MeP、EtP和PrP,分別占總濃度的44.3%、39.1%和14.6%(合計98.0%),平均值分別為3.02,2.66,1.00ng/L,iso-BuP濃度最低,平均值為0.02ng/L.由圖3可知,研究區(qū)地下水的污染比地表水更為嚴重(7種parabens在地下水和地表水中的總濃度分別為6.81和3.00ng/L),且parabens的污染來源有所不同(組分構(gòu)成差異大).可能的原因為:雄縣、容城和安新等均以農(nóng)業(yè)生產(chǎn)為主,大量使用農(nóng)藥、化肥并長期進行污水灌溉,加重了地下水的污染負荷[36].國內(nèi)外針對地下水中parabens的污染研究相對較少,Stuart等[37]報道過英國地下水中MeP和PrP最大可達5000和5500ng/L,Serra-Roig等[7]研究發(fā)現(xiàn)西班牙巴塞羅那地下水中MeP和PrP的最大濃度分別為194和61.9ng/L,Peng等[8]發(fā)現(xiàn)廣州城市垃圾填埋場附近地下水中MeP、PrP和EtP最高可達83.2, 22.5和12.5ng/L,均遠高于本研究測得的濃度,可見雄安新區(qū)目前地下水的parabens污染程度也相對較低.
圖3 樣品中parabens的組分構(gòu)成
Parabens濃度在研究區(qū)內(nèi)存在空間差異,如圖4所示.在匯入白洋淀的幾條地表河流中,∑parabens在大清河干流濃度最高,為6.52ng/L,其次是白洋淀,濃度為3.02ng/L,均高于唐河、府河、孝義河、白溝引河、南拒馬河和瀑河等大清河水系上游支流.這些支流因受到沿岸生活污水和工業(yè)廢水的影響,均受到不同程度的污染[38],這些支流均匯入白洋淀,最終匯入大清河干流,因而導(dǎo)致白洋淀和大清河干流水體中parabens含量升高.白洋淀周圍村莊密集,生活污水、垃圾、人畜糞便缺乏有效的收集和處理,其所含的parabens也會以面源形式進入白洋淀.此外,淀內(nèi)魚鴨養(yǎng)殖也是可能的污染來源[39].地下水中parabens濃度在安新縣高于雄縣、保定市周邊地區(qū)和容城縣, ∑parabens的平均濃度分別為10.1, 4.97, 4.90和2.69ng/L.趙本龍等[22]對雄安新區(qū)地下水水質(zhì)調(diào)查也發(fā)現(xiàn)雄安新區(qū)東北部、西北部和靠近白洋淀區(qū)域部分水質(zhì)較差,尤其淀區(qū)附近地下水受白洋淀污水影響顯著.白洋淀主要位于安新縣境內(nèi),因此白洋淀水質(zhì)污染也可能是導(dǎo)致安新縣地下水中parabens濃度略高的原因.
圖4 不同縣區(qū)水樣中parabens濃度的對比
為樣品數(shù)量
3種主要組分MeP、EtP和PrP在地表水和地下水中的RQ值如圖5所示.MeP、EtP和PrP在地表水和地下水中均處于低風險水平(RQ<0.1),這與國內(nèi)外其它地區(qū)的評價結(jié)果類似.有研究顯示, parabens在中國廣東從化流溪河[40]、湖南湘江[28]、印度高韋里河[41]、維拉爾河[41]、西班牙瓜迪亞馬爾河[42]等地的地表水中均屬低風險水平,而雄安新區(qū)地表水中parabens的生態(tài)風險比這些地區(qū)更低.另一方面,地下水中MeP、EtP和PrP的生態(tài)風險均高于地表水,這與前述濃度結(jié)果一致,推測是由于當?shù)匚鬯幚碓O(shè)施落后且以農(nóng)業(yè)為主,污水灌溉和畜禽養(yǎng)殖等活動導(dǎo)致地下水中parabens濃度及生態(tài)風險升高.位于孝義河入淀口的地下水點位UW15處的風險最高(圖5(c)),孝義河是白洋淀4條入淀河流之一,水源主要來自生活污水,保定市印染企業(yè)的工業(yè)廢水也多排入孝義河[43].地下水一旦被污染,其水質(zhì)恢復(fù)的難度大、成本高、時間長.因此,在未來雄安新區(qū)的發(fā)展建設(shè)中,除了完善城市污水處理設(shè)施,也應(yīng)重視周邊農(nóng)村地區(qū)污水和垃圾的有效收集和處理,避免地下水parabens污染的生態(tài)風險.
