• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PVC Formulation of Anastrepha suspensa Pheromones Suitable for Field Studies

    2021-04-24 03:17:08DnielKuzmichZchryKwgoeSpencerWlse
    Engineering 2021年11期

    Dniel Kuzmich, Zchry A. Kwgoe, Spencer S. Wlse,,*

    a San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA

    b Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, CA 95616, USA

    Keywords:Anastrepha Anastrephin Epianastrephin PVC lure Controlled release

    ABSTRACT Tephritid flies threaten the production of fruits around the world. In the Americas, populations of the genus Anastrepha are monitored with trapping networks as part of pest management programs. Here,we report the formulation of male Anastrepha suspensa (Loew) pheromones, (±)-anastrephin and (±)-epianastrephin, into a poly(vinyl chloride) (PVC) polymer-based lure ready for trap deployment. The PVC polymer disks(100 mg)contain 10%by weight of(±)-epianastrephin and(±)-anastrephin in a naturally occurring 7:3 diastereomeric ratio,respectively.Emission of the pheromones from the disks into an airstream was evaluated as a function of the abiotic environmental parameters, absolute humidity and temperature. Kinetic data supports a diffusion-controlled mechanism of release from the matrix with first-order rate constants that decreased about ten-fold as the temperature was lowered from 30 to 15 °C. As such, the emission of volatile pheromones from the disks is suitable to last for several weeks in the field. This kinetic approach, which can be easily extended to the diffusion-controlled release of other attractants from polymeric matrices,yields laboratory predictions of the potential for environmental loss prior to conducting field bioassays.

    1. Introduction

    Across the Americas, pest management efforts are required to minimize the potential for fruit to host Anastrepha sp. (Diptera:Tephritidae).Within the United States alone,host fruits are valued at more than 7 billion USD annually [1,2]. Anastrepha populations in commercial production areas are monitored using trapping networks, which ultimately guide a variety of control efforts:integrated pest management (IPM) strategies, insecticidal sprays,quarantine regulations, and the sterile insect technique (SIT).Within Florida and the Greater Antilles, the Caribbean fruit fly,Anastrepha suspensa (A. suspensa), is a species of concern and the male pheromones are of IPM interest due to their role in the natural aggregation strategy [3-5].

    Male A. suspensa produce the volatile pheromones (R,S,S)-(-)-and (S,R,R)-(+)-anastrephin and (S,S,S)-(-)- and (R,R,R)-(+)-epianastrephin, which are attractive to males and females in short-range bioassays [5-14]. Yet, a lure for A. suspensa involving these pheromones remains elusive due, at least in part, to insufficient availability of test material.Although several elegant syntheses have been reported[4,15-25],most do not yeild sufficient mass to conduct formulation studies,let alone replicated field trials[26].A recent synthesis provides relatively convenient access to gramscale quantities of (±)-anastrephin (1) and (±)-epianastrephin (2)[27].In an attempt to design a trapping system that exploits these pheromones, effort was initiated to formulate a conventional poly(vinyl chloride) (PVC) polymer-based lure [28-30]. The present study reports the kinetics associated with the release of 1 and 2 from the PVC matrix as a function of temperature and absolute humidity—a critical first step toward field deployment and trapping efficiency studies.

    2. Methods and materials

    2.1. Chemicals

    PVC (low-molecular weight, 524 980), dibutyl phthalate (DBP),dioctyl phthalate (DOP), anhydrous tetrahydrofuran (THF;inhibitor-free), and 10% palladium (Pd) on carbon (C) were purchased from Aldrich Chemical Co., Inc. (USA). Analytical grade methyl tert-butyl ether (MTBE) was purchased from Fisher Scientific (USA). Polymer disks were formed in porcelain wells (CoorsTMmulti-well plate;Sigma-Aldrich,USA).Synthetic 1 and 2 were prepared in-house (United States Department of Agriculture (USDA))with greater than 99% purity, as verified by gas chromatography(GC) and electron impact mass spectrometry (GC-EIMS). Catalytic hydrogenation (101 kPa) of 1 using 10% Pd/C in ethyl acetate yielded 3, as an internal standard (IS) for quantitative analysis(Fig. 1) [3,27].

