• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power Aggregation Operators and Similarity Measures Based on Improved Intuitionistic Hesitant Fuzzy Sets and their Applications to Multiple Attribute Decision Making

    2021-04-28 05:00:46TahirMahmoodWajidAliZeeshanAliandRonnasonChinram

    Tahir Mahmood,Wajid Ali,Zeeshan Ali and Ronnason Chinram

    1Department of Mathematics and Statistics,International Islamic University,Islamabad,Pakistan

    2Algebra and Applications Research Unit,Division of Computational Science,Faculty of Science,Prince of Songkla University,Hat Yai,Songkhla,Thailand

    ABSTRACT Intuitionistic hesitant fuzzy set(IHFS)is a mixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in realistic decision issues.IHFScontains the grades of truth and falsity in the form of the subset of the unit interval.The notion of IHFS was defined by many scholars with different conditions,which contain several weaknesses.Here,keeping in view the problems of already defined IHFSs,we will define IHFS in another way so that it becomes compatible with other existing notions.To examine the interrelationship between any numbers of IHFSs,we combined the notions of power averaging(PA)operators and power geometric(PG)operators with IHFSs to present the idea of intuitionistic hesitant fuzzy PA(IHFPA)operators,intuitionistic hesitant fuzzy PG(IHFPG)operators,intuitionistic hesitant fuzzy power weighted average(IHFPWA)operators,intuitionistic hesitant fuzzy power ordered weighted average(IHFPOWA)operators,intuitionistic hesitant fuzzy power ordered weighted geometric(IHFPOWG)operators,intuitionistic hesitant fuzzy power hybrid average(IHFPHA)operators,intuitionistic hesitant fuzzy power hybrid geometric(IHFPHG)operators and examined as well their fundamental properties.Some special cases of the explored work are also discovered.Additionally,the similarity measures based on IHFSs are presented and their advantages are discussed along examples.Furthermore,we initiated a new approach to multiple attribute decision making(MADM)problem applying suggested operators and a mathematical model is solved to develop an approach and to establish its common sense and adequacy.Advantages,comparative analysis,and graphical representation of the presented work are elaborated to show the reliability and effectiveness of the presented works.

    KEYWORDS Intuitionistic fuzzy sets;intuitionistic hesitant fuzzy sets;power aggregation operators;similarity measures;multiple attribute decision making

    1 Introduction

    In modern decision science,multi-attribute decision making(MADM)is a vital investigation area on how to choose the correct option corresponding to many prominent attributes[1–3].Usually,the decision-makers(DMs)utilize crisp figures to express the favorites regarding the alternative in conventional multi-attribute decision making difficulties.But,because of shortage of data,lack of time,deficiency of information and quality values,particularly,for subjective attribute values,usually may not be shown by real numbers,and few of them are simpler to be stated by fuzzy data.Since Zadeh[4]introduced the notion of fuzzy set,several expansions of fuzzy sets(FS)were presented by scholars[5–7].A FS contains an ordered pair of an element and a membership(MS)function,which gives grade of MS to every component of universal setXin the closed interval from 0 to 1.The model of fuzzy set is applied in many areas,mainly wherever traditional numerical methods restrict effectiveness,involving organic and social sciences,linguistics,psychology and mostly soft sciences.In these areas,variables are hard to evaluate and conditions among variables are so ill-defined.Further,Atanassov[8,9]gave the idea of intuitionistic fuzzy set IFS in 1986.IFS is an expansion of FS to cope with doubtful and complicated data.In IFS every object is indicated by an ordered pair set where every ordered pair set described a grade of MS as well as a grade of NMS.

    The total of the grade of MS and the grade of NMS of each ordered pair set is smaller than or equivalent to 1 and greater than or equivalent to 0.The IFS has been receiving more consideration since its arrival[10–20].Intuitionistic fuzzy set is extra influential in managing with vagueness than fuzzy set which only provides a grade of MS to every component.Undoubtedly,IF data aggregation performs a crucial part in intuitionistic fuzzy set,that is an attractive study direction.Zhao et al.[21]established few elementary arithmetic aggregation operators,whereas IF weighted averaging operator,IF ordered weighted averaging operator and IF hybrid averaging operator for aggregating IFSs.Xu et al.[22]established few basic geometric aggregation operators whereas IF weighted geometric operator,IF ordered weighted geometric operator,and IF hybrid geometric operator and enforced them to MADM established on IFS.Furthermore,Torra et al.[23,24]presented the hesitant fuzzy set HFS.An HFS is a direct simplification of FS.The theory of hesitant fuzzy set is extensively utilized in many problems.Many researchers gave a serious analysis on HF information aggregation methods and their implications in decision making[25–32].

    An HFS allows the MS taking a set of conceivable values for example,in order to obtain a sensible decision outcome,a decision association,containing many DMs,which is approved to assess the grade that an alternative should fulfill a criterion.Consider there are three situations,few DMs offer 0.2,few offer 0.4,and the rest offer 0.9,and these units may not convince one another,thus the grade that the alternative should fulfill the criterion can be signified by an HF{0.2,0.4,0.9}.It is observed that the HF {0.2,0.4,0.9}may define the above condition more quantitatively than the interval-valued FS[0.2,0.4],due to grades that alternatives fulfil the condition out of the convex of 0.2 and 0.9 or the interval between 0.2 and 0.9.Thereafter,several multi attribute decision making techniques[33–38]and procedures containing relationship,distance,and similarity have offered for hesitant fuzzy set by various investigators.Liao et al.[39,40]introduced the subtraction and division operations,hybrid arithmetical averaging for hesitant fuzzy sets,and hybrid arithmetical geometric for HFSs.Zhang[41]introduced power aggregation operators for HFS.In everyday life,DMs would think ranking among unlike conditions.To manage this type of position,Yager[42]established PA operator and implements it to multi-attribute decision making difficulties.Liu et al.[43]introduced POWA operator to manage the fuzzy data.

