• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Trusted NUMFabric Algorithm for Congestion Price Calculation at the Internet-of-Things Datacenter

    2021-04-28 05:01:12ShanChunXiaolongChenGuoqiangDengandHaoLiu

    Shan Chun,Xiaolong Chen,Guoqiang Dengand Hao Liu

    1School of Electronics and Information,Guangdong Polytechnic Normal University,Guangzhou,510665,China

    2Information Engineering College,Jinhua Polytechnic,Jinhua,32100,China

    3The Information Network Engineering and Research Center,South China University of Technology,Guangzhou,510641,China

    4Qianxin Technology Group Co.,Ltd.,Beijing,100044,China

    ABSTRACT The important issues of network TCP congestion control are how to compute the link price according to the link status and regulate the data sending rate based on link congestion pricing feedback information.However,it is difficult to predict the congestion state of the link-end accurately at the source.In this paper,we presented an improved NUMFabric algorithm for calculating the overall congestion price.In the proposed scheme,the whole network structure had been obtained by the central control server in the Software Defined Network,and a kind of dual-hierarchy algorithm for calculating overall network congestion price had been demonstrated.In this scheme,the first hierarchy algorithm was set up in a central control server like Opendaylight and the guiding parameter B is obtained based on the intelligent data of global link state information.Based on the historical data,the congestion state of the network and the guiding parameter B is accurately predicted by the machine learning algorithm.The second hierarchy algorithm was installed in the Openflow link and the link price was calculated based on guiding parameter B given by the first algorithm.We evaluate this evolved NUMFabric algorithm in NS3,which demonstrated that the proposed NUMFabric algorithm could efficiently increase the link bandwidth utilization of cloud computing IoT datacenters.

    KEYWORDS Internet of Things;cloud computing;intelligent data aggregation;distributed optimization;trusted network calculation

    1 Introduction

    1.1 Background

    The Internet of Things(IoT)was one of the main sources of big data[1].By 2020,there will be more than 50 billion devices connected to each other[2],in addition to a large number of servers and routing devices,many edge devices and mobile devices are included[3],which will generate a large amount of data[4].In addition to the security of IoT devices[5,6],it is essential to manage and transmit such a large amount of data due to big data often comes with a certain degree of insecurity[7].Blockchain technology can figure out part of the problem of insecurity[8,9].Data aggregation is an important method to solve the big data problem of the IoT[10].The network of the IoT datacenter[11]was the kernel component of the cloud computing datacenter.It is responsible not only to support the interconnections for thousands of servers,but also provide high-rate data transmission for calculating services in the application layer[12].The introduction of Software Defined Network(SDN)in the IoT can not only improve the flexibility and scalability of the IoT,but also provide a better solution for live data aggregation mechanism of IoT[13].Since the mature detection schemes for network attacks against SDN was already presented,the security of SDN was guaranteed.

    In the traditional Internet business,network traffic usually takes place between the client outside the IoT datacenter and the requested server inside the datacenter(It is called “north-south traffic”),where the traffic between the servers(“east-west traffic”)was low[14].In the emerging virtual-reality-calculation and online Internet business,large amounts of one-to-many or manyto-many communication between servers is required[15,16].As a result,the internal traffic of cloud computing IoT datacenters grows rapidly and presents new characteristics different from the traditional Internet[17,18].

    Different applications in the IoT datacenter have different bandwidth and latency requirements.For example,online query services such as responding to search engines are obviously more urgent than virtual machine migration or log backup.In order to satisfy the application’s disparate demands with limited bandwidth,the server needs to decide how fast to send the packet.On the other hand,the link needs to determine the queue order of packets coming from different connections[19]and which route the packets should take if there are multiple paths[20].The whole process depends on the congestion control,traffic scheduling and load balancing of the network[21].Among them,network congestion deserves attention because it is easy for an attacker to seize the opportunity to launch a solar eclipse attack when the network is congested[22].

    Recently,there have been a lot of research studied on transmission control protocol[20,23]in the networks of cloud computing IoT datacenters.A data-driven approach for Internet routing decision modeling in the future is also proposed[24].These works have diverse targets for bandwidth sharing management.Besides minimizing the rate of deadline,latency or average flow completion time,other goals include multi-user bandwidth sharing.As a matter of fact,each improved transmission control protocol sustains one or two objectives in the bandwidth sharing strategy.However,for cloud computing IoT datacenters,it is more beneficial to adjust for diverse targets based on the user’s demands[25].

    Contrasted to the traditional networks which suffer from low bandwidth and long delay time,with a centralized design,the cloud computing IoT date center network is capable of providing massive traffic bandwidth,quick response and high throughput.It is worth noting that due to the difference in network architecture,to guarantee the data transmission performance,the transfer control algorithms used in traditional networks cannot be directly applied in the networks of cloud computing IoT datacenters.

