• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometric Multigrid Method for Isogeometric Analysis

    2021-04-28 04:59:38HoulinYangBingquanZuoZhipengWeiHuixinLuoandJianguoFei

    Houlin Yang,Bingquan Zuo,2,*,Zhipeng Wei,2,Huixin Luo,2 and Jianguo Fei,2

    1Key Laboratory of Metallurgical Equipment and Control Technology Ministry of Education,Wuhan University of Science and Technology,Wuhan,430081,China

    2Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan,430081,China

    ABSTRACT The isogeometric analysis method(IGA)is a new type of numerical method solving partial differential equations.Compared with the traditional finite element method,IGA based on geometric spline can keep the model consistency between geometry and analysis,and provide higher precision with less freedom.However,huge stiffness matrix from the subdivision progress still leads to the solution efficiency problems.This paper presents a multigrid method based on geometric multigrid(GMG)to solve the matrix system of IGA.This method extracts the required computational data for multigrid method from the IGA process,which also can be used to improve the traditional algebraic multigrid method(AGM).Based on this,a full multigrid method(FMG)based on GMG is proposed.In order to verify the validity and reliability of these methods,this paper did some test on Poisson’s equation and Reynolds’equation and compared the methods on different subdivision methods,different grid degrees of freedom,different cyclic structure degrees,and studied the convergence rate under different subdivision strategies.The results show that the proposed method is superior to the conventional algebraic multigrid method,and for the standard relaxed V-cycle iteration,the method still has a convergence speed independent of the grid size at the same degrees.

    KEYWORDS Isogeometric method;geometric multigrid method;reflecting matrix;subdivision strategy

    1 Introduction

    In recent years,as a numerical method for solving partial differential equations(PDEs),isogeometric analysis[1](IGA)has been widely concerned and studied.The basic idea of IGA:Based on the isoparametric element theory,geometric splines can not only describe the exact geometric modeling but also the solution space of numerical methods,which can unify the geometric model and the analytical model.Therefore,the spline information in CAD model is directly used as the initial mesh in IGA.Since it was proposed,most of the research on IGA has focused on parametric modeling and physical spatial discretization.However,when dealing with large-scale problems,it is still a problem to solve the system of linear equations which are obtained from the geometric discretization.The reason is that the direct solution is inefficient and usually requires targeted development of faster and more efficient iterative solver.

    The multigrid method[2,3](MG)is often used as an efficient iterative algorithm to solve large-scale linear equations.The main idea is to eliminate high-frequency errors through fine mesh smoothing,coarse grid correction to eliminate low frequency errors,and an iterative strategy for fine grid and coarse grid cycles.According to the different mapping matrix generation methods,the MG can be divided into two types:geometric multigrid method(GMG)and algebraic multigrid method(AMG).Usually the AMG is more widely used then the other because it obtains different level meshes in an algebraic way instead of constructing them,which may be complicated in some cases[4].However,the IGA directly generates the hierarchical mesh through the refinement method(p-refinement,h-refinement,k-refinement),which encourages us to implement the GMG in IGA.

    It seems natural to extend these methods to IGA,and several remarkable works has been made in recent years.MG for IGA based on classical concepts have been considered in[5,6],and a classical multilevel method in[7].An approach to local refinement in IGA based on a full multigrid method(FMG)can be found in[8].The related studies mainly include Gahalaut et al.[9]applied multigrid to IGA,and did not propose the concept of mapping matrix;Hofreither et al.[10]proposed a robust error approximation.These studies above mainly focus on the implement of MG in IGA.And the efficiency in the adaptation process has been studied.Other research mainly includes Guo[11]to improve efficiency through parallel computing and multigrid method,Liu et al.[12]combined conjugate gradient method with multi-grid method,and Chen et al.[13]based on geometric analysis such as least squares coupling multigrid method.Recently,in[14]some progress has been made by using a Richardson method preconditioned with the mass matrix as a smoother(mass-Richardson smoother).Similar techniques have been used to construct symbol-based multigrid methods for IGA,see[15,16].However,all the above research uses the coordinate mapping relationship in the process of geometric mesh construction to modify the traditional algebraic multigrid iterative process but ignore the stiffness information discretely obtained during isogeometric subdivision.In addition,the extension matrix transposition is directly used in the construction of restriction matrix,which will lead to the confusion and imbalance of mapping relationship.

    Based on previous generations,this paper uses the geometric information discretized by isogeometric subdivision to couple the MG with IGA and its application.Especially for the numerical algorithms such as IGA,we use geometric method to optimize them in the shortcomings of AMG,and it has integrated into the process of FMG.

    2 Isogeometric Analysis

    2.1 B-Splines and NURBS Basis Functions

    Like FEM,IGA also have shape functions,not the Lagrange interpolation functions but the spline basis functions.As the two common spline functions used in CAD,B-spline and NURBS are briefly introduced below.With a given node vector,the B-spline basis function[17]can be recursively defined as:

    where the one-dimensional knot vectorξ=[ξ0,ξ1,...,ξn+k+1]is a set of non-decreasing sequences between 0 and 1.kis the degree of the basis function(p=k+1 is the order of the basis function).nis the number of basic functions,which is numerically equal to the number of control points.