3.1 雄安新區(qū)地表水中可普遍檢出7種parabens組分,濃度水平在0.01~2.80ng/L之間,但與國內(nèi)外其它河流相比,污染程度較輕.MeP為地表水中主要的組分,占比高達93.4%.
3.2 雄安新區(qū)地下水中可普遍檢出7種常見parabens組分,濃度水平在0.02~3.02ng/L之間,總體上高于當?shù)氐乇硭?MeP、EtP和PrP為主要組分,三者之和占比高達98.0%.
3.3 從濃度的空間分布來看,地表水中parabens濃度呈現(xiàn)白洋淀下游水系高于白洋淀上游水系的特征;對于地下水,安新縣的parabens濃度水平較其它地區(qū)高,平均濃度可達10.1ng/L.
3.4 雄安新區(qū)地表水和地下水中parabens的RQ值均小于1,生態(tài)風險較低.
圖5 MeP、EtP和PrP在地表水和地下水樣品中的RQ值
[1] Soni M, Carabin I, Burdock G. Safety assessment of esters of p- hydroxybenzoic acid (parabens) [J]. Food and Chemical Toxicology, 2005,43(7):985-1015.
[2] GB2760-2007 食品添加劑使用衛(wèi)生標準 [S]. GB2760-2007 Sanitary Standards of Using Food Additives [S].
[3] B??dzka D, Gromadzińska J, W?sowicz W. Parabens. From environmental studies to human health [J]. Environment International, 2014,67:27-42.
[4] Reichert G, Mizukawa A, Antonelli J, et al. Determination of parabens, triclosan, and lipid regulators in a subtropical urban river: effects of urban occupation [J]. Water, Air, and Soil Pollution, 2020,231(3):133.
[5] Ma X Q, Wan Y J, Wu M Y, et al. Occurrence of benzophenones, parabens and triclosan in the Yangtze River of China, and the implications for human exposure [J]. Chemosphere, 2018,213:517- 525.
[6] Chakraborty P, Mukhopadhyay M, Sampath S, et al. Organic micropollutants in the riverine sedimentsalong the lower stretch of the River Ganga: occurrences, sources and risk assessment [J]. Environmental Pollution, 2018,249:1071-1080.
[7] Serra-Roig M P, Jurado A, Díaz-Cruz M S, et al. Occurrence, fate and risk assessment of personal care products in river–groundwater interface [J]. Science of the Total Environment, 2016,568:829-837.
[8] Peng X Z, Ou W H, Wang C W, et al. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China [J]. Science of the Total Environment, 2014,490:889-898.
[9] Xue J C, Wu Q, Sakthivel S, et al. Urinary levels of endocrine- disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non- obese Indian children [J]. Environmental Research, 2015,137:120- 128.
[10] Teitelbaum S L, Li Q, Lambertini L, et al. Paired serum and urine concentrations of biomarkers of diethyl phthalate, methyl paraben, and triclosan in rats [J]. Environmental Health Perspectives, 2016,124(1): 39-45.
[11] Oishi S. Effects of butylparaben on the male reproductive system in rats [J]. Toxicology and Industrial Health, 2001,17(1):31-39.
[12] Darbre P, Byford J, Shaw L, et al. Oestrogenic activity of benzylparaben [J]. Journal of Applied Toxicology, 2003,23(1):43-51.
[13] Lemini C, Jaimez R, ?vila M E, et al. In vivo and in vitro estrogen bioactivities of alkyl parabens [J]. Toxicology and Industrial Health, 2003,19(2-6):69-79.
[14] Byford J, Shaw L, Drew M, et al. Oestrogenic activity of parabens in MCF7human breast cancer cells [J]. The Journal of steroid biochemistry and molecular biology, 2002,80(1):49-60.