    Mostly,this is noted that one fuzzy framework is not enough to deal with practical problems.There is a common trend of combining two or more fuzzy frameworks.Therefore,by mixing IFS and HFS established the theory of IHFS.IHFS is also described by the grade of MS and the grade of NMS,whose summation is smaller than or equivalent to 1 and greater than or equal to 0.IHFS has emerged as a powerful instrument for illustrating vagueness of the MADM difficulties.The determination of the article is to present the idea of power aggregation operators based on IHFS by combining the theory IFS and HFS.We found that two different definitions of IHFS which were proposed by Beg et al.[44]and Geetha et al.[45]are not compatible with the other existing notions.So,to make the IHFS compatible with the other existing notions we have defined IHFS in another way.In some situations the theories of HFS and IFS cannot deal effectively,for instance,when a decision maker gives {0.6,0.4,0.3} for the grade of truth and {0.3,0.2,0.1}for the grade of falsity then the condition of proposed improved IHFS is an important technique to cope with uncertain and unreliable information in realistic decision issues.The conditions of Beg et al.[44]and Geetha et al.[45]are that the sum of maximum(also for minimum)of the truth grade and the minimum(also for maximum)of the falsity grade cannot exceed from unit interval and the sum of the maximum of the truth grade and the maximum of the falsity exceeds from unit interval.To resolve such kinds of issues,we redefined the theory of IHFS with the new condition that the sum of the maximum of the truth grade and the maximum of the falsity grade cannot exceed from unit interval.Additionally,we have established the sequence of IHF power aggregation operators,which has weighting vectors varing by input reasons as well as permit data being aggregated to assist everyone and examine the required characteristics.Motivation and achievements of the article are shown as follows:

    1.Enlarge several PA operators,as IHFPA operator,IHFPWA operator,IHFPOWA operator,IHFPHA operator,IHFPG operator,IHFPWG operator,IHFPOWG operator,IHFPHG operator and check their characteristics.

    2.Explore the similarity measures based on IHFSs and justified with the help of numerical example.

    3.Describe a new DM method consists over the proposal operations.

    4.Provide some numerical to demonstrate the reliability and supremacy of described techniques.

    The making of article is followed as in portion 2,it gives few fundamental notions as well as in this section we reviewed the definition of IHFS which are established by Beg et al.[44]and Geetha et al.[45].In Section 3,we established few IHF power aggregation operators and calculated their suitable characteristics.In Section 4,we explored the similarity measures based on IHFSs.In Section 5,we utilized these operators to establish few forms for multi attribute decision making challenges founded by IHFPWA operator and IHFPWG operator with intuitionistic hesitant fuzzy data.Additionally,we mentioned a practical problem for examining efficiency of the suggested operators.In Section 6,we summarized this article and wrote few comments.

    2 Another View of Intuitionistic Hesitant Fuzzy Sets

    In this study,we review the idea of IHFS which was established by Beg et al.[44]and established by Geetha et al.[45].Then we redefine IHFS to make it compatible with other existing notions[46].

    Definition 1:[44]An IHFS onXare functionsμandvthat when applied toXreturn the subsets of[0,1],which can be represented as the following:

    whereμ(x)andv(x)are sets of some values in[0,1],denoting the possible membership degrees and non-membership degrees of the elementx∈Xto the setPwith the conditions:max(μ(x))+min(v(x))≤1 andmin(μ(x))+max(v(x))≤1.For convenience,(μ(x),v(x))is an intuitionistic hesitant fuzzy element(IHFE).

    Definition 2:[45]An intuitionistic hesitant fuzzy setPonXis represented by using the two functionsμandv.Mathematically,it is represented by following expression:

    whereμ(x)andv(x)are sets of some values in[0,1],denoting the possible membership degrees and non-membership degrees of the elementx∈Xto the setPwith the condition that 0 ≤max(μ(x))+max(v(x))≥1.For convenience,(μ(x),v(x))is an intuitionistic hesitant fuzzy element(IHFE).

    Definition 3:An intuitionistic hesitant fuzzy setPonXis represented by using the two functionsμandv.Mathematically,it is represented by following expression:

    whereμ(x)andv(x)are sets of some values in[0,1],denoting the possible membership degrees and non-membership degrees of the elementx∈Xto the setEwith the condition that 0 ≤max(μ(x))+max(v(x))≤1.For convenience,(μ(x),v(x))an intuitionistic hesitant fuzzy element(IHFE).In this manuscript we will follow throughout the IHFS:

    satisfying 0 ≤max(μ(x))+max(v(x))≤1.

    Definition 4:For any IHFEP=(μP,vP),the score function and accuracy function are stated by:

    Definition 5:For any two IHFEsP1=(μ1,ν1)andP2=(μ2,ν2),then

    Definition 6:Power aggregation(PA)operator is defined as:

    where

    andSup(P1,P2)is theSupforP1fromP2,which meets the given properties:

    Sup(P1,P2)∈[0,1]

    Sup(P1,P2)=Sup(P2,P1)

    Sup(P1,P2)≥Sup(X,Y),if|P1?P2|<|X?Y|

    The support(Sup)amount is basically a similarity indicator.

    Definition 7:Power geometric(PG)operator is defined as:

    Based upon intuitionistic hesitant fuzzy PA operators and PG,we will describe few IHFPG aggregation operators.Next,we will establish few intuitionistic hesitant fuzzy power arithmetic aggregation operators.

    3 Intuitionistic Hesitant Fuzzy Power Aggregation Operators

    The purpose of this section is to establish few novel aggregation operators for IHFSs which are IHFPA,IHFPG,IHFPWA,IHFPWG,IHFPOWA,IHFPOWG,IHFPHA,IHFPHG operators and verify their fundamental properties.The mentioned operators are not only developed in this section but also their characteristics have been studied and their fitness is established using induction phenomenon.