    If the basis function of B-spline is multiplied by an appropriate weightw,the non-uniform rational B-spline(NURBS)can be introduced.Its expression is:

    2.2 The Framework of Multigrid Isogeometric Analysis

    FEA and IGA have the same theoretical basis(i.e.,the weak form of partial differential equation).Take the common elliptic partial differential equation as an example:

    whereΩ?R2is the open and bounded Lipschitz domain and the boundary is?Ω,ΓD∪ΓN=Γ≡?Ω,ΓD∩ΓN=?;Given source termf:Ω?R2;Symmetric positive definite matrixk:Ω?R2×2;Dirichlet boundary valueg:?Ω?ΓD;Neumann boundary valueh:?Ω?ΓN.

    It is assumed that the physical domainΩis represented by a parameter domainΩ0mappingUsing the control pointcij,Fcan be defined by NURBS as:

    The weak form of the differential equation is obtained by multiplying with the trial function and integrating in the domainΩ.Letandthen the equation becomesa(p,v)= 〈f,v〉.According to Green’s method,the linear equations are obtained by discrete assembly:

    The detailed process can be seen in[18,19].

    2.3 Isogeometric Subdivision

    Based on the requirements of light weight,modern CAD systems follow the principle of sufficient enough when characterizing models[20].So,the spline order in CAD is low usually,just meeting the basic characterization needs,and the node of the parameter domain is relatively sparse.But the order of the shape function(spline basis function)and the grid size(knot vector interpolation space scale)have a great impact on the analysis accuracy.As a result,the first step in IGA is subdivision,which works like the refinement in FEM,but with a different method.Therefore,it is necessary to introduce the subdivision process before constructing the isogeometric multiple meshes.

    There are mainly three subdivision methods[21]in IGA,they arep-refinement,h-refinement andk-refinement.All these subdivision methods can keep the original shape the same.The changes are mainly at the spline order and knot vector.In particular,thep-refinement retains the original parameter domain grid and only increases the order of the basis function;thehrefinement does not change the basis function order but reduces the grid size to construct a finer parameter domain grid.As a combination ofp-refinement andh-refinement,k-refinement increase the order of basis function firstly,and then refines the knot vector.

    Taken the one-dimensionalh-refinement as an example for introduction.Inserting the knott=[t1,t2,...,tm]?[τk,τn+1]into the knot vectorT=[τ0,τ1,...,τn+k+1]at one time can get the new knot vectorthen the corresponding coordinate calculation formula of the new spline control point can be obtained[22]:

    Ifk=3(the cubic B-spline),Formula(6)can be written as follow:

    where,the coefficients can be calculated as follows:

    Duringp-refinement process,the degree of the spline curve is raised once,and the shape and continuity of the curve remain unchanged.Cohen[23]offered a solution to calculate the new control points:

    K-refinement is a combination ofh-refinement andp-refinement.In order to ensure the continuity of elements,k-refinement is often defined as “first upgrade,then insert nodes” in IGA.This means,for the B-spline curve of orderp,the order is elevated toqbyp-refinement firstly,and then knots inserting is taken byh-refinement.

    3 Multigrid Method

    For FEM,most of MG method uses the algebraic multigrid method to construct interpolation operator and coarse the initial grid to get different hierarchical grid.In IGA,the geometric model is constructed from coarse to fine.There are different levels of grid naturally,and the mapping matrix between each level can be obtained from the subdivision process.In addition,each level has its own stiffness matrix and righthand vector.If this advantage is used to combine the multigrid method with IGA,the efficiency of solution would be improved.

    3.1 Multigrid Mapping Matrix

    3.1.1 Classical Algebraic Multigrid Mapping Matrix

    In AMG,the main work is focused on constructing the interpolation matrix by coarsen the fine mesh,coarsening refined netΩmto get rough gridΩm?1(m=2,...,n).And the coarse gridΩm?1is a subset of the fine grid defined withCm,usingFmto define the remaining setΩm?Cm,whenthe pointiis strongly connected to pointj.Letdefine all the strong connection points of pointi,then the strong connection rough set isand the interpolation matrixrefers to the interpolation formula given by Chang et al.[24].

    For MG,the mapping matrix is important.And its generation can affect the computational efficiency of MG directly.So,it is necessary to compare the generation rate of mapping matrix under different degrees of freedom.the time-consuming of mapping matrix generation(using Chang’s method)in Tab.1 shows that the time of generating the mapping matrix of the algebra multigrid rises sharply with the increase of degrees of freedom.Obviously,a faster constructing method for mapping matrix will be helpful for the implement of MG.

    Table 1:The generation rate of mapping matrix

    3.1.2 Suitable for Isogeometric Analysis of Multigrid Mapping Matrix

    As discussed in Chapter 2.3,in the subdivision of IGA can generate the mapping relationship between new and old control pointsDmandDn.It is assumed that the relationship between(on fine grid)andu(coarse grid)also satisfies this relationship.According to the formula(7),the extension matrix from coarse to fine corresponding toh-refinement can be expressed as:

    The corresponding linear relation is that the non-zero element in row vectorris numbered as the old control point number related to the new control point,which is usually a continuous interval segment.