    2.2. Formulation

    PVC-pheromone disks were formulated to afford 10%by weight of total pheromone, 2 and 1 (7:3 ratio). In a conical vial, PVC(251.5 mg), DBP (125.6 mg), DOP (127.5 mg), 2 (38.5 mg), and 1(16.5 mg) were dissolved in THF (1.665 g). The mixture was blended with a spatula,and then the vial was capped and warmed at 40°C.After 20 min,the mixture was blended again as described above,and then about 400 mg was pipetted into respective porcelain wells. The THF was allowed to evaporate by warming the porcelain plate at 40°C for 15 min and then leaving it at room temperature overnight, affording three PVC-pheromone disks with a mass of(110.4±0.8)mg(mean±standard deviation,ˉx ± s).Note that THF evaporation above 40 °C caused bubbles to form in the polymer resin, while evaporation at room temperature resulted in cloudy disks, presumably due to evaporative cooling.

    2.3. Collections of volatile pheromone

    The volatile collection system reported by Walse et al. [5] was modified; 1/4 inch (1 inch = 25.4 mm) diameter Teflon tubing was used for all plumbing, and all connections were made using standard Swagelok fittings, unless otherwise noted. A compressor pushed air (413 kPa) into a 15.2 m3environmental chamber with programmable temperature and through an activated carbon filter(Westates Vocarb 48C;Siemens Industry,Inc.,USA)connected serially to a metering valve. Airflow was then directed into a 226.2 L chamber,pressurized to about 14 kPa,which housed a tunable terrarium humidifier (Zoo Med?, USA) set to maintain an absolute humidity, Ca-H2O, of (0.5846 ± 0.0096) mmol·L-1in the air exiting the chamber at all temperatures studied (vide infra). Air exiting the chamber was directed into a manifold (Model VCS-ADS-6AFM6C; Analytical Research Systems?(ARS), USA), which metered the flow of four parallel airstreams to 100 mL·min-1.Three ‘‘sampling” volatile collection chambers (VCCs; 10 inch × 2 inch diameter), and a fourth VCC containing only a HOBO?logger(model #UX100-003; USA) to record temperature and humidity at 5 min intervals, were connected to the respective airstreams.A formulated disk(about 19 mm in diameter and 0.15 mm in thickness)was fixed to the internal glass surface of a Petri dish(30 mm in diameter and 5 mm in depth) with one face exposed. A diskcontaining dish was then introduced into each of the three ‘‘sampling” VCCs. Pheromones released from the disk were captured on an ARS glass-tube (11.5 cm long and 4 mm internal diameter(id) volatile collector trap (VCT) containing 50 mg Super-Q adsorbent(AlltechTMAssociates,USA),which was inserted into the outlet terminal of the VCC.

    Fig. 1. Pheromone structures and GC-EIMS total ion chromatogram showing the relative retention of 1 and 2 to IS 3.

    The pheromone emitted from the PVC disks was quantified using GC-EIMS over temporal intervals at the temperatures explored in this study—that is, the temperatures pertinent to the endemic range of A. suspensa, the Greater Antilles and Florida:(33.2 ± 0.1), (26.7 ± 0.3), (20.7 ± 0.3), and (15.1 ± 0.4) °C. To prepare a sample for GC-EIMS analysis, a VCT was removed (and replaced if necessary), flushed with MTBE (8 mL) into a 10 mL volumetric glass vial (slow-blow Kuderna-Danish) containing 1 mL of IS 3 in MTBE (16.1 ng·μL-1). The eluant was reduced to 1 mL via passive concentration in a fume hood, and transferred with a pipette to a 2 mL glass GC vial. Vials were clamp-sealed with 9 mm diameter Teflon-lined caps in preparation for GC-EIMS analysis. The collection efficiencies of 1 and 2 were greater than 98% over the range 5000-0.5 ng, as reported in Walse et al. [5]. In general, the concentration of emitted pheromone was quantified initially, [1 and/or 2]t=0or [1 and/or 2]0,and at approximately daily intervals thereafter, [1 and/or 2],where t is time, t = 1 d, 2 d, 3 d, etc.

    2.4. Gas chromatography-electron impact mass spectrometry

    In general, 1, 2, and IS 3 were identified based on chromatographic, spectrometric, and spectroscopic agreement with the published literature. GC retention time (tR) and/or mass spectrometry were used for chemical verification, and the IS 3-normalized integral of peak area, referenced relative to linear least-squares analysis of a six-point plot of calibrant versus detector response, was used to determine concentration in the volatile collection studies. Detector response and retention indices were determined each day in calibration studies involving serial dilutions of 1 in known volumes of MTBE (i.e., calibration standards).