    The function model of multi-source and multi-link utility maximization was presented based on nonlinear programming theory in Jalaparti and Bliznets’s Dynamic Pricing and Transmitting[25].The key idea of such non-centralized and nonlinear programming theory is that the link prices are dynamically changing and the TCP sending windows are adjusting at a constant interval.Further,when the networking state is in balance,the networking utility will obtain maximization[26].

    Until now,congestion pricing of the enhanced transmission control protocol for the current cloud computing IoT datacenter and the active queuing management approach in the link were involved in these theoretical nonlinear programming structures[27].The important issues of network TCP congestion control are how to compute the link price according to the link status and how to regulate the data sending rate based on link congestion pricing feedback information.To address these issues,DCTCP[11,27],D2TCP[28],ICTCP[29],D3[30],PDQ and DeTail DCTCP were put forward to satisfy the requirements of cloud computing IoT datacenter transmission control protocol.It is worth noting that these enhanced TCP’s calculate the price of congestion link based on the ratio of network link statuses(for example the length of queuing,delay of packet queuing.length of packet queuing).

    Figure 1:Multi-source and multi-link networking structure

    In each cloud computing IoT datacenter network,the rates of transfer can be related by a utility function.The goal is to maximize network utility within the limit of(subject to)link capacity as expressed by

    where x is the rate vector of traffic TCP,R is the {0,1} routing matrix(i.e.,the element of R equals to 1 if and only if the TCP traffic i passes the respective link),and c is the link capacities vector.We assumed that the utility functions U(.)are smooth,increasing,and strictly concave.In[25,31],NUMFabric,an innovative transmission control protocol which provides nimble and quick bandwidth sharing control was proposed.Particularly,the proposed NUMFabric protocol is a decentralized protocol applied between the link end and TCP source.Further,the proposed NUMFabric protocol method can make the network converge on a certain specified equilibrium faster than any other previous protocol.The key idea of NUMFabric is based on the classic framework of non-linear programming maximization theory which tackles the TCP traffic flow resource-sharing problem by maximizing the utility function.This maximum utility function was created to benefit the diverse needs of link bandwidth sharing and could be updated by the network operator to accomplish different bandwidth and fairness intentions.Then the enhanced NUMFabric can enable the bandwidth sharing to ensure maximal total utility.

    The main technical contribution of NUMFabric is a TCP congestion control which using the NUM method converges on balance faster than previous research work.The kernel idea of NUMFabric is decoupling the methods for network utility maximization and for maximum congestion link bandwidth sharing among common transport flows.The former NUM algorithms combine these goals and try to solve both of these problems at the same time via price changes at the links.This process is no longer robust because of the requirement to balance between the goal of speedy convergence towards optimal link bandwidth sharing and of avoiding a state of traffic jam or low-utilization.Although the NUMFabric achieved better performance than others,the method of calculating link price with the average residual can be improved upon using Openflow in the cloud computing IoT datacenter.

    1.2 Main Idea

    In this paper,the whole network structure has been obtained by the central control server in the SDN,and in order to calculate link price,we propose a kind of dual hierarchy algorithm based on non-linear programming.The idea of the upper layer method is applied in the kernel controller of the SDN(i.e.,Opendaylight)network for the cloud computing IoT datacenter and the guiding parameter B is given by the improved NUMFabric method in the first layer based on all link statuses(net topological structure,state of link end and size of packet queuing are included).The second hierarchy method is applied in links and the web congestion signal price is calculated based on the guiding parameter B given by the first layer method.

    1.3 Organization of the Rest of the Paper

    The rest of this paper is organized as follows.We present the improved NUM framework for enhanced NUMFabric congestion signal calculation algorithm in Section 2.In Section 3,we present the detail for the dual-hierarchy network of enhanced NUM Fabric algorithm.Particularly,Subsection 3.1 introduces the first hierarchy algorithm in the central controller;the second hierarchy algorithm in Openflow link is proposed in Subsection 3.2.Scheme comparison is given in Section 4.Efficiency analysis and throughput verifiability analysis are given in Sections 5 and 6 respectively.At last,Section 7 concludes the paper.

    1.4 Improved NUMFabric Algorithm General Framework

    The improved NUM Fabric algorithm under the Software Defined Network structure is illustrated in Fig.1.The kernel server is designed to implement the proposed dual-hierarchy networking congestion signal calculating method.The OpenDaylight in the kernel server comprises of the Abstract Service Layer(SAL)and basic networking services action.The basic networking services comprise of network structure control module,statistic control module,link control module,link forward rule management module,and host tracing module.