    Definition 8:Supposeis a gathering of IHFSs,then we describe the IHFPA operator as follow:

    where

    andSup(Pj,Pi)is the support forPjfromPi,with the conditions:

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(15)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade is zero then the Eq.(15)will be converted for hesitant fuzzy sets.

    Theorem 1:The aggregated objects by utilizing intuitionistic hesitant fuzzy power average(IHFPA)operator is as well an IHFS,wherever

    where

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(17)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade is zero then the Eq.(17)will be converted for hesitant fuzzy sets.

    Definition 9:Letbe a group of IHFS andis weight vector ofPj,ωj >0 and ∑The IHFPWA operator is a function IHFPWA:Pn→Pwhere

    where

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(19)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade to be zero then the Eq.(19)will be converted for hesitant fuzzy sets.

    Property 1:(Idempotency)WhenPjare equivalent,Pj=Pfor everyj(j=1,2,3...,n),then

    Property 2:(Boundedness)LetPjbe a family of IHFSs,and allows

    then

    Property 3:(Monotonicity)LetPjandbe two sets of intuitionistic hesitant fuzzy sets(IHFSs),iffor allj,then

    Further,we give an IHFPOWA operator as follows:

    Definition 10:SupposePj=(μj,νj)is family of IHFSs,the IHFPOWA operator of dimensionna function IHFPOWA:Pn→P,associated with weight vectorsuch thatωj>0 and.Furthermore

    whereσ(1),σ(2),...,σ(n)indicates permutation of(1,2,...,n),wherePσ(j?1)≥Pσ(j),ωj(j=1,2,...,n)is family of weights in such a way that

    whereT(Pσ(i))implies theSupofjth main IHFST(Pσ(i))by all the other(IHFSs),that is,

    Property 4:(Idempotency)when eachPjis equivalent,which is,Pj=Pfor everyj(j=1,2,3...,n),so

    Property 5:(Boundedness)SupposePjis family of IHFSs,suppose

    then

    Property 6:(Monotonicity)LetPjandbe IHFSs,iffor allj.Then

    Property 7:(Commutativity)LetPjandbe IHFSs,iffor allj.Then

    wherebe a permutation ofPj.

    Definition 11:LetPj=(μj,νj)be family of IHFSs,the intuitionistic hesitant fuzzy power hybrid averaging(IHFPHA)operator of elementsna function IHFPHA:Pn→P,such that

    whereω=(ω1,ω2,...,ωj)Tis a mapped weight vector,such thatωj∈[01]andand ˙Pσ(j)is thejth biggest element in intuitionistic hesitant fuzzy argumentsj=1,2,...,n),ω=(ω1,ω2,...,ωn)be the weighting vector of IHF argumentsPj(j=1,2,...,n),ωj∈[01]and.Andωjbe a family such that

    whereis theSupofjth biggest IHFSsby all the other(IHFSs),that is,

    Definition 12:Supposeis family of IHFSs,intuitionistic hesitant fuzzy power geometric(IHFPG)operator defined as a function IHFPG:Pn→Pwhere

    where

    whereSup(Pj,Pi)is the support forPjfromPi,with the conditions

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(34)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade is zero then the Eq.(34)will be converted for hesitant fuzzy sets.

    Theorem 2:The aggregated elements by utilizing IHFPG operator define an IHFS,wherever

    where

    Definition 13:Letbe family of IHFSs,ω=(ω1,ω2,...,ωj)Tis weight vector ofThe IHFPWG operator defined as mapping IHFPWG:Pn→Pwhere

    where

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(36)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade is zero then the Eq.(36)will be converted for hesitant fuzzy sets.IHFPWG operator has following characteristics.

    Property 8:(Idempotency)when everyPj(j=1,2,...,n)is equivalent,such thatPj=Pfor everyj,then

    Property 9:(Boundedness)SupposePjis family of IHFSs,also suppose

    then

    Property 10:(Monotonicity)LetPj(j=1,2,...,n)andbe IHFSs,iffor allj,then

    Further,we give an IHFPOWG operator below:

    Definition 14:SupposePj=(μj,νj)is family of IHFSs,IHFPOWG operator of dimensionnis mapping IHFPOWG:Pn→P,with an associated weight vectorω=(ω1,ω2,...,ωj)Tsuch thatωj>0 and ∑.Furthermore

    Such that(σ(1),σ(2),...,σ(n))be permutation of 1,2,...,n,wherePσ(j?1)≥Pσ(j)for everyj=1,2,...,n,ωj(j=1,2,...,n)is family of weights where

    whereT(Pσ(i))indicates the sup ofjth biggest intuitionistic hesitant fuzzy sets(IHFSs)T(Pσ(i))by all the other(IHFSs),that is,

    Property 11:(Idempotency)when everyPj(j=1,2,...,n)is equivalent,such that,Pj=Pfor everyj,so

    Property 12:(Boundedness)SupposePjis family of IHFSs,suppose

    then

    Property 13:(Monotonicity)LetPjandbe of intuitionistic hesitant fuzzy sets(IHFSs),ifPj≤P′jfor allj,then

    Property 14:(Commutativity)LetPjandbe two intuitionistic hesitant fuzzy sets(IHFSs),ifPj≤P′jfor allj,then

    Definition 15:LetPj=(μj,νj)be family of IHFSs,the IHFPHG operator of elementsnis the function IHFPHG:Pn→P,where

    whereω=(ω1,ω2,...,ωj)Tis a related weight vector,whereωj∈[01]and.is thejth biggest element of the intuitionistic hesitant fuzzy argumentsω=(ω1,ω2,...,ωn)is weighting vector of IHF argumentsPjwhereωj∈[01],andnis a matching factor,andωj(j=1,2,...,n)is the collection of weights such that

    whereindicates theSupofjth biggest IHFSsby all the other(IHFSs),that is,

    4 Similarity Measures Based on Intuitionistic Hesitant Fuzzy Sets

    The VSM is one of the important tools for the similarity degree between objects.We straightforwardly utilized Jaccard,Dice and Cosine SM.Presently in this segment we characterize VSMs and weighted VSMs(WVSMs)for IHFSs.