    A 7890A gas chromatograph and a 5973 N quadrupole mass spectrometer (Agilent Technologies, USA) was operated with electron impact ionization (70 eV). Cool on-column injections (1 μL)were conducted at 143 °C with helium (He) carrier gas(1.0 mL·min-1). The oven program was isothermal at 140 °C for 1 min, heated at 4 °C·min-1to 150 °C, isothermal for 70 min,heated at 30 °C·min-1to 230 °C, and then isothermal for 2 min.GlasSeal connectors (Supelco?, USA) were used to fuse four columns in series: a deactivated column (long (L) = 8 cm,id=0.53 mm;Agilent Technologies,USA)onto which the injection was deposited; a deactivated retention-gap column (L = 2 m,id = 0.25 mm; Agilent Technologies, USA); a DB-1701 analytical column (L = 60 m, id = 0.25 mm, film thickness (df) = 0.25 μm;J&W Santa Clara, USA); and, finally, a deactivated column(L = 1.5 m, id = 0.25 mm; Agilent Technologies, USA) that was directed into the detector. Transfer-line, source, and quadrapole temperatures were respectively 280, 230, and 150 °C. Analyte tR(n = 10) were as follows: 1: (60.26 ± 0.02) min; 2: (62.98 ± 0.01)min; and IS 3: (71.06 ± 0.03) min (Fig. 1).

    Full scan spectra from 50 to 600 mass-to-charge ratio (m/z)with±0.3 m/z resolution were acquired at 0.34 s per scan for qualitative verification, data are shown as m/z (% relative intensity):1: 194 (3), 179 (33), 151 (14), 135 (33), 108 (61), 81 (100); 2:194 (2), 179 (23), 151 (11), 135 (24), 108 (54), 81 (100); and 3:196 (0.8), 181 (72), 153 (71), 137 (12), 110 (61), 83 (100). Ions noted in italics were extracted from the total ion chromatogram(TIC) for quantification.

    3. Results

    3.1. Rate of pheromone release

    At each temporal interval of time (t), gaseous (g) pheromone loss from a solid (s) disk was quantified as described above using GC-EIMS. Pheromone loss over the experimental time course was expressed by the differential rate equation:

    Experimental data support the kinetic model, a first-order kinetic approximation of pheromone loss; least-squares analyses of ln([1 and/or 2]t/[1 and/or 2]0) for triplicate trials plotted versus time yielded a linear composite regression with a slope of -kv. At(33.2 ± 0.1), (26.7 ± 0.3), (20.7 ± 0.3), and (15.1 ± 0.4) °C, kvhad respective values of 9.51 × 10-3, 4.14 × 10-3, 1.57 × 10-3, and 1.34 × 10-3d-1(Fig. 2). Half-lives (t1/2), calculated respectively from ln(2)/kv, were approximately 73, 167, 352, and 519 d.

    Release rate increased with temperature (T), empirically approximated by the Arrhenius equation:

    where Q is the cumulative loss of chemical(as a fractional percentage of the total (%)) at time t (d), and kHis the Higuchi constant(d-1). Providing further evidence to support a diffusion-controlled mechanism of release from the PVC-pheromone disks, leastsquares analyses of the cumulative loss of 1 and/or 2 for triplicate trials plotted versus t1/2yielded a composite linear regression with a slope of kHand a correlation coefficient of r2≥0.95;respectively,0.95, 0.98, 0.98, and 0.97 for (33.2 ± 0.1), (26.7 ± 0.3), (20.7 ± 0.3),and(15.1±0.4)°C(Fig.4).To our knowledge,this is the first application of Higuchi modeling to pheromone release from a‘‘thin-film”polymer matrix.

    Fig. 2. Results support a first-order loss of 1 and/or 2 from the PVC-pheromone disks, as a least-squares analyses of the data yielded a line with a slope of -kv, the observable rate constant of volatilization from the PVC disks,which increased with temperature (95% confidence intervals (CI) shown).

    It is critical to note that the relative loss of 2 to 1 from the PVC disks remained constant at approximately 2.3 to 1, the naturally occurring diastereomeric ratio, across all temperatures (Fig. 5). A single-factor analysis of variance (ANOVA) was not significant(F3,76= 0.72, P = 0.74), indicating that the overall mean ratio of 2 to 1, 2.39 ± 0.18, could be used to describe the ratio observed for a respective temperature at the 95% confidence interval (CI) [33].This finding provides additional evidence to support the kinetic and mechanistic models described above.

    4. Discussion

    At present,trapping systems for key pests from the genus Anastrepha, including A. suspensa, rely on food-based lures that exhibit poor selectivity and are costly from an operational perspective[1,2,34]. In an attempt to design a trapping system that exploits known volatile pheromones of A. suspensa, a PVC polymer-based lure was formulated in a disk containing 10% by mass of 1 and 2 in a 3:7 diastereomeric ratio. The release rate of pheromone increased with temperature, with no change in the formulated ratio of 1 to 2. The results indicate that across the temperature range over a period of several weeks, <10 ng of 1 and 2 will be released from each disk per hour—a finding that is consistent with the emission rates of1and2from a‘‘calling”male A.suspensa[5,6].