    In the Software Defined Network structure,the information in the second hierarchy kernel link including new transport flow connection and network link status will be submitted to the top hierarchy method in the kernel central service controller.The network structure control module and statistic control module capture switch status information and propose theses link state operating information to the overall net status gathering module,so the first hierarchy method allocated in the kernel central controller in the cloud computing network can obtain real-time overall link state in web link.When the state of a small number of link load is low,the kernel service controller can change the routing flow table to balance the link load while the network transport flow will continue to send the packets.Therefore,it is not necessary to promote the link congestion price and restrain the transmitting rate of the sending TCP.The first hierarchy algorithm will not provide the radical guiding parameter B.But when all links are in peak load,it is out of the question to change the forward transmitting routing table.Therefore,in order to avoid all link states becoming the peak load state and to keep the cloud datacenter from becoming crowded,the kernel service controller will calculate the radical guiding parameter B and promote the link congestion signal price to restrict the sending window sizes of the source TCP.

    2 The Hierarchical Link Price Calculation Algorithm

    The key idea of the improved algorithm is that the first hierarchy algorithm in kernel controller in cloud computing network provides the guiding parameter B by applying the switch link congestion signal price calculation method based on all switch link state.When small link switch status are in lower load,the central controller in the cloud computing IoT datacenter can instruct the data packet to turn to the lower load.In this case,the first hierarchy algorithm will not provide the radical guiding parameter B.However,when all links are in peak load it is out of the question to change the forward transmitting routing table.Therefore,in order to avoid all link state becoming the peak load state and to keep the cloud IoT datacenter from getting crowded,the kernel service controller will calculate the radical guiding parameter B and promote the link congestion signal price to restrict the sending windows size of the source TCP.

    2.1 Upper Hierarchy Enhanced NUMFabric Method

    2.1.1 All Openflow Link Running Status

    See Fig.3,the first hierarchy algorithm in central control servers often sends the LLDP(Link Discovery Protocol PACKED)to all Openflow link and gathers the network structure information.Then Opendaylight in the central control servers can build the overall network structure.By using the protocol of Openflow among the central control servers and link switches,we modify the packet that contain server and link(both symmetric and asynchronous communication packets)and add new data to these packets’information structure.The modified data structure above contains the link status,guiding parameter B for the congestion signal calculation method and actual operating effect of the link in the cloud computing IoT datacenter.

    Figure 2:Improved NUM structure based on the software defined network in cloud computing IoT datacenters

    Figure 3:Dual hierarchy link price calculation algorithm of improved NUMF

    2.1.2 Parameter Calculation

    At the start time of the price calculation algorithm,based on the programming and openness of the Software Defined Network framework,the mapping relation among the network structure B of calculating link price parameter B and overall network link price are updated by the cloud computing IoT datacenter operator according to occupation history.When part Openflow link loads are light,the first hierarchy algorithm in central control servers give loose network structure B.But when all the links are under heavy load,the central control servers will provide the nonloose network structure B and promote the link congestion price to restrain the of the TCP source sending rate and avoid network congestion.The link load iss1,s2,...,sn,and the.

    2.2 Second Hierarchy Algorithm in Openflow Link

    xWI is an innovative decentralized method for solving NUM problems;it operates with weighted max–min and realizes a transport layer like Swift.xWI is applied by iterative algorithm.For each iterating step,TCP flow communicates with the Openflow link to calculate the weights to set for their traffic flows in Swift.xWI iteratively obtains the weights to arrive at the balanced state of Network Utility Maximization.The important issues in xWI are to iteratively solve the KKT equations for the NUM problem.

    2.2.1 System Model

    As shown in Fig.1,the link set isL={1,...,L},and the capacity of link iscl·l∈L.The source set isS={1,...,S}.Each source is described by four parameters(L(S),Us,ms,Ms).

    L(s)∈Ldenotes that sources travel to the links set.Us:R+→Ris a utility function,ms,Msare the maximum and minimum transmitting rates of the sources.SetIs=[ms,Ms]as the range of the sources ratexs.Sets(l)={s∈S|l∈L(S)} as the set of sources travel to the linkl.plis price of Openflow link.

    The network utility optimization model is described as followed:

    Define the Lagrangian function

    The dual problem of(2)is described as follows:

    where

    We can obtain the dual problem as follows:

    ThenwhereUsis strictly concave,D(p)is continuously differentiable with derivatives given by

    wherexl(p)=s∈S(l)xs(p(t))is the aggregate source rate at linkl.

    Substituting(4)to(6)we obtain the following link price adjustment rule for linkl∈L:

    At the time oft+ 1,the prices of Openflow link are modified based on the values in iterationt.The modified rule contains two terms,corresponding to the two optimality conditions.The first part is obtained by

    whereL(i)is the number of links in flow i’s path.