    P-refinement extended matrix can be obtained according to the calculation of Formula(8):

    Therefore,the extended matrix ofk-refinement is:

    In theory,the restriction matrixPfrom fine grid to coarse grid is the generalized inverse matrix of extension matrixR,but it is difficult to calculate the inverse matrix of extension matrixR,and there are stability problems and limitations in inversion calculation.Therefore,in this paper,transposed matrix is chosen as generalized inverse,P=RT.But in fact,the mapping matrixPobtained by transpose cannot accurately represent the mapping relationship from coarse grid to fine grid,so the mapping matrixαiis modified by parameterPhere:

    Since the control pointDis a coordinate vector,the difference between the positive and negative coordinates will affect the effect of the correction.To ensure the positive correction of the parameterαi,the analysis model can be translated to the first quadrant to ensure that the control point coordinates are greater than zero.

    In IGA,the mapping matrix obtained by different refinement strategies are shown in Tab.2.The detailed process can be referred to[25].

    Table 2:Mapping matrix

    Based on one-dimensional subdivision,two-dimensional subdivision only needs to subdivide inu,vdirections at the same time to get mapping matrixRu,iandRv,j,and then get the mapping matrixRξ,ηby global numbering of coarse and fine meshes.n,n′is the number of control points of the grid.Rξ,ηcan be represented by Eq.(13).

    A time-consuming compare of mapping matrix generation between this method and AMG is given in Tab.3.With the freedom increase,more time can be saved in pre-processing stage of MG.

    Table 3:The generation rate of mapping matrix

    3.2 Multigrid Algorithm

    3.2.1 Geometric Modification of Algebraic Multigrid Method

    The multigrid method is divided into initial period and calculation stage.In the initial period,GMG is based on the subdivision of the solution domain to get the grid of different scales.AMG only uses the information of coefficient matrix in algebraic equations to construct multigrid,and the method is consistent in the iterative solution stage.In order to improve the implement of AMG in IGA,geometric information will be introduced to AMG,what is called Geometric modification of algebraic multigrid method(GMG).

    1.Initial period

    1).The nested grid layerΩ1?Ω2?...?Ωmis constructed by subdivision,and the extension matrixfrom layerm?1 grid to layermis stored.The mapping matrixfrom layermgrid to layerm?1 is modified according to Eq.(12).

    2.Calculation stage

    Algorithm 1:um ←GMG(Am,fm,um,d)1.If m=1,solve directly or precisely iteratively on Ω1,otherwise proceed to the next step.2.Pre-relaxation:um ←Sλ1(Am,fm,um)3.Coarse-grid correction:(a)Algebraic residuals rm?1=Pm?1 m(fm ?AmAMG um);Geometric residual rm?1=Pm?1 m(fm ?AmGMG um)(b)Take the minimum residual rm?1 from(a)(c) em?1 ←GMG(Am?1,rm?1,0,d)(d)Correction of residuals um=um+Rmm?1em?1 4.Post relaxation:um ←Sλ2(Am,fm,um)

    The iterative process of multigrid method(GMG)is given above.For a given parameter spaceΩ1?(0,1)2,a rough gird for IGA can be built.Though refinement,multilevel grids can be constructed.,so the limit matrix of layermto layerm?1and the extension matrix fromm?1 tom.Parameterdin GAMG determines how to access each layer,as shown in Fig.1,d=1 is a V-type cycle andd=2D is aW-type cycle.The traditional AMG,the left term of the coarse grid is calculated using the mapping method,.In GMG,the correspondingAmof each geometric level can be calculated directly.That means,GMG in this paper introduces geometric information as a more selection of residual and selects the smaller residual as the next relaxation iteration by comparing the residual between geometric grid and algebra grid.

    Figure 1:Multi-grid cycle

    As for the iteration of relaxation operatorSv1(Am,fm,um),v1=v2=2 represents the number of times of relaxation.In order to get the iteration structure,Amis divided intoAm=Mm?Nm,and its iterative format can be written as:

    Mmis selected to obtain various iterative methods for relaxation.Jacobi,Gauss–Seidel and SOR iterations are commonly used.For rough grid correction,both the residualand errorsatisfy the residual equationAmem=rm,soem?1can be solved by the same relaxation operatorS.

    3.2.2 Full Multigrid Method

    As known to all,Amandfmare discretized on each level grid in IGA,in order to make full use of these information,a full multigrid method(FMG)method suitable for IGA is established.

    In the loop process of FMG,both AMG and GMG can be selected as solving algorithm on each layer,hence the accuracy of each layer can be guaranteed.Besides,and with the help of the extension matrix,the results can be interpolation to the previous layer as the initial solution which can be useful to reduce the iteration steps.As shown in Fig.2,the FMG process is as follows:

    Figure 2:Full multigrid method

    Algorithm 2:FMG algorithm 1.Using exact solution in the thickest grid u1=A1/f1 2.The initial solution of the second layer grid u2=R21u1 3.For the level m,the initial solution of the third layer um=Rmm?1um?1 4.Calculate um ←AMG(Am,fm,um) or um ←GMG(Am,fm,um)5.If m is the final level “exit”,else go to Step 3.

    4 Numerical Examples

    In order to verify the validity of the algorithm,this paper has carried out the verification on the Poisson equation and Reynolds equation.

    According to the relationship between residual norm and error norm:‖rk‖ = ‖Aek‖ ≤‖A‖‖ek‖,the convergence of the residual and the error is consistent.