    Fig.3. The relationship between the observable rate constant of volatilization,-kv,and temperature was empirically estimated.

    Fig. 4. This Higuchi plot across temperatures showing linearity from least-squares analysis (95% CI shown), as evidenced by respective correlation coefficients (all r2 ≥0.95), provides further evidence to support a Fickian diffusion-controlled mechanism of volatile release from the PVC-pheromone disks.

    Fig. 5. Box-and-whiskers plot showing the median (- - -) release of 2 to 1 from PVC-pheromone disks as a function of temperature, relative to the 1st through 3rd quartiles (gray rectangles), outliers (·), and the ratio of formulation, about 2.3 to 1(-), which matches the naturally occurring diastereomeric ratio of the volatile pheromones [5,6].

    The relationship between molecular diffusivity, viscosity (μ),and temperature (T) can be generalized by the Stokes-Einstein equation:

    where DES/ASis the translational diffusion coefficient (cm2·s-1) of1and2, kBis the Boltzmann constant (1.38 × 10-23kg·m2·s-2·K-1),and r is the hydrodynamic radius of ‘‘spherical”1and2(about 0.45 nm) [35]. Preliminary studies indicated that a change in relative humidity did not change the mass of the polymeric disk or, in turn, μ. This finding contrasts with the use of humectant-based matrices to emit1and2at rates that are directly proportional to humidity levels [5]. Accordingly, when considering polymeric matrices—or, at least, the PVC used in this study—the diffusioncontrolled release will directly vary with T.The influence of geometry on rates of diffusion is well-established [36], so the kinetic models used above to describe polymeric disks can be extended to other geometries, such as cylindrical ‘‘plugs” and spheres, with a longer history of use in trapping systems.

    Future work will report on integrating the PVC-pheromone disk(and/or plugs) into potential Anastrepha trapping systems for field deployment, as well as capture efficiency studies associated with such efforts. From a broader perspective, this work provides a kinetic framework for predicting Fickian diffusional release of insect attractants from polymeric matrices as a function of environmental conditions,and particularly temperature,making it possible to initiate field bioassays with a chemical understanding and/or expectation of lure longevity.

    Acknowledgments

    This research was funded by the USDA-Agricultural Research Service and the Cooperative Research and Development Agreement(#58-3K95-4-1665) with Betterworld Manufacturing (Fresno,USA).

    Compliance with ethics guidelines

    Daniel Kuzmich, Zachary A. Kawagoe, and Spencer S. Walse declare that they have no conflict of interest or financial conflicts to disclose.

    Chemical Characterization

    1: IR (neat) 2942, 2871, 1780, 1016 cm-1;1H NMR (300 MHz,Chloroform-d) δ: 5.68 (dd, J = 17.6, 10.6 Hz, 1H), 5.00 (d,J = 1.5 Hz, 1H), 4.95 (dd, J = 4.7, 0.8 Hz, 1H), 2.38 (dd, J = 16.4,14.8 Hz, 1H), 2.24 (dd, J = 16.4, 6.4 Hz, 1H), 2.10 (dd, J = 14.8,6.4 Hz, 1H), 2.01 (dd, J = 7.9, 3.0 Hz, 1H), 1.84 (ddd, J = 8.2, 6.2,3.9 Hz, 1H), 1.73-1.59 (m, 2H), 1.59-1.43 (m, 2H), 1.38 (s, 3H),and 1.06 (s, 3H).13C NMR (75 MHz, CDCl3) δ: 176.12, 147.76,111.59, 86.03, 53.43, 38.46, 37.90, 37.02, 29.46, 20.90, 20.43, and 16.37.

    2: IR (neat) 2942, 2868, 1770, 1029 cm-1;1H NMR (300 MHz,CDCl3) δ: 5.89 (ddd, J = 17.4, 11.2, 0.9 Hz, 1H), 5.19-5.03 (m, 2H),2.65-2.30 (m, 3H), 2.16-1.94 (m, 3H), 1.31 (dd, J = 13.1, 5.3, 1H),1.26 (s, 3H), and 1.04 (s, 3H).13C NMR (75 MHz, CDCl3) δ:176.14, 139.98, 112.94, 86.34, 55.51, 38.62, 37.19, 36.07, 30.35,29.01, 20.38, and 20.21.