    The second part based on underutilization form is given by

    (1)For each constant time interval,the central control servers will acquire map of the relationship between the link running status and vector B.

    (2)As shown in Fig.2,vector B is from the first hierarchy algorithm,which is based on calculating the price of Openflow link of each link.

    The second algorithm in the openflow switch:

    At timet=1,2,...,in linkl

    Step 1:Receives ratesxs(t)from all sourcess∈S(l)that travel through linkl.

    Step 2:Calculates a new link price

    This is the refinement calculation method for link price.

    Combining these two terms,we obtain as follows:

    Here,β∈(0,1)is the filtering parameter.(Set to 0.5 in our experiment).

    Step 3:Communicate new price to all sourcess∈S(l)that travel through linkl.

    Source algorithm:

    Step 1:Receives ratesxs(t)from all sourcess∈S(l)that travel through linkl.

    Step 2:Chooses a new transmission ratexs(t+1)=xs(t)(ps(t))

    Step 3:Communicate new ratexs(t+1)to linksl∈Lin its path.

    The calculation results are shown in Tab.1.

    The improved NUMF method makes full use of the trait that the core server control in SDN can obtain the global link status and calculate the guiding parameter B.Compared with related methods,the link calculation price rule is divided into two terms and therefore more refined.The update rule for calculating price consists of two terms,namely formula(8)and formula(10),corresponding to the two optimality conditions.

    Table 1:The link load and the rate parameter B

    3 Related Method Comparison

    We design a semi-dynamic scenario to quantify the throughput per-flow.In the semi-dynamic case,we can trigger network incident in a controlled method and meter the network throughput.

    We make the simulation at a cloud computing IoT datacenter network which is built using a leaf-spine structure with NS3.There are 32 servers connected to 4 leaf openflow links and the link bandwidths is 1000 Mbps.Each leaf openflow link is connected to 4 spine links and the link bandwidth is 10 Gbps,so it can guarantee full bisection bandwidth.The openflow links are intended to be standard output-queued links,with a buffer of size 1 MB per port.We have compared the convergence time with the following method.

    3.1 FAST TCP

    Fast TCP optimizes TCP traffic over wide area networks and wireless data networks,especially in TCP environments with high latency and packet loss.Fast TCP does not change the standard format of TCP Packet Header,but the traffic control algorithm is optimized,which greatly improves the efficiency of TCP traffic and the utilization of WAN bandwidth.

    3.2 DCTCP

    We will extensively deploy TCP’s congestion control algorithm like DCTCP.DCTCP adopts Explicit Congestion Notification(ECN)in switches to detect and respond to network congestion signal by sequencing ECN marks via the switch[32].DCTCP provides the same or better throughput than TCP,while reducing the router buffer space by 90% and ensuring security.In the link,DCTCP adopts a very simple active queue management mechanism.When the queue takes up more than a certain threshold value k,the arriving packet is marked with the CE(Capacity Experience)flag.On the DCTCP receiving end,DCTCP returns the ECN and accurately conveys which packets have experienced congestion.

    3.3 Improved NUM

    This improved NUMFabric method propose a dual hierarchy method.The first hierarchy algorithm in the kernel controller produce the guiding parameter B for calculating switch link congestion signal price by taking full advantage of all switch link state information.The update rule for calculating price in the second hierarchy method consists of two terms,corresponding to the two optimality conditions.

    4 Experimental on NS3

    In this section,according to evaluation of improved NUMFabric,we give a NS3 simulation.The goal is to simulate the throughput of NUMFabric to maximize the allocation in dynamic settings and to achieve bandwidth allocation goals precisely and robustly.We choose one-to-one communication,where our server communicates randomly with another server once a time.The results are demonstrated in Figs.5 and 6.

    Convergence:Fig.4 displays the CDF convergence time of FAST TCP,DCTCP,and improved NUMFabric.The average convergence time of Improved NUMFabric is 591(μs).The average convergence time of FAST TCP is 726(μs).And the average convergence time of DCTCP is 813(μs).

    Figure 4:CDF of convergence time for improvedNUM,FAST and DCTCP

    The main reason for the improvement in NUMFarbic convergence speed is that the link price is calculated by the global guiding parameter B which takes into consideration the global network running status.Further,the update rule for price calculation was also more refined designed;it made up with two terms,each according with two optimum conditions.From above CDF of convergence time,we can see that the improved NUMFabric achieves better convergence performance.

    4.1 Rate Stability Comparison

    Fig.5 displays the rate achieved by a typical FAST TCP flow during several network events.The expected rate of the FAST flow is shown by the blue line connecting the datapoints.It is clear from Fig.5 that the FAST TCP flow does not ever converge to within 10%.