    The relative error can be expressed as follows:

    The convergence rate is defined as:

    The algorithm is written in OCTAVE,the computer processor is Core i5-4570,with 3.20 GHz frequency.We contrast the convergence and calculation time of different subdivision strategies.The unified cycle format is V cycle,the number of grid layers m = 3,and the subdivision mode of coarse grid to fine grid isp1h1p2h2p3h3,corresponding to the 6-bit coding(such as 102026)shown in the figure below,respectively.Select the corresponding subdivision strategy from Tab.5(Reynolds)and Tab.8(Poisson),and the relaxation algorithm selects Gauss–Seidel iteration,and the number of internal iterations is controlled to bev1=v2=2.

    4.1 Reynolds Equation Model

    The piston-cylinder liner is used as a lubrication system,and the oil film pressure is derived based on the Reynolds equation.Fig.3a shows the piston liner system,and the area of lubricating film is shown in Fig.3b.Based on the Navier–Stokes equations and the mass continuity equation,the Reynolds equation[26,27]can be established as follows:

    whereρis the lubricant density,pis the oil film pressure,ηis the dynamic viscosity,u0anduhare the oil film circumferential speeds on the piston and the cylinder liner surface,v0andvhare the film shaft speed on the piston and the cylinder liner surface,his the film thickness,tis time.

    Since the lubrication area is symmetrical relative to the planeφ=0,only the right half needs to be considered.In general,the piston moves periodically,and the values of density and viscosity will change with the change of load value.However,in order to simplify the numerical model,the values of density and viscosity are taken as constant.The calculation parameters of oil film pressure are shown in Tab.4.

    Figure 3:Piston-cylinder liner lubrication system(a)piston-cylinder system(b)oil film lubrication area

    Table 4:Calculate parameters

    The motion parameters of the piston-cylinder liner model have been given above,and the relevant detailed derivation process is referred to[28,29].

    Table 5:Number of control points from MG based on different refinement strategies

    When the Reynolds equation is discretized,the knot vector of the initial parameter domain isv=u=[0 0 1 1].In the initial state,given differentp,h,k-refinement strategies will get different levels of grid control points.

    In the case ofh-refinement,n is the thinnest grid,and the appropriate coarse grid is selected to make it have the fastest convergence rate.It can be seen from Tab.6 that whenkis constant,the grid size is independent of the convergence rate.Since the Reynolds equation is an elliptic equation of second order,so it has the fastest convergence rate atk=2.Whenkincreases,the convergence rate decreases sharply.

    Table 6:Convergence rate

    Fig.4 only shows the comparison betweenh-refinement andk-refinement in order to explore the influence of different refinement strategies on the convergence rate.The broken lines in the figure indicate the number of subdivisions of each layer of the grid.For example,252627 represents the second-order fifth-level grids,the second-order sixth-level grids and the second-order seventh-level grids.The figure below is similar.The traditional AMG and GMG are used to compare the convergence of different degrees of freedom and spline degreek.The convergence rate of AMG and GMG iterations are shown in Fig.5.Tab.7 shows the CPU calculation time of the AMG algorithm and the GMG algorithm.It can be seen that:when the number k is constant,the convergence rate of AMG and GMG is almost the same under different grid sizes.Due to the different ways in which the coarse grid matrix is generated,the non-zero elements of the matrixAare different.As shown in Fig.6,nz is the number of non-zero elements.The band length in the GMG matrixAis reduced globally and locally,and the number of non-zero elements is less than that in the AMG matrix.Therefore,when the degree of freedom is large,the GMG of the natural discrete matrixAcan save more time and computing resources.Meanwhile,as the right items of different levels of are also produced in the discrete process,FMG can be used to calculate the original right items in the current layer.It can be seen from Fig.7 that the full multiple cycles have superior initial values in the iterative calculation process,and the desired error accuracy can be obtained in less iterations.

    Figure 4:Relative error of refinement strategy(a) H-refinement relative error(b) K-refinement relative error

    Figure 5:Relative error between AMG and GMG(a) k=1(b) k=2(c) k=3(d) k=4

    Table 7:CPU calculation time of AMG and GMG

    Figure 6:Coarse grid matrix A(a)GMG(b)AMG

    Figure 7:Relative error between FMG and GMG

    4.2 Poisson Equation Model

    The equation of the two-dimensional Poisson problem with Dirichlet boundary conditions in the domainΩwith the following expression:

    The domainΩis the quarter-ring of the inner radiusRi=1 and the outer radiusRe=2 is shown in Fig.8.When the right term heat source issin(2arctan(y/x)))/(x2+y2),the analytical solution issin(2arctan(y/x)).

    Figure 8:Two dimensional poisson heat transfer problem

    For the parameter domain knot vector of two-dimensional Poisson equation isv=u=[0 0 0 1 1 1]in the initial state,the convergence and calculation time of subdivision strategy are compared under the working environment mentioned above.The related calculated data correspond to the Reynolds equation are listed below.