    Definition 16:Suppose thatP=(μP,νP)andare two IHFSs onX,then the Jaccard similarity measure(JSM)betweenPandQis denoted and defined as follows:

    JSMs fulfill the following axioms:

    1.0 ≤Jac(P,Q)≤1;

    2.Jac(P,Q)=Jac(Q,P);

    3.Jac(P,Q)=1,ifP=Q.

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(53)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade to be zero then the Eq.(53)will be converted for hesitant fuzzy sets.

    Definition 17:Suppose thatP=(μP,νP)andare two IHFSs onX,then the weighted JSM(WJSM)betweenPandQis denoted and defined as follows:

    WJSMs fulfill the following axioms:

    1.0 ≤Jacw(P,Q)≤1;

    2.Jacw(P,Q)=Jacw(Q,P);

    3.Jacw(P,Q)=1,ifP=Q.

    wherew=(w1,w2,...,wn)Tspeaks to the weight vector of every componentxk(k=1,2,3,...,n)contained in IHFS and the weight vector fulfillswk∈[0,1]for eachk=1,2,3,...,n,When we assume the weight vector beat that point the WJSM will change into JSM.Otherwise speaking whenIf we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(54)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade to be zero then the Eq.(54)will be converted for hesitant fuzzy sets.

    Definition 18:Suppose thatP=(μP,νP)andare two IHFSs onX,then the Dice similarity measure(DSM)betweenPandQis denoted and defined as follows:

    DSMs fulfills the following axioms:

    1.0 ≤Dic(P,Q)≤1;

    2.Dic(P,Q)=Dic(Q,P);

    3.Dic(P,Q)=1,ifP=Q.

    If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(55)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade to be zero then the Eq.(55)will be converted for hesitant fuzzy sets.

    Defniition 19:Suppose thatandare two IHFSs onX,then the weighted DSM(WDSM)betweenPandQis denoted and defined as follows

    WDSMs fulfills the following axioms

    1.0 ≤Dicw(P,Q)≤1;

    2.Dicw(P,Q)=Dicw(Q,P);

    3.Dicw(P,Q)=1,ifP=Q.

    wherew=(w1,w2,...,wn)Tspeaks to the weight vector of every componentxk(k=1,2,3,...,n)contained in IHFS and the weight vector fulfillswk∈[0,1]for eachk=1,2,3,...,n,When we assume the weight vector beat that point the WDSM will change into DSM.Otherwise speaking whenthenDicw(P,Q)=Dic(P,Q).If we will choose the grade of truth and falsity in the form of singleton sets then the Eq.(56)will be converted for intuitionistic fuzzy sets.Similarly,if we choose the values of falsity grade to be zero then the Eq.(56)will be converted for hesitant fuzzy sets.

    5 Multiple Attribute Decision Making Technique Based on Intuitionistic Hesitant Fuzzy Sets

    In the portion,we use IHF power aggregation operators to multiple attribute DM through intuitionistic hesitant fuzzy data.Following hypotheses or concepts are utilized to signify the multiple attribute DM difficulties for possible calculation of developing technology commercialization with intuitionistic hesitant fuzzy data.ConsiderA={A1,A2,...,Am}is distinct set of alternatives,G={G1,G2,...,Gn} is the set of attributes.Consideris weight vector of attributes,such that.Then we will be going to apply the IHFPWA or PFPWG operator to the multiple attribute DM difficulties for possible calculation of developing technology commercialization by IHF data.

    Step 1.Compute the supports:

    where justifySupterms(1)–(3)in portion 3.Here,with no loss of generalization,we computed(Pij,Pik)with the normalized Hamming distance

    wherelij∈μij,lik∈μik,mij∈νijandmik∈νik.

    Step 2.Using the weightsωjof attributeGjto compute weighted supT(Pij)of the IHFSPijby other IHFSPik(j,k=1,2,...,n,k/=j)

    where calculated weightξijis connected with the IHPFSPij,(j=1,2,...,n,i=1,2,...,m)

    where.

    Step 3.Use decision data provided in Tab.1,IHFPWA operator

    or

    to receive the total preference objectsPiof the alternativeAi(i=1,2,...,m).

    Step 4.Compute scoresS(Pi)of the whole IHFSsPito rank each theAithen to select the top one(s).If two scoresS(Pi)andS(Pj)have no difference then we want to compute the accuracy gradesH(Pi),H(Pj)of the whole IHFSsPi,Pj,respectively,classify the alternativesAi,Ajconsistent with accuracy gradesH(Pi)andH(Pj).

    Step 5.Ranking whole alternativesAiand choose the greatest one(s)in accord by(Pi)(i=1,2,...,m).

    Step 6.The end.

    Example 1:Therefore,in the portion we give a mathematical model to illustrate the possible estimation of developing technology commercialization by intuition hesitant fuzzy data illustrating the technique recommended in this article.There is the board with five possible developing technologies enterprisesAi(i=1,...,5)to choose.Specialists choose four attributes to calculate the five possible developing technology enterprises:(i)G1is the technical development(ii)G2is the potential market and market risk;(iii)G3is the industrialized structure,human resource management,and economic circumstances(iv)G4is the job creation and the development of science and technology.The five possible developing technology enterprisesAi(i= 1,2,3,4,5)are to be estimated utilizing the IHF data by the decision maker in accordance with proposed attributes and weighting vectorω=(0.4,0.2,0.1,0.3)Tshown in Tab.1.

    Table 1:Original decision matrix

    Next,we use the method established to indicate potential evaluation of developing technology commercialization of four possible developing technology enterprises,see Tab.2.