    Fig.6 displays the rate reached a representative DCTCP flow when few network-events happen.The anticipant rate of FAST flow is given from the blue one.that the Fig.6 depicted syllabify that the DCTCP flow does not ever converge to within 10%.

    Compared to Figs.5–7 displays a better rate reached by the according flow the Improved NUMFabric.

    Figure 5:Rate of FAST TCP

    Figure 6:Rate of DCTCP

    Figure 7:Rate of Improved NUMFabric

    5 Conclusion

    The IoT data aggregation scheme based on SDN designed in this paper can improve NUMFabric algorithm for calculating overall congestion signal.We get the most advantage out of the trait that the whole network structure has been obtained by the central control server in the Software Defined Network and proposed a kind of dual hierarchy method for calculating overall network congestion signal.The first hierarchy method is set up in a central control server like Opendaylight and obtains the guiding parameter B based on the overall link state information.The second hierarchy method is assigned in Openflow link and the link price is calculated based on guiding parameter B given by the first method.The update rule for calculating price in the second hierarchy method consists of two terms,which correspond to the two optimality conditions.The simulation results demonstrate that this improved NUMFabric method can indeed provide better rate stability,reduce the time delay of data aggregation,improve the accuracy of data aggregation and the performance of the network.

    Funding Statement:The authors thank all the reviewers and editors for their valuable comments and works.This work is supported by National Key R&D Program of China—Industrial Internet Application Demonstration-Sub-topic Intelligent Network Operation and Security Protection(2018YFB1802400).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    97超级碰碰碰精品色视频在线观看| 免费看光身美女| 午夜福利在线观看免费完整高清在 | 两性午夜刺激爽爽歪歪视频在线观看| 国产成人精品久久久久久| 精品久久久久久久久亚洲| 久久久久久国产a免费观看| 高清毛片免费观看视频网站| 日本三级黄在线观看| 亚洲性久久影院| 日韩人妻高清精品专区| 亚洲国产欧洲综合997久久,| 在现免费观看毛片| 国产成人a区在线观看| 看十八女毛片水多多多| 国内揄拍国产精品人妻在线| 午夜亚洲福利在线播放| 亚洲av不卡在线观看| 国产伦在线观看视频一区| 国产乱人视频| 淫秽高清视频在线观看| 久久久久性生活片| 久久久久免费精品人妻一区二区| 午夜福利18| 麻豆国产97在线/欧美| 亚洲五月天丁香| 特大巨黑吊av在线直播| 大香蕉久久网| 成人国产麻豆网| 一夜夜www| 国产日本99.