    Table 8:Number of control points from MG based on different subdivision strategies

    Table 9:Convergence rate

    Figure 9:Relative error of refinement strategy(a) H-refinement relative error(b) K-refinement relative error

    Tab.9 discusses the influence of the choice of grid level on convergence in the AMG algorithm under different subdivision situations.Fig.9 only shows the comparison betweenh-refinement andk-refinement in order to explore the influence of different refinement strategies on the convergence rate.It can be seen from the figure that the mapping matrix satisfies the mapping relationship between the control points when there is a large gap between the number of control points of the coarse and fine grid,whetherh-refinement ork-refinement.For the assumed scale series betweenanduare large,the linear distortion leads to the inaccurate mapping relationship,and the convergence rate is not converged as expected.Within a certain range of the number gap between the coarse and fine grid points,the convergence rate ofh-refinement is different in the early iteration,but the convergence curve tends to coincide in the later 10 iterations,while the trend ofk-refinement only convergence rate is the same.Therefore,the selection of the appropriate grid hierarchy is beneficial to the convergence of the multi-grid method.Fig.10 shows the relative error of the AMG algorithm and the GMG algorithm.Tab.10 shows the CPU calculation time of the AMG algorithm and the GMG algorithm.Although the convergence rate of the AMG algorithm and the GMG algorithm is almost the same in the verification of the Reynolds equation,the GMG algorithm still saves more time in the initial period calculation.

    Figure 10:Relative error between AMG and GMG(a) k=2(b) k=3(c) k=4

    Table 10:CPU calculation time of AMG and GMG

    Fig.11 shows the convergence comparison between FMG and GMG under the Reynolds equation model.It can be seen that:at the start stage,with the help of the good initial value,the FMG algorithm has a better accurate result,but the convergence tends to be consistent with others in the later stage.

    Figure 11:Relative error between FMG and GMG

    In this paper,the algebraic multigrid method and the geometric analysis of the natural discrete stiffness matrixAare used instead of the transpose generation matrixand the geometric multi-grid method and the algebraic multigrid method are compared.Numerical results show that:convergence rates of the two methods keep consistent,but GMG reduces the time cost at the initial period.For the subdivision strategies of different levels(3 levels),the convergence rate ofh-refinement intermediate layer is faster when it is closer to the fine grid,and the convergence rate ofk-refinement intermediate layer is faster when it is in the middle of coarse and fine grid.When FMG is applied to IGA,its convergence rate is faster than that of GMG.

    5 Conclusion

    Based on the framework of IGA,the analytical models of Reynolds equation and Poisson equation are established,and multigrid is applied to the IGA.According to its solving process and method,a calculation program was developed in OCTAVE(FMG based on GMG modified the traditional AMG).The convergence rate of the iteration is independent of the size of the discrete mesh,so the multigrid method has the optimal computational complexity.When the degree of freedom of fine grid is determined,the degree of freedom of coarse grid can be reduced and the boundary information can be quickly spread to the whole,which can not only accelerate the convergence rate but also save the cost of calculation time.However,the selection of grid level also affects the convergence accuracy.In particular,the selection of the middle level has a greater impact on the results,and the performance of the middle grid close to the top grid is better.As for the combination of FMG and IGA,the results show that the algorithm can make full use of IGA to discretize the geometric information of each layer.Compared with the V-cycle,it has a faster initial convergence speed,but it is consistent with conventional algorithms in the later stage.How to make better use of the existing information to accelerate calculation efficiency and improve calculation accuracy is the direction we will continue to study in the future.