    Table 2:Aggregated values by using the formulas of IHFPWA and IHFPWG

    Step 1.Compute the weightthat is related by IHFNj=1,...,4),that included

    Step 2.Corresponding toξand IHFNcompute the whole IHFNsby utilizing the IHFPWA(IHFPWG)operator to get the whole IHFNsof the developing technology enterpriseAi.The aggregating values are reflected in Tab.1.

    By using the formula of score value,we examine the score values of the aggregated values of Tab.2,see Tab.3.

    Step 1.In accordance with the aggregating values presented in Tab.2 and the score functions of the developing technology enterprises are presented in Tab.3.

    Table 3:Score values of the aggregated values

    Further,we examine ranking results of the score values.

    Step 2.Approve the score functions presented in the Tab.3,and compare the formula of score functions,the ranking of the developing technology enterprises as presented in Tab.4.Remember this the greater than sign “>” implies “preference.”

    Table 4:Ranking results

    From above analysis,we get as best option alternativeA3.

    Example 2:The amount from developments by an organization is legitimately corresponding to the standard of building substances they use.Appropriate review of building substance before development is the confirmation of good building measures.The building substances to be utilized ought to be carefully checked before applying.The best possible check and equalization arrangement of investigation approves the manufacturers to utilize the correct substances for developments to improve the standard of their task.Let five known building substancesPr(r=1,2,3,4,5)be as given in the IHFSs structure as follows:

    By using the Eq.(56),we get the following values,which are summarized based on(0.1,0.15,0.3,0.2,0.25):

    Dicw(P1,P)=0.5723,Dicw(P2,P)=0.7724,Dicw(P3,P)=0.4536,

    Dicw(P4,P)=0.674,Dicw(P5,P)=0.6457

    Ranking values of the above measures are summarized as follows:

    P2 ≥P4≥P5≥P1≥P3

    Table 5:Comparative analysis of the explored and existing measures

    The best option isP2.Additionally,if we choose the intuitionistic hesitant fuzzy types of information’s with existing conditions that are the sum of the maximum(also for minimum)of the truth grade and minimum(also for maximum)of the falsity grade cannot exceed from unit interval,and the sum of the maximum of the truth grade and falsity grade exceeds the unit interval,then it is very difficult to cope with such types of issues.But,when we choose the condition as in this explorative study then the sum of the maximum of the truth grade and falsity grade cannot exceed from the unit interval.The theories of intuitionistic fuzzy set and hesitant fuzzy set describe the foundation of the intuitionistic hesitant fuzzy set.When we choose the intuitionistic fuzzy types of information’s or hesitant fuzzy types of information then the explored approach easily copes with it.But,if we choose the intuitionistic hesitant fuzzy types of information’s,then the existing types of theories are cannot able to cope with it.

    The comparative analysis of the explored measures with selected existing measures are summarized in Tab.5.

    From above analysis,the three different measures above share the same ranking values and the best option isP2.The graphical representation for the information of Tab.5,we explained with the help of Fig.1.

    Figure 1:Graphical representation of the explored and existing measures

    Fig.1 represents the family of proposed and existing ideas and contains five types of values for each operator showing the family of alternatives.The alternative two provides the best values for all operators.For simplicity we have drawn the Fig.1.

    From the above analysis,the explored measures and operators based on IHFSs are more perfect and more proficient then existing methods and measures.

    6 Conclusion

    We explored the improved intuitionistic hesitant fuzzy set with a new condition that is the sum of the maximum of the truth grade and maximum of the falsity grade which cannot exceed from the unit interval.Additionally,we examine the multi-attribute decision making challenge built upon power aggregating operators with IHF data.So,inspired from the model of power aggregating operators,we established few power aggregation operators for aggregating IHF information:IHFPA operator,IHFPG operator,IHFPWA operator,IHFPWG operator,IHFPOWA operator,IHFPOWG operator,IHFPHA operator,and IHFPHG operator.Additionally,some similarity measures based on IHFSs are also explored and their special cases discussed.Outstanding feature of these recommended operators are examined.So,we used operators to establish few methods to resolve the IHF multi attribute DM difficulties.A helpful example is presented to confirm the established methodology and to determine its practicability and efficiency.The advantages,comparative analysis,and geometrical representation of the presented works are also discussed in detailed.

    Notably,that the article results of the article can be expanded to the IvIHF situation and further fuzzy situations.In superior study,it is enough to get the implementation of these operators to resolve the actual DM drawbacks as fuzzy investigation,unsure programming and image recognition,etc.We must also deal with few new operators for the foundation of PHFNs for example,modify them to complex q-rung fuzzy aggregation operators[48–50],complex Pythagorean fuzzy set[51],spherical fuzzy operators[52].

    Data Availability:The data used in this article are artificial and hypothetical,and anyone can use these data before prior permission by just citing this article.

    Funding Statement:This paper is supported by “Algebra and Applications Research Unit,Division of Computational Science,Faculty of Science,Prince of Songkla University”.

    Conflicts of Interest:The authors declare that they have no conflicts of interest.