    3:1H NMR (300 MHz, CDCl3) δ: 2.49 (dd, J = 16.3, 14.9 Hz,1H),2.31(dd,J=16.3,6.5 Hz,1H),2.15-1.90(m,2H),1.85-1.69(m,2H),1.68-1.40 (m, 3H), 1.36 (s, 3H), 1.33-1.24 (m, 1H), 1.19-0.97 (m,1H), 0.91 (s, 3H), and 0.85 (t, J = 7.5 Hz, 3H).13C NMR (75 MHz,CDCl3) δ: 176.62, 86.57, 56.81, 37.68, 36.36, 35.68, 29.40, 27.64,24.44, 21.08, 20.53, and 9.05.

    欧美一区二区精品小视频在线| 天堂动漫精品| 国产成人av教育| 色吧在线观看| h日本视频在线播放| 国产精品野战在线观看| 级片在线观看| 99riav亚洲国产免费| 最近最新免费中文字幕在线| 69人妻影院| 午夜福利免费观看在线| 他把我摸到了高潮在线观看| 手机成人av网站| 成人亚洲精品av一区二区| 日韩有码中文字幕| a在线观看视频网站| 深爱激情五月婷婷| 91字幕亚洲| 在线观看免费视频日本深夜| 淫妇啪啪啪对白视频| 99久久成人亚洲精品观看| 国产aⅴ精品一区二区三区波| av黄色大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品一区二区三区| 免费在线观看亚洲国产| 欧美3d第一页| 成年人黄色毛片网站| 亚洲av免费在线观看| 悠悠久久av| 欧美三级亚洲精品| 精品国产亚洲在线| 精品人妻偷拍中文字幕| 亚洲av成人不卡在线观看播放网| 欧洲精品卡2卡3卡4卡5卡区| 真人一进一出gif抽搐免费| 成年女人永久免费观看视频| 少妇的逼好多水| 日本与韩国留学比较| 在线观看免费视频日本深夜| 色综合婷婷激情| 国产成人啪精品午夜网站| 美女cb高潮喷水在线观看| 亚洲av电影在线进入| 亚洲美女视频黄频| 老熟妇仑乱视频hdxx| www日本在线高清视频| 国产高清三级在线| 非洲黑人性xxxx精品又粗又长| 久久亚洲真实| 国产精品三级大全| 男女下面进入的视频免费午夜| 悠悠久久av| 国产乱人伦免费视频| 欧美最黄视频在线播放免费| 精品日产1卡2卡| 一级作爱视频免费观看| 亚洲精品影视一区二区三区av| 免费高清视频大片| av国产免费在线观看| 国内揄拍国产精品人妻在线| 十八禁网站免费在线| 琪琪午夜伦伦电影理论片6080| 神马国产精品三级电影在线观看| 天天一区二区日本电影三级| 黑人欧美特级aaaaaa片| 窝窝影院91人妻| 99精品在免费线老司机午夜| 一个人看视频在线观看www免费 | 成人18禁在线播放| 国产精品美女特级片免费视频播放器| 国产精品久久久久久久久免 | 亚洲七黄色美女视频| 毛片女人毛片| 桃红色精品国产亚洲av| 少妇裸体淫交视频免费看高清| 国产不卡一卡二| 国产午夜福利久久久久久| 一区二区三区高清视频在线| 在线a可以看的网站| 真实男女啪啪啪动态图| www国产在线视频色| 精品久久久久久久久久久久久| 亚洲在线自拍视频| 一个人看视频在线观看www免费 | 亚洲中文字幕日韩| 成人特级黄色片久久久久久久| 国产免费一级a男人的天堂| 国产乱人伦免费视频| 男女视频在线观看网站免费| 丝袜美腿在线中文| 日韩欧美精品免费久久 | 国产主播在线观看一区二区| 黄色女人牲交| 91av网一区二区| 国产伦精品一区二区三区视频9 | 18禁在线播放成人免费| 国产精品一及| 日本精品一区二区三区蜜桃| 久久久久久国产a免费观看| 深爱激情五月婷婷| av在线天堂中文字幕| 精华霜和精华液先用哪个| 欧美又色又爽又黄视频| 97碰自拍视频| 国产精品香港三级国产av潘金莲| 亚洲成人中文字幕在线播放| 日韩欧美国产一区二区入口| 成人av一区二区三区在线看| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产精品999在线| 97超视频在线观看视频| 深爱激情五月婷婷| 成年人黄色毛片网站| 99久久无色码亚洲精品果冻| 99riav亚洲国产免费| 99久国产av精品| 精品一区二区三区av网在线观看| 国产亚洲精品综合一区在线观看| 老熟妇乱子伦视频在线观看| 99久久久亚洲精品蜜臀av| 欧美日韩黄片免| 内射极品少妇av片p| 757午夜福利合集在线观看| 老熟妇仑乱视频hdxx| 草草在线视频免费看| 国内毛片毛片毛片毛片毛片| 少妇人妻精品综合一区二区 | 久久九九热精品免费| 国产69精品久久久久777片| www.