    Funding Statement:This research was supported by the Natural Science Foundation of Hubei Province(CN)(Grant No.2019CFB693),the Research Foundation of the Education Department of Hubei Province(CN)(Grant No.B2019003)and the open Foundation of the Key Laboratory of Metallurgical Equipment and Control of Education Ministry(CN)(Grant No.2015B14).The support is gratefully acknowledged.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精华霜和精华液先用哪个| 日韩大尺度精品在线看网址| 国产精品99久久久久久久久| 亚洲真实伦在线观看| 变态另类丝袜制服| 好男人在线观看高清免费视频| 国产v大片淫在线免费观看| 久久久久久久久中文| 亚洲成人久久性| 国产精品,欧美在线| а√天堂www在线а√下载| 美女cb高潮喷水在线观看| 51国产日韩欧美| 99久久无色码亚洲精品果冻| 麻豆一二三区av精品| 尤物成人国产欧美一区二区三区| aaaaa片日本免费| 午夜老司机福利剧场| 免费人成视频x8x8入口观看| 国产av不卡久久| 亚洲18禁久久av| 国产精品一区二区三区四区久久| 露出奶头的视频| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 乱系列少妇在线播放| 欧美成人免费av一区二区三区| 十八禁国产超污无遮挡网站| 中文字幕av在线有码专区| 久久久a久久爽久久v久久| 国产色爽女视频免费观看| 欧美最黄视频在线播放免费| 伦精品一区二区三区| av天堂中文字幕网| 在线观看av片永久免费下载| 在线观看一区二区三区| 亚洲内射少妇av| 美女黄网站色视频| 国产一区亚洲一区在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 无遮挡黄片免费观看| a级毛片a级免费在线| 一进一出抽搐动态| 欧美激情国产日韩精品一区| 色哟哟哟哟哟哟| 人人妻,人人澡人人爽秒播| 欧美不卡视频在线免费观看| 国产激情偷乱视频一区二区| 级片在线观看| 内地一区二区视频在线| 亚洲久久久久久中文字幕| 精品久久久久久成人av| 亚洲国产精品久久男人天堂| 成人美女网站在线观看视频| 别揉我奶头 嗯啊视频| 国产在线精品亚洲第一网站| 成人鲁丝片一二三区免费| 能在线免费观看的黄片| 麻豆国产av国片精品| 麻豆成人午夜福利视频| 欧美xxxx性猛交bbbb| 老司机影院成人| 久久精品国产亚洲网站| 亚洲不卡免费看| 成人美女网站在线观看视频| 可以在线观看毛片的网站| 久久精品国产亚洲av涩爱 | 最近2019中文字幕mv第一页| 久久精品91蜜桃| 亚洲中文字幕一区二区三区有码在线看| 免费看光身美女| 亚洲最大成人中文| 亚洲,欧美,日韩| 99久久无色码亚洲精品果冻| 我要看日韩黄色一级片| 99在线人妻在线中文字幕| 我要看日韩黄色一级片| 夜夜夜夜夜久久久久| 亚洲欧美成人精品一区二区| 男人舔女人下体高潮全视频| 我要搜黄色片| 精品欧美国产一区二区三| 欧美成人一区二区免费高清观看| 亚洲欧美日韩卡通动漫| 舔av片在线| 亚洲精品国产成人久久av| 久久久精品94久久精品| 欧美性感艳星| 国产精品爽爽va在线观看网站| 淫秽高清视频在线观看| 午夜老司机福利剧场| 老女人水多毛片| 久久精品91蜜桃| 国产欧美日韩精品亚洲av| 亚洲欧美中文字幕日韩二区| av在线亚洲专区| 亚洲精品日韩av片在线观看| 99riav亚洲国产免费| 天堂网av新在线| 天天躁夜夜躁狠狠久久av| a级毛片a级免费在线| 成人鲁丝片一二三区免费| 少妇熟女aⅴ在线视频| av国产免费在线观看| 嫩草影院精品99| 日本a在线网址| 乱人视频在线观看| 亚洲五月天丁香| 亚洲精品影视一区二区三区av| 99久久精品国产国产毛片| 老女人水多毛片| 国产高清视频在线播放一区| 亚洲av熟女| 亚洲不卡免费看| 亚洲中文字幕日韩| 国产成人福利小说| 成人二区视频| 高清午夜精品一区二区三区 | 亚洲自拍偷在线| 精品乱码久久久久久99久播| 在现免费观看毛片| 伦精品一区二区三区| 少妇丰满av| 日日摸夜夜添夜夜爱| 又爽又黄a免费视频| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 99热这里只有精品一区| 国产高清视频在线播放一区| 国产精品精品国产色婷婷| 亚洲成人久久爱视频| 精品久久久噜噜| 成人精品一区二区免费| 啦啦啦韩国在线观看视频| 成人一区二区视频在线观看| 小蜜桃在线观看免费完整版高清| 久久久久免费精品人妻一区二区| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 美女黄网站色视频| 男女之事视频高清在线观看| 日韩 亚洲 欧美在线| 亚洲国产精品久久男人天堂| 中国美白少妇内射xxxbb| 身体一侧抽搐| 村上凉子中文字幕在线| 人人妻人人澡欧美一区二区| 亚洲美女视频黄频| 十八禁网站免费在线| 久久久久久大精品| 国产成人福利小说| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 欧美激情在线99| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 美女内射精品一级片tv| 91精品国产九色| 国产精品99久久久久久久久| 欧美区成人在线视频| 日本五十路高清| 九九久久精品国产亚洲av麻豆| 我要搜黄色片| av在线老鸭窝| 97人妻精品一区二区三区麻豆| 国产精品久久视频播放| 日韩欧美在线乱码| 久久精品夜夜夜夜夜久久蜜豆| 国产成人影院久久av| 国产伦精品一区二区三区四那| 少妇人妻一区二区三区视频| 国产欧美日韩一区二区精品| 伦精品一区二区三区| 亚洲av.av天堂| 国产精品一区www在线观看| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| 六月丁香七月| a级毛色黄片| 精品午夜福利视频在线观看一区| 亚洲欧美成人精品一区二区| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 三级毛片av免费| 婷婷亚洲欧美| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 