    精品福利观看| 亚洲第一av免费看| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 久久热在线av| 女人被狂操c到高潮| 青草久久国产| 最近最新中文字幕大全免费视频| 亚洲精品国产精品久久久不卡| 国产淫语在线视频| 欧美日韩亚洲高清精品| 亚洲欧美激情在线| 日韩免费高清中文字幕av| 男女高潮啪啪啪动态图| 精品一区二区三区四区五区乱码| 亚洲精华国产精华精| 亚洲精品在线观看二区| 精品国产国语对白av| 国产亚洲欧美精品永久| 人人妻人人澡人人看| 大香蕉久久成人网| 亚洲av第一区精品v没综合| 美女高潮喷水抽搐中文字幕| 一区二区日韩欧美中文字幕| 亚洲第一av免费看| 精品亚洲成国产av| 精品电影一区二区在线| 黄色成人免费大全| 国产精品久久久久成人av| 热re99久久国产66热| 精品国内亚洲2022精品成人 | 国产97色在线日韩免费| 国产色视频综合| a级毛片在线看网站| 国产成人精品在线电影| 美女高潮喷水抽搐中文字幕| av欧美777| 乱人伦中国视频| 久久婷婷成人综合色麻豆| 麻豆乱淫一区二区| 曰老女人黄片| av不卡在线播放| 亚洲国产欧美网| 国产1区2区3区精品| 黑人猛操日本美女一级片| 国产男女内射视频| 18禁黄网站禁片午夜丰满| 久久九九热精品免费| 亚洲七黄色美女视频| 香蕉丝袜av| 亚洲精品美女久久av网站| 十八禁网站免费在线| av视频免费观看在线观看| 亚洲第一av免费看| 波多野结衣av一区二区av| 亚洲专区中文字幕在线| 久久久久久免费高清国产稀缺| 又紧又爽又黄一区二区| 又黄又爽又免费观看的视频| 香蕉久久夜色| 成人永久免费在线观看视频| 精品久久久久久久久久免费视频 | 女人久久www免费人成看片| 国产精品免费一区二区三区在线 | 90打野战视频偷拍视频| 深夜精品福利| 亚洲av成人av| 91精品三级在线观看| 国产精品av久久久久免费| www.999成人在线观看| 欧美黑人欧美精品刺激| 国产精品二区激情视频| 亚洲,欧美精品.| 18禁国产床啪视频网站| 宅男免费午夜| 少妇被粗大的猛进出69影院| 精品乱码久久久久久99久播| 国产一卡二卡三卡精品| 国产免费av片在线观看野外av| avwww免费| 免费少妇av软件| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产毛片av蜜桃av| av欧美777| 亚洲成人国产一区在线观看| 国产精品二区激情视频| 91成年电影在线观看| 视频区欧美日本亚洲| 亚洲性夜色夜夜综合| 亚洲av第一区精品v没综合| 狠狠婷婷综合久久久久久88av| 精品欧美一区二区三区在线| 国产亚洲欧美在线一区二区| 五月开心婷婷网| 人人妻人人澡人人爽人人夜夜| 国内毛片毛片毛片毛片毛片| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 亚洲精华国产精华精| 黄片大片在线免费观看| 免费观看a级毛片全部| 久99久视频精品免费| 制服诱惑二区| 午夜老司机福利片| 久久久久视频综合| 99久久精品国产亚洲精品| 夜夜夜夜夜久久久久| 精品午夜福利视频在线观看一区| 丰满迷人的少妇在线观看| 免费观看精品视频网站| 久久久久久久久免费视频了| 黄色a级毛片大全视频| 日日夜夜操网爽| 亚洲专区字幕在线| 国产精品98久久久久久宅男小说| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 国产又爽黄色视频| 国产一卡二卡三卡精品| 美女高潮到喷水免费观看| 99精国产麻豆久久婷婷| 午夜亚洲福利在线播放| cao死你这个sao货| 久久精品成人免费网站| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品在线福利| 精品无人区乱码1区二区| 大码成人一级视频| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 亚洲自偷自拍图片 自拍| 在线观看66精品国产| 久久久久久久国产电影| 999久久久国产精品视频| 亚洲av成人不卡在线观看播放网| 波多野结衣av一区二区av| 91麻豆精品激情在线观看国产 | 日本欧美视频一区| 99re在线观看精品视频| 国产精品国产av在线观看| 男女床上黄色一级片免费看| 老司机影院毛片| 国产黄色免费在线视频| 操美女的视频在线观看| 午夜久久久在线观看| 黄片播放在线免费| 在线观看免费高清a一片| 欧美日韩国产mv在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 成年人午夜在线观看视频| 久久久久久免费高清国产稀缺| 老汉色∧v一级毛片| 亚洲全国av大片| 好男人电影高清在线观看| 99re在线观看精品视频| 19禁男女啪啪无遮挡网站| 久久人妻福利社区极品人妻图片| 亚洲精华国产精华精| 操出白浆在线播放| 中出人妻视频一区二区| 欧美久久黑人一区二区| 国产成人精品久久二区二区免费| 欧美 亚洲 国产 日韩一| 欧美日韩av久久| 欧美 日韩 精品 国产| 久久精品国产a三级三级三级| 国产xxxxx性猛交| 日韩欧美三级三区| 国产成人精品在线电影| 在线观看午夜福利视频| 精品国产一区二区久久| 国产成人啪精品午夜网站| 久久青草综合色| 99国产精品一区二区三区| 在线观看免费视频日本深夜| 午夜两性在线视频| 久久精品国产a三级三级三级| 少妇被粗大的猛进出69影院| 欧美黄色片欧美黄色片| 成在线人永久免费视频| 免费看十八禁软件| 日本一区二区免费在线视频| av网站在线播放免费| 亚洲在线自拍视频| 91在线观看av| 国产成人欧美| 国产主播在线观看一区二区| 久久久精品免费免费高清| 国产一区二区三区在线臀色熟女 | 男女之事视频高清在线观看| 亚洲一区二区三区欧美精品| 午夜老司机福利片| 免费av中文字幕在线| 精品高清国产在线一区| 在线观看66精品国产| 亚洲美女黄片视频| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看| 久久九九热精品免费| 女人被狂操c到高潮| 制服人妻中文乱码| av电影中文网址| 激情视频va一区二区三区| 亚洲国产精品sss在线观看 | 国产精品国产高清国产av | 免费人成视频x8x8入口观看| 操美女的视频在线观看| 9色porny在线观看| 黄色成人免费大全| 精品一品国产午夜福利视频| 亚洲中文av在线| 国产成人影院久久av| 国产97色在线日韩免费| 免费在线观看日本一区| 在线十欧美十亚洲十日本专区| 久久久久久免费高清国产稀缺| tube8黄色片| 99re6热这里在线精品视频| 一级,二级,三级黄色视频| 大片电影免费在线观看免费| 啦啦啦视频在线资源免费观看| 欧美成人午夜精品| 国产一区有黄有色的免费视频| 国产一区二区三区综合在线观看| 欧美在线一区亚洲| 热99re8久久精品国产| www.