熟女人妻精品国产| 欧美中文日本在线观看视频| 亚洲人成电影免费在线| 毛片女人毛片| 久久九九热精品免费| www.www免费av| 久久亚洲真实| 免费人成视频x8x8入口观看| 亚洲七黄色美女视频| 性色av乱码一区二区三区2| 国产精品精品国产色婷婷| 琪琪午夜伦伦电影理论片6080| 亚洲av电影在线进入| 日日干狠狠操夜夜爽| 国产精品女同一区二区软件 | 一进一出抽搐动态| 91麻豆av在线| 人妻丰满熟妇av一区二区三区| 伊人久久精品亚洲午夜| 白带黄色成豆腐渣| 岛国在线观看网站| av在线蜜桃| 婷婷六月久久综合丁香| 丰满乱子伦码专区| 午夜老司机福利剧场| 日韩高清综合在线| www.www免费av| 一区二区三区免费毛片| 99久久无色码亚洲精品果冻| 1024手机看黄色片| 免费在线观看成人毛片| 国产成人av教育| 丁香欧美五月| 欧美av亚洲av综合av国产av| 久久久久久国产a免费观看| 免费观看的影片在线观看| 中出人妻视频一区二区| 中文字幕高清在线视频| 变态另类成人亚洲欧美熟女| 午夜福利在线观看免费完整高清在 | 亚洲最大成人中文| 亚洲电影在线观看av| 亚洲一区二区三区色噜噜| 国产成人系列免费观看| 久久久久久国产a免费观看| 亚洲最大成人手机在线| 狂野欧美白嫩少妇大欣赏| 国产69精品久久久久777片| 久久人妻av系列| 精品久久久久久久久久免费视频| 国产精品亚洲美女久久久| 色哟哟哟哟哟哟| 男女下面进入的视频免费午夜| 国产精品1区2区在线观看.| 特级一级黄色大片| 精品一区二区三区人妻视频| 午夜免费成人在线视频| 欧美在线黄色| 亚洲真实伦在线观看| 国产主播在线观看一区二区| 成年女人永久免费观看视频| 99riav亚洲国产免费| 精品欧美国产一区二区三| 国产淫片久久久久久久久 | 亚洲专区中文字幕在线| 久久精品国产清高在天天线| 久久久国产精品麻豆| 亚洲av免费高清在线观看| 成年女人毛片免费观看观看9| 美女高潮的动态| 国产精品 欧美亚洲| 国产午夜精品论理片| 欧美日韩黄片免| 国产伦精品一区二区三区视频9 | 啪啪无遮挡十八禁网站| 男女视频在线观看网站免费| 国产精华一区二区三区| 狂野欧美激情性xxxx| 亚洲成av人片在线播放无| 国产乱人伦免费视频| 久久人人精品亚洲av| 久久国产乱子伦精品免费另类| 一a级毛片在线观看| 亚洲精品美女久久久久99蜜臀| 夜夜爽天天搞| 亚洲第一欧美日韩一区二区三区| 国产成人啪精品午夜网站| 尤物成人国产欧美一区二区三区| xxx96com| 少妇的逼水好多| 免费看光身美女| 在线天堂最新版资源| 国产男靠女视频免费网站| 18禁黄网站禁片免费观看直播| 国产精品,欧美在线| 九九热线精品视视频播放| 毛片女人毛片| 天堂影院成人在线观看| xxx96com| 久久久久免费精品人妻一区二区| 小说图片视频综合网站| 午夜福利欧美成人| 国内毛片毛片毛片毛片毛片| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产高清视频在线观看网站| 久久久久九九精品影院| 成熟少妇高潮喷水视频| 亚洲一区二区三区不卡视频| 欧美+亚洲+日韩+国产| 久久久成人免费电影| 欧美日韩中文字幕国产精品一区二区三区| 90打野战视频偷拍视频| 男插女下体视频免费在线播放| 色av中文字幕| 成人国产综合亚洲| 国产乱人视频| av欧美777| 老汉色av国产亚洲站长工具| 一个人观看的视频www高清免费观看| 91麻豆av在线| 亚洲人成网站在线播放欧美日韩| 国产精品一及| 一边摸一边抽搐一进一小说| 国产久久久一区二区三区| 免费人成在线观看视频色| 女同久久另类99精品国产91| 高清日韩中文字幕在线| 久久久久国内视频| 国产精品美女特级片免费视频播放器| 天堂影院成人在线观看| 少妇高潮的动态图| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩卡通动漫| 女警被强在线播放| 淫妇啪啪啪对白视频| 不卡一级毛片| 在线免费观看的www视频| 国产高潮美女av| 美女免费视频网站| 国产一区二区三区在线臀色熟女| 美女 人体艺术 gogo| 午夜视频国产福利| 中文字幕av成人在线电影| 高清日韩中文字幕在线| 免费搜索国产男女视频| 无人区码免费观看不卡| 两个人看的免费小视频| 波野结衣二区三区在线 | 亚洲乱码一区二区免费版| 岛国视频午夜一区免费看| 久久久久久久午夜电影| 一本久久中文字幕| 国产综合懂色| 在线天堂最新版资源| 久久中文看片网| 老鸭窝网址在线观看| 99久久精品国产亚洲精品| 免费在线观看日本一区| 人妻夜夜爽99麻豆av| 久久精品影院6| 日韩有码中文字幕| 亚洲av中文字字幕乱码综合| 国产一级毛片七仙女欲春2| 亚洲,欧美精品.