免费观看| 免费观看精品视频网站| 欧美一区二区精品小视频在线| 国产精品,欧美在线| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 成人三级黄色视频| 国产高清有码在线观看视频| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 日本色播在线视频| 国产高清有码在线观看视频| 日本三级黄在线观看| 国产毛片a区久久久久| 2021天堂中文幕一二区在线观| 久久精品综合一区二区三区| 可以在线观看的亚洲视频| 村上凉子中文字幕在线| 哪里可以看免费的av片| 好男人在线观看高清免费视频| 老女人水多毛片| h日本视频在线播放| 精品久久久久久久久亚洲| 69人妻影院| 国产精品久久久久久久久免| 三级经典国产精品| 99热网站在线观看| 99久国产av精品国产电影| 日本一本二区三区精品| 悠悠久久av| 国产高清视频在线观看网站| 亚洲精品国产av成人精品 | 国产成人福利小说| 美女 人体艺术 gogo| 亚洲av中文字字幕乱码综合| 日产精品乱码卡一卡2卡三| 激情 狠狠 欧美| 久久久久性生活片| 99久久九九国产精品国产免费| 少妇丰满av| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 一级黄色大片毛片| 菩萨蛮人人尽说江南好唐韦庄 | 美女免费视频网站| 丝袜美腿在线中文| 啦啦啦啦在线视频资源| 欧美成人精品欧美一级黄| 久久草成人影院| 日本在线视频免费播放| 99精品在免费线老司机午夜| 欧美绝顶高潮抽搐喷水| 国产成人精品久久久久久| 国产精品无大码| 国产精品免费一区二区三区在线| 久久久精品欧美日韩精品| 99riav亚洲国产免费| 成年免费大片在线观看| 老女人水多毛片| 日韩国内少妇激情av| 我的老师免费观看完整版| 久久国产乱子免费精品| 日韩制服骚丝袜av| 久久午夜福利片| 欧美丝袜亚洲另类| 小说图片视频综合网站| 黄色日韩在线| 草草在线视频免费看| 听说在线观看完整版免费高清| 国产亚洲精品久久久com| 别揉我奶头 嗯啊视频| 亚洲国产日韩欧美精品在线观看| 国内精品美女久久久久久| 在线观看一区二区三区| 亚洲av熟女| 麻豆精品久久久久久蜜桃| 国内精品久久久久精免费| 变态另类成人亚洲欧美熟女| 九九久久精品国产亚洲av麻豆| 观看美女的网站| 一进一出抽搐动态| 国产精品不卡视频一区二区| 嫩草影视91久久| 波多野结衣高清作品| 免费大片18禁| 亚洲婷婷狠狠爱综合网| 成熟少妇高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看| 久久这里只有精品中国| 亚洲五月天丁香| 欧美另类亚洲清纯唯美| 伊人久久精品亚洲午夜| 成人三级黄色视频| 免费观看人在逋| 亚洲精品456在线播放app| 97超碰精品成人国产| 1000部很黄的大片| 99热只有精品国产| 日韩亚洲欧美综合| 亚洲,欧美,日韩| 在线观看66精品国产| 欧美精品国产亚洲| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 2021天堂中文幕一二区在线观| 露出奶头的视频| 免费看av在线观看网站| 午夜日韩欧美国产| 自拍偷自拍亚洲精品老妇| 99在线人妻在线中文字幕| 亚洲av免费高清在线观看| 日韩欧美国产在线观看| 人人妻人人澡人人爽人人夜夜 | 十八禁网站免费在线| 欧美一区二区亚洲| 久久精品国产99精品国产亚洲性色| 国产在线男女| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看| 久久99热6这里只有精品| 白带黄色成豆腐渣| 国产成人91sexporn| 一区二区三区四区激情视频 | 成人精品一区二区免费| 大型黄色视频在线免费观看| 日日干狠狠操夜夜爽| 如何舔出高潮| 亚洲成人av在线免费| 乱系列少妇在线播放| 成人精品一区二区免费| 亚洲成人精品中文字幕电影| 免费人成视频x8x8入口观看| 精品日产1卡2卡| 插逼视频在线观看| 变态另类丝袜制服| 麻豆av噜噜一区二区三区| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 美女内射精品一级片tv| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 女人十人毛片免费观看3o分钟| 久久久色成人| 欧美不卡视频在线免费观看| 免费电影在线观看免费观看| 99久国产av精品国产电影| 18+在线观看网站| 久久精品人妻少妇| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 免费看光身美女| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 精品久久久噜噜| 人妻夜夜爽99麻豆av| 精品久久久久久久久av| 色视频www国产| 看黄色毛片网站| 99久久久亚洲精品蜜臀av| 99久久中文字幕三级久久日本| 97热精品久久久久久| 性色avwww在线观看| 毛片女人毛片| 久久草成人影院| 精品一区二区三区av网在线观看| 波多野结衣巨乳人妻| 免费无遮挡裸体视频| 亚洲国产高清在线一区二区三| av在线蜜桃| 欧美激情久久久久久爽电影| 黄色一级大片看看| 国产精品亚洲一级av第二区| 日本黄大片高清| 99国产极品粉嫩在线观看| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 亚洲无线在线观看| 午夜免费激情av| 国产精品一二三区在线看| 别揉我奶头 嗯啊视频| av.在线天堂| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 免费在线观看成人毛片| 看免费成人av毛片| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 啦啦啦观看免费观看视频高清| 精品一区二区三区人妻视频| 免费看美女性在线毛片视频| 国产综合懂色| 久久人人精品亚洲av| 综合色丁香网| 亚洲成a人片在线一区二区| 成人特级黄色片久久久久久久| 亚洲内射少妇av| 少妇熟女欧美另类| 国产精品一区二区三区四区免费观看 | 长腿黑丝高跟| 麻豆av噜噜一区二区三区| 成人精品一区二区免费| 永久网站在线| 欧美一区二区亚洲| 别揉我奶头 嗯啊视频| 婷婷精品国产亚洲av在线| 综合色丁香网| 丝袜喷水一区| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 一本精品99久久精品77| 欧美bdsm另类| 在线免费十八禁| 亚洲欧美成人精品一区二区| avwww免费| 给我免费播放毛片高清在线观看| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 