熟女人妻精品国产| 国产在视频线精品| 欧美 日韩 精品 国产| 日韩欧美三级三区| 亚洲国产欧美一区二区综合| av片东京热男人的天堂| 亚洲色图综合在线观看| 亚洲一区中文字幕在线| 极品少妇高潮喷水抽搐| 亚洲精品粉嫩美女一区| 1024视频免费在线观看| 日本撒尿小便嘘嘘汇集6| 午夜免费鲁丝| 一区二区三区激情视频| 两个人免费观看高清视频| 免费观看人在逋| 成人黄色视频免费在线看| 欧美国产精品一级二级三级| av不卡在线播放| 99久久人妻综合| 国产欧美亚洲国产| 18在线观看网站| 国产男女内射视频| 在线十欧美十亚洲十日本专区| 好男人电影高清在线观看| 久久久水蜜桃国产精品网| 青草久久国产| 国产精品永久免费网站| 国产精品免费视频内射| 欧美黑人精品巨大| 99国产综合亚洲精品| 欧美乱妇无乱码| 成熟少妇高潮喷水视频| 美女福利国产在线| 国产成人av教育| 久久热在线av| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区黑人| 久久久国产成人精品二区 | 中文字幕最新亚洲高清| 欧美日韩av久久| 精品一品国产午夜福利视频| 亚洲精品中文字幕一二三四区| 日韩一卡2卡3卡4卡2021年| 日日摸夜夜添夜夜添小说| 亚洲三区欧美一区| 在线永久观看黄色视频| 国产成人精品无人区| 青草久久国产| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| 国产一卡二卡三卡精品| 一级,二级,三级黄色视频| 午夜久久久在线观看| 色婷婷久久久亚洲欧美| 久久国产乱子伦精品免费另类| 免费高清在线观看日韩| 久久精品91无色码中文字幕| 老司机午夜福利在线观看视频| 欧美日韩国产mv在线观看视频| 中文字幕制服av| 国产三级黄色录像| 国产国语露脸激情在线看| 黄色a级毛片大全视频| 下体分泌物呈黄色| 免费黄频网站在线观看国产| 成人免费观看视频高清| bbb黄色大片| 亚洲欧美一区二区三区久久| 极品少妇高潮喷水抽搐| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 国产精品电影一区二区三区 | 国产精品 国内视频| 国产成人欧美在线观看 | 岛国毛片在线播放| 青草久久国产| 国产精品一区二区在线不卡| 一级a爱视频在线免费观看| 一区二区日韩欧美中文字幕| 亚洲人成电影观看| 成人18禁在线播放| 亚洲一区中文字幕在线| 欧美av亚洲av综合av国产av| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站| 高清欧美精品videossex| 亚洲少妇的诱惑av| 精品国产乱码久久久久久男人| 成人国语在线视频| 国产成+人综合+亚洲专区| 国产一区在线观看成人免费| 国产精品av久久久久免费| 欧美丝袜亚洲另类 | 国产极品粉嫩免费观看在线| 亚洲欧美日韩高清在线视频| 亚洲欧美激情在线| 亚洲男人天堂网一区| 国产成人影院久久av| 黄片播放在线免费| 欧美 日韩 精品 国产| 久久精品人人爽人人爽视色| 99热网站在线观看| 久久精品亚洲精品国产色婷小说| 免费少妇av软件| 亚洲人成电影观看| 高潮久久久久久久久久久不卡| 亚洲精品在线美女| 欧美黑人欧美精品刺激| 三级毛片av免费| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影| 亚洲国产中文字幕在线视频| 午夜两性在线视频| 啦啦啦 在线观看视频| 99久久国产精品久久久| 午夜福利影视在线免费观看| 免费少妇av软件| 嫁个100分男人电影在线观看| 看免费av毛片| 午夜精品国产一区二区电影| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 激情在线观看视频在线高清 | 女人被狂操c到高潮| av不卡在线播放| 国产又色又爽无遮挡免费看| a在线观看视频网站| 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 大型av网站在线播放| 国产激情久久老熟女| 黄色成人免费大全| 天堂动漫精品| 麻豆av在线久日| 亚洲精品国产色婷婷电影| 一二三四在线观看免费中文在| 在线免费观看的www视频| 国产精华一区二区三区| 免费一级毛片在线播放高清视频 | 国产激情久久老熟女| 一边摸一边做爽爽视频免费| 亚洲,欧美精品.| 国产成人av教育| 亚洲一区二区三区不卡视频| 美女午夜性视频免费| 国产成人影院久久av| 精品国内亚洲2022精品成人 | 亚洲男人天堂网一区| 亚洲av欧美aⅴ国产| www.熟女人妻精品国产| 超碰97精品在线观看| 天天添夜夜摸| 国产精品永久免费网站| 狠狠狠狠99中文字幕| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 日韩三级视频一区二区三区| 国产欧美日韩综合在线一区二区| av国产精品久久久久影院| 亚洲精品在线观看二区| 男女免费视频国产| 欧美精品av麻豆av| 悠悠久久av| 国产三级黄色录像| 欧美黄色淫秽网站| 亚洲午夜精品一区,二区,三区| 久热这里只有精品99| 免费在线观看黄色视频的| 在线观看免费高清a一片| 午夜福利视频在线观看免费| 1024视频免费在线观看| 国产99久久九九免费精品| 嫩草影视91久久| 精品免费久久久久久久清纯 | 成人av一区二区三区在线看| 成在线人永久免费视频| 法律面前人人平等表现在哪些方面| 国产亚洲一区二区精品| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 无限看片的www在线观看| 精品一区二区三卡| a在线观看视频网站| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区| 99精品久久久久人妻精品| 国产在视频线精品| av视频免费观看在线观看| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 午夜免费观看网址| x7x7x7水蜜桃| 欧美日韩瑟瑟在线播放| 午夜福利,免费看| 极品人妻少妇av视频| 国产精品98久久久久久宅男小说| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索| 欧美不卡视频在线免费观看 | 一级毛片高清免费大全| 一级a爱片免费观看的视频| 青草久久国产| 91九色精品人成在线观看| 1024香蕉在线观看| 老司机午夜十八禁免费视频| 国产乱人伦免费视频| 久久久水蜜桃国产精品网| 久久久国产一区二区| 国产无遮挡羞羞视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美国产精品一级二级三级| 亚洲中文字幕日韩| 大陆偷拍与自拍| 法律面前人人平等表现在哪些方面| 男女高潮啪啪啪动态图| 真人做人爱边吃奶动态| 欧美在线黄色| 免费在线观看黄色视频的| 手机成人av网站| 国产精品.