[15] Okubo T, Yokoyama Y, Kano K, et al. ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7cells and expression of ERα and PR [J]. Food and Chemical Toxicology, 2001,39(12):1225-1232.
[16] Watkins D J, Ferguson K K, Toro L, et al. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico [J]. International Journal of Hygiene and Environmental Health, 2015, 218(2):212-219.
[17] 林 娜.雄安新區(qū)白洋淀生態(tài)環(huán)境修復(fù)和治理 [J]. 科技風, 2019,4:110-110. Lin N. Restoration and treatment of the ecological environment in Baiyang Lake, Xiong'an New Area [J]. Technology Wind, 2019,(4): 110-110.
[18] Chen C Y, Pickhardt P C, Folt M Q X L. Mercury and arsenic bioaccumulation and eutrophication in Baiyangdian Lake, China [J]. Water Air and Soil Pollution, 2008,190(1-4):115-127.
[19] Hu G C, Dai J Y, Xu Z C, et al. Bioaccumulation behavior of polybrominated diphenyl ethers (PBDEs) in the freshwater food chain of Baiyangdian Lake, North China [J]. Environment International, 2010,22(2):176-183.
[20] Hu G C, Luo X J, Li F C, et al. Organochlorine compounds and polycyclic aromatic hydrocarbons in surface sediment from Baiyangdian Lake, North China: concentrations, sources profiles and potential risk [J]. Journal of Environmental Sciences, 2010,36(4): 309-315.
[21] Li W H, Shi Y L, Gao L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012,89(11):1307-1315.
[22] 趙本龍,馬占輝,趙建永.雄安新區(qū)水文要素特性分析 [J]. 水科學與工程技術(shù), 2018,3:47-49. Zhao B L, Ma Z H, Zhao J Y. [J]. Analysis of the characteristics of hydrological factors in Xiong'an New Area [J]. Water Sciences and Engineering Technology, 2018,3:47-49.
[23] SL219-2013 水環(huán)境監(jiān)測規(guī)范 [S]. SL219-2013 Regulation for water environmental monitoring [S].
[24] 陳玫宏,郭 敏,劉 丹,等.典型內(nèi)分泌干擾物在太湖及其支流水體和沉積物中的污染特征[J]. 中國環(huán)境科學, 2017,37(114):4323- 4332. Chen M H, Guo M, Liu D, et al. Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries [J]. China Environmental Science, 2017,37(114): 4323-4332.
[25] Dobbins L L, Usenko S, Brain R A, et al. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas [J]. Environmental Toxicology and Chemistry, 2009,28(12): 2744–2753.
[26] Nassan F L, Coull B A, Gaskins A J, et al. Personal care product use in men and urinary concentrations of select phthalate metabolites and parabens: results from the environment and reproductive health (EARTH) study [J]. Environmental Health Perspectives, 2017,125(8): 087012-1–087012-10.
[27] Li W H, Gao L H, Shi Y L, et al. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China [J]. Science of the Total Environment, 2016,539:262-270.
[28] Lu J, Li H P, Luo Z F, et al. Occurrence, distribution, and environmental risk of four categories of personal care products in the Xiangjiang River, China [J]. Environmental Science and Pollution Research, 2018,25(27):27524-27534.
[29] Peng X Z, Yu Y Y, Tang C M, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China [J]. Science of the Total Environment, 2008,397(1):158-166.
[30] Liu W R, Zhao J L, Liu Y S, et al. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment [J]. Environmental Pollution, 2015,200:53-63.
[31] Lei K, Zhu Y, Chen W, et al. The occurrence of home and personal care products in the Haihe River catchment and estimation of human exposure [J]. Science of the Total Environment, 2018,643:63-72.
[32] Juksu K, Zhao J L, Liu Y S, et al. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand [J]. Science of the Total Environment, 2019,690:1110-1119.
[33] Kimura K, Kameda Y, Yamamoto H, et al. Occurrence of preservatives and antimicrobials in Japanese rivers [J]. Chemosphere, 2014,107(11): 393-399.
[34] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK [J]. Water Research, 2008,42(13):3498-3518.
[35] Jonkers N, Kohler H P E, Dammsh?user A, et al. Mass flows of endocrine disruptors in the Glatt River during varying weather conditions [J]. Environmental Pollution, 2009,157(3):714-723.