| 18禁在线播放成人免费| 一本一本综合久久| 极品教师在线视频| 国产亚洲精品av在线| 男女边摸边吃奶| 搡老乐熟女国产| 99热6这里只有精品| 国产午夜精品论理片| 欧美精品一区二区大全| 日日撸夜夜添| 国产黄片视频在线免费观看| 麻豆乱淫一区二区| 亚洲无线观看免费| 又大又黄又爽视频免费| 少妇猛男粗大的猛烈进出视频 | 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 久久久久久久亚洲中文字幕| 免费大片黄手机在线观看| 亚洲精品久久久久久婷婷小说| xxx大片免费视频| 97热精品久久久久久| 一级av片app| 国产又色又爽无遮挡免| 精品不卡国产一区二区三区| av国产免费在线观看| 91在线精品国自产拍蜜月| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 日韩大片免费观看网站| 久久97久久精品| 久久精品久久久久久久性| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 我要看日韩黄色一级片| 熟妇人妻不卡中文字幕| 国产精品久久久久久久电影| 色哟哟·www| 成人性生交大片免费视频hd| 国产一区有黄有色的免费视频 | 七月丁香在线播放| 亚洲最大成人手机在线| a级一级毛片免费在线观看| 久久这里只有精品中国| 日韩亚洲欧美综合| 天堂网av新在线| 精品国产露脸久久av麻豆 | 日韩av免费高清视频| 亚洲成人久久爱视频| av在线亚洲专区| 日韩制服骚丝袜av| 日本爱情动作片www.在线观看| 国产成人aa在线观看| 免费黄频网站在线观看国产| 九九在线视频观看精品| 777米奇影视久久| 国产乱来视频区| 白带黄色成豆腐渣| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久人人人人人人| 亚洲av福利一区| 一级毛片我不卡| 成人综合一区亚洲| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 久久精品国产亚洲av天美| 99久久九九国产精品国产免费| 亚州av有码| 麻豆av噜噜一区二区三区| 色5月婷婷丁香| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 午夜福利高清视频| 国产视频首页在线观看| 三级国产精品片| 亚洲经典国产精华液单| 97超视频在线观看视频| 水蜜桃什么品种好| 人妻一区二区av| 久久国产乱子免费精品| 一级二级三级毛片免费看| 国产老妇伦熟女老妇高清| 成人综合一区亚洲| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 国产亚洲av片在线观看秒播厂 | 国产黄频视频在线观看| 一级二级三级毛片免费看| 日本黄色片子视频| 国产伦在线观看视频一区| 欧美bdsm另类| 精品一区二区三区视频在线| 欧美人与善性xxx| 免费电影在线观看免费观看| 欧美丝袜亚洲另类| www.av在线官网国产| 黄片wwwwww| 最后的刺客免费高清国语| av在线老鸭窝| 深夜a级毛片| 午夜免费激情av| 尾随美女入室| 亚州av有码| 99久国产av精品| 日本免费在线观看一区| or卡值多少钱| 熟妇人妻不卡中文字幕| .国产精品久久| 成人特级av手机在线观看| 色尼玛亚洲综合影院| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 精品少妇黑人巨大在线播放| 久久人人爽人人爽人人片va| 男人狂女人下面高潮的视频| av天堂中文字幕网| 色吧在线观看| 在线 av 中文字幕| 人人妻人人看人人澡| 男女下面进入的视频免费午夜| 97精品久久久久久久久久精品| 欧美区成人在线视频| 偷拍熟女少妇极品色| 中文字幕免费在线视频6| 在线天堂最新版资源| 精品久久国产蜜桃| 日本黄色片子视频| 白带黄色成豆腐渣| 亚洲精品乱久久久久久| 国产美女午夜福利| 内射极品少妇av片p| 一级a做视频免费观看| 欧美3d第一页| 