欧美国产日韩亚洲一区| 少妇的逼水好多| 国产精品亚洲一级av第二区| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 韩国av在线不卡| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 内地一区二区视频在线| 村上凉子中文字幕在线| 久久国内精品自在自线图片| 亚洲色图av天堂| 亚洲18禁久久av| 久久精品国产99精品国产亚洲性色| 熟女电影av网| 最近中文字幕高清免费大全6| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 亚洲国产精品成人久久小说 | 欧美绝顶高潮抽搐喷水| 97碰自拍视频| 欧美bdsm另类| 亚洲一级一片aⅴ在线观看| 成人特级av手机在线观看| 国产欧美日韩一区二区精品| 黄色配什么色好看| 91久久精品国产一区二区三区| 久久久久久久久久久丰满| 男女啪啪激烈高潮av片| 一本久久中文字幕| 99久久九九国产精品国产免费| 少妇的逼好多水| 亚洲av不卡在线观看| 悠悠久久av| 久久6这里有精品| 99热这里只有是精品50| 午夜a级毛片| 午夜激情欧美在线| 精品一区二区三区人妻视频| 日本爱情动作片www.在线观看 | 97碰自拍视频| 亚洲欧美成人综合另类久久久 | 亚洲天堂国产精品一区在线| 少妇熟女aⅴ在线视频| 国产男靠女视频免费网站| 香蕉av资源在线| 日韩欧美免费精品| 精品久久久久久久久久久久久| 午夜福利在线在线| 午夜爱爱视频在线播放| 永久网站在线| 夜夜爽天天搞| 在线国产一区二区在线| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 午夜影院日韩av| 一本一本综合久久| 亚洲精华国产精华液的使用体验 | 99久久九九国产精品国产免费| 亚洲真实伦在线观看| 少妇的逼好多水| 最后的刺客免费高清国语| 亚洲内射少妇av| 欧美3d第一页| 伦理电影大哥的女人| 在线观看一区二区三区| 99久久中文字幕三级久久日本| 99久久中文字幕三级久久日本| 免费看美女性在线毛片视频| 麻豆成人午夜福利视频| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av| 国产一区二区三区av在线 | 淫秽高清视频在线观看| 国产高清有码在线观看视频| 久久99热6这里只有精品| 欧美一级a爱片免费观看看| 国产亚洲精品久久久久久毛片| 欧美日韩在线观看h| 久久久精品94久久精品| 校园春色视频在线观看| 蜜臀久久99精品久久宅男| 久久九九热精品免费| 亚洲,欧美,日韩| 18禁黄网站禁片免费观看直播| 国产精品久久久久久精品电影| 国产成人a∨麻豆精品| 国产视频内射| 精品国内亚洲2022精品成人| 国产毛片a区久久久久| 熟女电影av网| 免费不卡的大黄色大毛片视频在线观看 | 久久这里只有精品中国| 亚洲高清免费不卡视频| 久久人妻av系列| 99视频精品全部免费 在线| 99热网站在线观看| 精品人妻熟女av久视频| 国内精品久久久久精免费| 亚洲国产高清在线一区二区三| 长腿黑丝高跟| 非洲黑人性xxxx精品又粗又长| 十八禁国产超污无遮挡网站| 伦理电影大哥的女人| 国内精品美女久久久久久| 亚洲自偷自拍三级| 欧美xxxx性猛交bbbb| 午夜视频国产福利| 国内精品美女久久久久久| 天堂动漫精品| 一本一本综合久久| 中文资源天堂在线| 婷婷色综合大香蕉| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 美女免费视频网站| 搡老妇女老女人老熟妇| 蜜桃亚洲精品一区二区三区| 国产熟女欧美一区二区| 亚州av有码| 一级毛片我不卡| 淫妇啪啪啪对白视频| 人人妻人人澡人人爽人人夜夜 | 国产av麻豆久久久久久久| 国产精品久久久久久亚洲av鲁大| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 日韩一区二区视频免费看| 国产精品一区二区免费欧美| 国产成人一区二区在线| 人妻夜夜爽99麻豆av| 日韩成人av中文字幕在线观看 | 久久久久久久久久成人| 此物有八面人人有两片| 丰满乱子伦码专区| 1024手机看黄色片| 国产成人a区在线观看| 老熟妇仑乱视频hdxx| 成人午夜高清在线视频| 校园春色视频在线观看| 成人高潮视频无遮挡免费网站| av在线蜜桃| 少妇的逼好多水| 国产精品美女特级片免费视频播放器| 精品久久久久久久久久免费视频| 丰满人妻一区二区三区视频av| 亚洲第一电影网av| 日韩欧美一区二区三区在线观看| 99久久成人亚洲精品观看| 午夜a级毛片| 精品日产1卡2卡| 国产av在哪里看| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 午夜福利在线观看吧| 一个人看视频在线观看www免费| 哪里可以看免费的av片| a级一级毛片免费在线观看| 国产成人福利小说| 少妇的逼水好多| 国国产精品蜜臀av免费| 久久久欧美国产精品| 成人特级av手机在线观看| 天堂av国产一区二区熟女人妻| 有码 亚洲区| 欧美潮喷喷水| 搡女人真爽免费视频火全软件 | 少妇熟女欧美另类| 99热精品在线国产| 国产免费一级a男人的天堂| 国产黄色小视频在线观看| 桃色一区二区三区在线观看| 欧美日韩在线观看h| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 久久久色成人| 日韩人妻高清精品专区| aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 美女高潮的动态| 欧美日本亚洲视频在线播放| 麻豆av噜噜一区二区三区| 人人妻人人澡欧美一区二区| 91精品国产九色| 日韩中字成人| 国产久久久一区二区三区| 久久亚洲精品不卡| 老女人水多毛片| 99热网站在线观看| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 青春草视频在线免费观看| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 亚洲性夜色夜夜综合| 午夜免费男女啪啪视频观看 | 中出人妻视频一区二区| 亚洲性久久影院| 国产一区二区在线观看日韩| 亚洲av熟女| 国产 一区 欧美 日韩| 在线观看av片永久免费下载| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 久久九九热精品免费| 悠悠久久av| 最近2019中文字幕mv第一页| 午夜影院日韩av| 久久久国产成人精品二区| 精品人妻视频免费看| 如何舔出高潮| 99热网站在线观看| 精品国内亚洲2022精品成人| 中文字幕熟女人妻在线| 