[36] 王 彬.保定市地下水污染現(xiàn)狀淺析 [J]. 地下水, 2013,35(4):65- 66,94. Wang B. Brief analysis on the current situation of groundwater pollution in Baoding [J]. Ground Water, 2013,35(4):65-66,94.
[37] Stuart M, Lapworth D, Crane E, et al. Review of risk from potential emerging contaminants in UK groundwater [J]. Science of the Total Environment, 2012,416:1-21.
[38] 王 珺,裴元生,楊志峰.營養(yǎng)鹽對白洋淀草型富營養(yǎng)化的驅(qū)動與限制 [J]. 中國環(huán)境科學, 2010,30(S1):7-13. Wang J, Pei Y S, Yang Z F. Effects of nutrients on the plant type eutrophication of the Baiyangdian Lake [J]. China Environmental Science, 2010,30(S1):7-13.
[39] 梅雪冰,隋 倩,張紫薇,等.不同特征污染源中指示性藥物和個人護理品識別與篩選[J]. 中國環(huán)境科學, 2019,39(3):1173-1180. Mei X B, Sui Q, Zhang Z W, et al. Identification of indicator pharmaceutical and personal care products (PPCPs) in different emission sources [J]. China Environmental Science, 2019,39(3):1173- 1180.
[40] Huang C, Wu L H, Liu G Q, et al. Occurrence and ecological risk assessment of eight endocrine-disrupting chemicals in urban river water and sediments of south China [J]. Archives of Environmental Contamination and Toxicology, 2018,75(2):224-235.
[41] Ramaswamy B R, Shanmugam G, Velu G, et al. GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers [J]. Journal of Hazardous materials, 2011, 186(2/3):1586-1593.
[42] Garrido E, Camacho-Mu?oz D, Martín J, et al. Monitoring of emerging pollutants in Guadiamar River basin (South of Spain): analytical method, spatial distribution and environmental risk assessment [J]. Environmental Science and Pollution Research, 2016, 23(24):25127-25144.
[43] Zhang C, Shan B Q, Zhao Y, et al. Spatial distribution, fractionation, toxicity and risk assessment of surface sediments from the Baiyangdian Lake in northern China [J]. Ecological Indicators, 2018, 90:633-642.
Occurrence and ecological risk of parabens in water environment in Xiong’an New Area.
ZHAO Xue1,2, ZHENG Yi2*, FU Cai-xia2, QIU Wen-hui2, WANG Wen-ke3, DUAN Lei3, ZHAO Ting2
(1.School of Environment, Harbin Institute of Technology, Harbin 150090, China;2.School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;3.School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China)., 2021,41(4):1893~1899
Surface water (SW) and groundwater (GW) samples were taken from Xiong’an New Area and the vicinity of Baoding in June 2019. Concentrations of seven parabens were determined for these samples and the associated ecological risk was assessed. The detection rates of MeP and PrP were 100%. MeP was found to be the predominant compound in SW samples, with a mass contribution of 93.4%, and MeP, EtP and PrP were the predominant compounds in GW samples, with a total mass contribution of 98.0%. The GW samples overall had a higher content of parabens than the SW samples. In space, the SW samples downstream Baiyang Lake showed higher concentrations of parabens than those upstream of Baiyang Lake, while GW samples taken from Anxin County had relatively high concentrations of parabens (10.1ng/L on average). Overall, the water pollution level of parabens, as well as the associated ecological risk, was relatively low in the study area. This study offered reference values for water quality management in the future development of Xiong’an New Area, and sheds light on studies of other PPCPs in the same area.
parabens;PPCPs;Xiong’an New Area;surface water;groundwater;ecological risk;Baiyang Lake
X832
A
1000-6923(2021)04-1893-07
趙 雪(1990-),女,黑龍江鶴崗人,哈爾濱工業(yè)大學-南方科技大學聯(lián)合培養(yǎng)博士生,主要從事新興污染物在環(huán)境中的歸趨研究.發(fā)表論文9篇.
2020-08-26
國家重點研發(fā)計劃(2018YFC0406504);國家自然科學基金資助項目(51961125203)
* 責任作者, 教授, zhengy@sustech.edu.cn