亚洲七黄色美女视频| 午夜精品国产一区二区电影 | 一个人观看的视频www高清免费观看| 成人精品一区二区免费| 亚洲精品成人久久久久久| 久久久久国内视频| 中国美白少妇内射xxxbb| 美女黄网站色视频| 成年女人毛片免费观看观看9| 一个人看的www免费观看视频| 国产一区二区三区在线臀色熟女| 午夜精品国产一区二区电影 | 亚洲人与动物交配视频| 亚洲中文字幕日韩| 欧美日韩乱码在线| 18+在线观看网站| 久久亚洲精品不卡| 人妻少妇偷人精品九色| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 成人美女网站在线观看视频| 精华霜和精华液先用哪个| 精品一区二区三区视频在线| 国语自产精品视频在线第100页| 日韩三级伦理在线观看| 国产大屁股一区二区在线视频| 嫩草影视91久久| 91久久精品国产一区二区三区| 老师上课跳d突然被开到最大视频| 在线观看av片永久免费下载| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 亚洲熟妇熟女久久| 精品一区二区三区av网在线观看| 美女大奶头视频| 国产片特级美女逼逼视频| 国产免费男女视频| 久久精品影院6| 国产久久久一区二区三区| 两个人的视频大全免费| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添小说| 91av网一区二区| av女优亚洲男人天堂| av黄色大香蕉| 99久久精品热视频| a级毛色黄片| 亚洲欧美精品自产自拍| 一个人免费在线观看电影| 啦啦啦韩国在线观看视频| 日本色播在线视频| 中出人妻视频一区二区| 又粗又爽又猛毛片免费看| 久久久色成人| 一级黄色大片毛片| av卡一久久| 麻豆一二三区av精品| 国产精品国产三级国产av玫瑰| 国产美女午夜福利| 国产精品一区二区三区四区免费观看 | 国产成人影院久久av| 人妻制服诱惑在线中文字幕| 久久久精品94久久精品| 久久久久久久久久久丰满| 亚洲精品成人久久久久久| 老司机影院成人| 高清午夜精品一区二区三区 | 久久久久久大精品| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 综合色丁香网| 欧美最黄视频在线播放免费| 18禁黄网站禁片免费观看直播| 日韩高清综合在线| 天天一区二区日本电影三级| 色综合站精品国产| 观看免费一级毛片| eeuss影院久久| 日韩欧美精品免费久久| 99热这里只有精品一区| 尾随美女入室| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 性色avwww在线观看| 亚洲图色成人| 久久久久国产网址| 国产高潮美女av| 国产亚洲91精品色在线| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 国产精品99久久久久久久久| 一进一出抽搐gif免费好疼| 色吧在线观看| 成人午夜高清在线视频| 欧美3d第一页| 日韩在线高清观看一区二区三区| 黄片wwwwww| 麻豆成人午夜福利视频| 亚洲成人av在线免费| 欧美精品国产亚洲| 精品99又大又爽又粗少妇毛片| 此物有八面人人有两片| 久久久国产成人免费| 看免费成人av毛片| 欧美一区二区国产精品久久精品| 国产av麻豆久久久久久久| 国产不卡一卡二| 少妇人妻精品综合一区二区 | 亚洲第一电影网av| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 成人永久免费在线观看视频| 色哟哟·www| 亚洲图色成人| 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片| 亚洲欧美成人精品一区二区| 长腿黑丝高跟| 久久久a久久爽久久v久久| 国产高清视频在线播放一区| 久久久国产成人免费| 国产黄片美女视频| 国产精品女同一区二区软件| 美女被艹到高潮喷水动态| 有码 亚洲区| 国产乱人偷精品视频| 亚洲美女黄片视频| 人妻少妇偷人精品九色| 熟女电影av网| 欧美一区二区国产精品久久精品| 小蜜桃在线观看免费完整版高清| 日本精品一区二区三区蜜桃| 直男gayav资源| 夜夜看夜夜爽夜夜摸| 黑人高潮一二区| 亚洲精品乱码久久久v下载方式| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 色综合色国产| 久久久精品欧美日韩精品| 国产精品不卡视频一区二区| 亚洲18禁久久av| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 精品欧美国产一区二区三| 日韩成人伦理影院| 成人午夜高清在线视频| 免费观看精品视频网站| 精品午夜福利在线看| 免费黄网站久久成人精品| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 网址你懂的国产日韩在线| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 婷婷色综合大香蕉| 中文字幕免费在线视频6| av在线观看视频网站免费| 一本一本综合久久| 看免费成人av毛片| 男女之事视频高清在线观看| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 日本熟妇午夜| 最近视频中文字幕2019在线8| 欧美+日韩+精品| 精品久久久久久久久av| 在线播放无遮挡| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区三区| 国产大屁股一区二区在线视频| 国产成年人精品一区二区| 国产乱人偷精品视频| 国产成年人精品一区二区| 久久久久精品国产欧美久久久| 亚洲自拍偷在线| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 日本黄色片子视频| 中文字幕av在线有码专区| 