久久久| 欧美另类亚洲清纯唯美| 丝袜在线中文字幕| 亚洲七黄色美女视频| 免费一级毛片在线播放高清视频 | 欧美黄色淫秽网站| 亚洲色图av天堂| 精品久久久久久久毛片微露脸| 怎么达到女性高潮| av在线播放免费不卡| 国产极品粉嫩免费观看在线| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 黄色a级毛片大全视频| 国产男靠女视频免费网站| 丝袜人妻中文字幕| 国产99久久九九免费精品| 999久久久国产精品视频| 精品一品国产午夜福利视频| 村上凉子中文字幕在线| 少妇粗大呻吟视频| 午夜福利,免费看| 成人av一区二区三区在线看| 亚洲性夜色夜夜综合| 中文字幕色久视频| 热re99久久精品国产66热6| 免费观看人在逋| 99国产精品99久久久久| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 久久香蕉精品热| 叶爱在线成人免费视频播放| 免费观看精品视频网站| 国产免费av片在线观看野外av| 久久久久视频综合| 国产男靠女视频免费网站| 99热国产这里只有精品6| 亚洲五月色婷婷综合| 久久99一区二区三区| 亚洲精品久久午夜乱码| 1024香蕉在线观看| 欧洲精品卡2卡3卡4卡5卡区| 好男人电影高清在线观看| 国产精品成人在线| 国产乱人伦免费视频| 精品人妻熟女毛片av久久网站| 夫妻午夜视频| 国产在线一区二区三区精| 超色免费av| 免费日韩欧美在线观看| 亚洲精品美女久久av网站| 精品第一国产精品| 国产日韩欧美亚洲二区| 亚洲人成电影免费在线| 国产精品1区2区在线观看. | 中文欧美无线码| 欧美不卡视频在线免费观看 | 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 黑人操中国人逼视频| 亚洲成av片中文字幕在线观看| av一本久久久久| av在线播放免费不卡| 少妇的丰满在线观看| 久久久国产欧美日韩av| 日韩有码中文字幕| 动漫黄色视频在线观看| 中国美女看黄片| 9热在线视频观看99| 大陆偷拍与自拍| 在线观看免费高清a一片| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 成年动漫av网址| 婷婷丁香在线五月| 精品人妻1区二区| 制服诱惑二区| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看| 午夜福利影视在线免费观看| 色94色欧美一区二区| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| 午夜久久久在线观看| 午夜福利乱码中文字幕| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 自线自在国产av| 中文字幕人妻熟女乱码| 一进一出抽搐gif免费好疼 | 中文字幕人妻熟女乱码| 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| 日本黄色视频三级网站网址 | 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 久热爱精品视频在线9| 亚洲精品自拍成人| 水蜜桃什么品种好| 久久精品国产亚洲av高清一级| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 成在线人永久免费视频| 看片在线看免费视频| 国产一区二区激情短视频| 看片在线看免费视频| videosex国产| 亚洲中文日韩欧美视频| 国产亚洲欧美精品永久| 丁香六月欧美| 1024香蕉在线观看| 搡老乐熟女国产| 一进一出好大好爽视频| 国产精品久久电影中文字幕 | 深夜精品福利| 国产高清国产精品国产三级| 精品国产一区二区三区四区第35| www.精华液| 亚洲精品久久成人aⅴ小说| 自拍欧美九色日韩亚洲蝌蚪91| 男女午夜视频在线观看| 亚洲精品乱久久久久久| 免费少妇av软件| 欧美丝袜亚洲另类 | 不卡av一区二区三区| 性色av乱码一区二区三区2| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 9色porny在线观看| 国产欧美日韩精品亚洲av| 操美女的视频在线观看| 亚洲国产欧美日韩在线播放| 91国产中文字幕| 国产精品久久久久久精品古装| 高清毛片免费观看视频网站 | 亚洲欧美日韩高清在线视频| 91精品三级在线观看| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 女人爽到高潮嗷嗷叫在线视频| 黄色视频,在线免费观看| 精品国产国语对白av| 午夜福利免费观看在线| 精品国产国语对白av| 欧美激情高清一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲中文av在线| 9191精品国产免费久久| 叶爱在线成人免费视频播放| 女人爽到高潮嗷嗷叫在线视频| 午夜亚洲福利在线播放| 岛国在线观看网站| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽 | 91在线观看av| 国产男女超爽视频在线观看| 高清欧美精品videossex| 精品福利永久在线观看| 97人妻天天添夜夜摸| 1024视频免费在线观看| 精品一区二区三区视频在线观看免费 | 国产97色在线日韩免费| 午夜福利视频在线观看免费| 中文字幕色久视频| 久久久精品免费免费高清| 亚洲情色 制服丝袜|