亚洲最大成人中文| 97热精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 99久久精品一区二区三区| 久久久精品94久久精品| 国产午夜精品论理片| 观看美女的网站| 免费看光身美女| 国产精品女同一区二区软件| 伦理电影大哥的女人| 午夜福利在线观看吧| 欧美三级亚洲精品| 国产美女午夜福利| 亚洲成人精品中文字幕电影| 老司机午夜福利在线观看视频| 亚洲精品日韩在线中文字幕 | 我要看日韩黄色一级片| 人妻久久中文字幕网| 日本-黄色视频高清免费观看| 精品久久国产蜜桃| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 日本a在线网址| 亚洲图色成人| 亚洲精品日韩av片在线观看| 国产片特级美女逼逼视频| 久久久久久久久久成人| 九色成人免费人妻av| 亚洲国产精品国产精品| 国产精品一区二区性色av| 女人十人毛片免费观看3o分钟| 真人做人爱边吃奶动态| 美女免费视频网站| 欧美成人a在线观看| 国产 一区 欧美 日韩| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 亚洲成a人片在线一区二区| 国产精品乱码一区二三区的特点| 丰满人妻一区二区三区视频av| 少妇熟女欧美另类| 亚洲中文字幕一区二区三区有码在线看| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 女人十人毛片免费观看3o分钟| 丝袜喷水一区| 嫩草影视91久久| 亚洲精品影视一区二区三区av| 国产在线男女| 亚洲18禁久久av| 亚洲欧美成人综合另类久久久 | 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 亚洲色图av天堂| 男人的好看免费观看在线视频| ponron亚洲| a级毛色黄片| 亚洲美女黄片视频| 国产日本99.免费观看| 22中文网久久字幕| 国内精品宾馆在线| 一个人看视频在线观看www免费| 国产亚洲91精品色在线| 美女高潮的动态| 嫩草影视91久久| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 日韩成人av中文字幕在线观看 | 精品久久久久久久久av| 天堂影院成人在线观看| 3wmmmm亚洲av在线观看| 1024手机看黄色片| av在线蜜桃| 午夜福利视频1000在线观看| 国产视频一区二区在线看| videossex国产| 国产精品乱码一区二三区的特点| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 深夜a级毛片| 韩国av在线不卡| av在线观看视频网站免费| 亚洲av不卡在线观看| 日日撸夜夜添| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 日韩一区二区视频免费看| 天堂√8在线中文| 99久久成人亚洲精品观看| 最新中文字幕久久久久| 国产美女午夜福利| av在线蜜桃| videossex国产| 老熟妇乱子伦视频在线观看| 18禁在线播放成人免费| 99久久精品一区二区三区| 精品久久国产蜜桃| 久久久欧美国产精品| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线观看免费| 久久精品国产亚洲网站| 色综合亚洲欧美另类图片| 精品久久久久久久人妻蜜臀av| 69人妻影院| 精品一区二区三区视频在线观看免费| 色视频www国产| 日日撸夜夜添| 中国美白少妇内射xxxbb| 嫩草影院入口| 欧美+亚洲+日韩+国产| 内地一区二区视频在线| 国国产精品蜜臀av免费| h日本视频在线播放| 成人性生交大片免费视频hd| 久久精品久久久久久噜噜老黄 | 欧美另类亚洲清纯唯美| 变态另类丝袜制服| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av涩爱 | 大又大粗又爽又黄少妇毛片口| 亚洲最大成人av| 91在线观看av| 观看美女的网站| 日本熟妇午夜| 日韩欧美免费精品| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 美女被艹到高潮喷水动态| 黑人高潮一二区| 久久人妻av系列| 亚洲av免费在线观看| 天堂av国产一区二区熟女人妻| 免费搜索国产男女视频| ponron亚洲| 九九爱精品视频在线观看| 国产黄a三级三级三级人| 人妻制服诱惑在线中文字幕| 亚洲国产色片| 热99在线观看视频| 亚洲中文日韩欧美视频| 一边摸一边抽搐一进一小说| 最好的美女福利视频网| 最近最新中文字幕大全电影3| a级毛片a级免费在线| 欧美+日韩+精品| 性插视频无遮挡在线免费观看| 亚洲成人av在线免费| 99国产精品一区二区蜜桃av| 国产成人freesex在线 | 亚洲在线观看片| 久久久成人免费电影| 女人被狂操c到高潮| 午夜福利18| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 亚洲丝袜综合中文字幕| 亚洲高清免费不卡视频| 久久久久久九九精品二区国产| 最新在线观看一区二区三区| 日本-黄色视频高清免费观看| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 午夜爱爱视频在线播放| 亚洲真实伦在线观看| 免费看av在线观看网站| 此物有八面人人有两片| 最近的中文字幕免费完整| 又粗又爽又猛毛片免费看| 午夜免费激情av| 精品一区二区三区人妻视频| 亚洲av熟女| 伊人久久精品亚洲午夜| 亚洲精品影视一区二区三区av| 在线观看免费视频日本深夜| 18禁在线无遮挡免费观看视频 | 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 国产成人a∨麻豆精品| 在线a可以看的网站| 91久久精品国产一区二区成人| 少妇熟女aⅴ在线视频| 观看美女的网站| 看十八女毛片水多多多| 高清毛片免费观看视频网站| 国产午夜精品久久久久久一区二区三区 | 亚洲成人av在线免费| 国产单亲对白刺激| 国产成人福利小说| 女同久久另类99精品国产91| 啦啦啦啦在线视频资源| 精品久久久久久久久av| 国产视频一区二区在线看| 又爽又黄无遮挡网站| 久久久久久伊人网av| 亚洲av中文字字幕乱码综合| 亚洲av一区综合| 午夜视频国产福利| 国产精品三级大全| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| 日本熟妇午夜| 97热精品久久久久久| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 神马国产精品三级电影在线观看| 91精品国产九色|