91久久精品国产一区二区三区| 日韩一区二区视频免费看| 日本精品一区二区三区蜜桃| 国产色爽女视频免费观看| 一个人看的www免费观看视频| АⅤ资源中文在线天堂| 在线播放国产精品三级| 无遮挡黄片免费观看| 国产亚洲欧美98| 日韩精品青青久久久久久| 日韩高清综合在线| 18+在线观看网站| 久久人人精品亚洲av| 91在线精品国自产拍蜜月| 免费观看精品视频网站| 久久精品人妻少妇| 亚洲人成网站在线播| 国内精品美女久久久久久| 日韩高清综合在线| 午夜日韩欧美国产| 久久中文看片网| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 一a级毛片在线观看| 一个人观看的视频www高清免费观看| 中出人妻视频一区二区| 天天躁夜夜躁狠狠久久av| 最近视频中文字幕2019在线8| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美 国产精品| 97热精品久久久久久| 欧美不卡视频在线免费观看| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 深夜a级毛片| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 亚洲自偷自拍三级| 国产单亲对白刺激| 18禁黄网站禁片免费观看直播| 国产亚洲精品久久久com| h日本视频在线播放| 69人妻影院| 欧美+日韩+精品| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 中国美女看黄片| 大香蕉久久网| 亚洲av熟女| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 一级黄色大片毛片| 日韩欧美精品免费久久| 国产乱人视频| 最近2019中文字幕mv第一页| 成人毛片a级毛片在线播放| 国产欧美日韩一区二区精品| 99国产极品粉嫩在线观看| 少妇人妻精品综合一区二区 | 国产在线男女| 久久久久久国产a免费观看| 欧美潮喷喷水| 天堂动漫精品| 国产精品电影一区二区三区| 国产欧美日韩精品亚洲av| 又爽又黄a免费视频| 久久这里只有精品中国| 又爽又黄无遮挡网站| 日本-黄色视频高清免费观看| 欧美不卡视频在线免费观看| 亚洲综合色惰| 亚洲四区av| 赤兔流量卡办理| 久久久成人免费电影| 亚洲成人久久爱视频| 成人美女网站在线观看视频| 亚洲欧美日韩无卡精品| 国产成人影院久久av| 成人永久免费在线观看视频| 国产精品国产三级国产av玫瑰| 蜜桃亚洲精品一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩卡通动漫| 真人做人爱边吃奶动态| 久久国产乱子免费精品| 久久国内精品自在自线图片| 天堂网av新在线| 黄片wwwwww| 最近在线观看免费完整版| 国产精品亚洲美女久久久| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| 一进一出抽搐gif免费好疼| av卡一久久| 熟妇人妻久久中文字幕3abv| 亚洲av免费在线观看| 成年免费大片在线观看| 亚洲第一区二区三区不卡| 97热精品久久久久久| 久久久久久九九精品二区国产| 久99久视频精品免费| 国产不卡一卡二| 一级毛片aaaaaa免费看小| 波多野结衣高清作品| 亚洲欧美日韩东京热| 欧美成人a在线观看| 亚洲精品日韩在线中文字幕 | 亚洲av免费高清在线观看| 亚洲一区二区三区色噜噜| 99久国产av精品| 日韩精品有码人妻一区| 成人欧美大片| 久久精品综合一区二区三区| 欧美人与善性xxx| 六月丁香七月| 国产精品一区二区性色av| 国产中年淑女户外野战色| 免费看a级黄色片| 国产精品一区二区免费欧美| 日日撸夜夜添| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件 | 午夜精品国产一区二区电影 | 欧美一区二区精品小视频在线| 熟女人妻精品中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 看非洲黑人一级黄片| 99热全是精品| ponron亚洲| 18禁在线无遮挡免费观看视频 | 狂野欧美激情性xxxx在线观看| 亚洲天堂国产精品一区在线| 精品久久久久久久久亚洲| 在线免费十八禁| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 91久久精品国产一区二区成人| 成人特级黄色片久久久久久久| 成人二区视频| 高清日韩中文字幕在线| 丝袜喷水一区| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 国国产精品蜜臀av免费| 99精品在免费线老司机午夜| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 午夜精品一区二区三区免费看| 亚洲精品粉嫩美女一区| 午夜精品一区二区三区免费看| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 丰满人妻一区二区三区视频av| 成熟少妇高潮喷水视频| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 亚洲精品亚洲一区二区| 在线观看午夜福利视频| 国内少妇人妻偷人精品xxx网站| 99久国产av精品国产电影| 免费观看在线日韩| 久久精品夜色国产| 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 看免费成人av毛片| 亚洲va在线va天堂va国产| 国产白丝娇喘喷水9色精品| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 日韩欧美免费精品| 老熟妇仑乱视频hdxx| 美女高潮的动态| 久久精品夜夜夜夜夜久久蜜豆| av在线亚洲专区| 欧美xxxx黑人xx丫x性爽|