亚洲成色77777| 一级毛片 在线播放| 国产精品一区www在线观看| 色5月婷婷丁香| 亚洲怡红院男人天堂| 国产片特级美女逼逼视频| 亚洲精华国产精华液的使用体验| 日本色播在线视频| 国产在视频线精品| 看黄色毛片网站| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 亚洲精华国产精华液的使用体验| 黄片wwwwww| 日韩亚洲欧美综合| av在线亚洲专区| 久久久成人免费电影| 精品人妻熟女av久视频| 熟妇人妻久久中文字幕3abv| 亚洲国产精品专区欧美| 日韩 亚洲 欧美在线| 国产毛片a区久久久久| 777米奇影视久久| 日本黄色片子视频| 欧美区成人在线视频| 最近视频中文字幕2019在线8| 成年av动漫网址| 国产高潮美女av| 成人漫画全彩无遮挡| 99热这里只有是精品50| 亚洲欧洲国产日韩| 女人被狂操c到高潮| 久久99精品国语久久久| 高清欧美精品videossex| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区免费观看| 只有这里有精品99| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 国产在视频线精品| 成年版毛片免费区| 成人午夜高清在线视频| 中文资源天堂在线| 激情 狠狠 欧美| 亚洲精品一二三| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 日日啪夜夜爽| 我的女老师完整版在线观看| 国产久久久一区二区三区| 久久99精品国语久久久| 日韩一区二区三区影片| 人妻夜夜爽99麻豆av| 日韩亚洲欧美综合| 我的老师免费观看完整版| 最后的刺客免费高清国语| 国产老妇女一区| 一区二区三区乱码不卡18| 老司机影院毛片| 国产精品精品国产色婷婷| 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看 | 久久人人爽人人片av| 中文天堂在线官网| 97热精品久久久久久| 免费看光身美女| 精品久久国产蜜桃| 精品人妻一区二区三区麻豆| 中文欧美无线码| 国产精品久久久久久精品电影小说 | 国内揄拍国产精品人妻在线| 99热这里只有是精品在线观看| 成人毛片60女人毛片免费| 99久久精品国产国产毛片| 欧美日韩综合久久久久久| 男插女下体视频免费在线播放| 成人亚洲精品一区在线观看 | 精品99又大又爽又粗少妇毛片| 国产极品天堂在线| 最近的中文字幕免费完整| 纵有疾风起免费观看全集完整版 | 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 午夜久久久久精精品| 久久国产乱子免费精品| 99热全是精品| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲网站| 日韩人妻高清精品专区| 国产片特级美女逼逼视频| 身体一侧抽搐| 免费观看的影片在线观看| 精品酒店卫生间| 我要看日韩黄色一级片| 国产成人a区在线观看| 又大又黄又爽视频免费| 日韩一区二区三区影片| 日韩一本色道免费dvd| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 国产亚洲精品久久久com| 熟女电影av网| 午夜福利视频1000在线观看| 精品国产露脸久久av麻豆 | 别揉我奶头 嗯啊视频| av免费观看日本| 国产单亲对白刺激| 国产三级在线视频| 亚洲精品第二区| 麻豆久久精品国产亚洲av| 午夜老司机福利剧场| 精品熟女少妇av免费看| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 国产淫片久久久久久久久| 最近中文字幕2019免费版| 国产免费视频播放在线视频 | 嫩草影院精品99| 中文字幕av在线有码专区| 国产一区二区亚洲精品在线观看| 国产高清三级在线| 男女下面进入的视频免费午夜| 欧美日韩亚洲高清精品| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 亚洲熟女精品中文字幕| 色视频www国产| 国产亚洲5aaaaa淫片| 麻豆精品久久久久久蜜桃| 国产三级在线视频| 干丝袜人妻中文字幕| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免| 男人舔女人下体高潮全视频| 亚洲国产成人一精品久久久| 美女主播在线视频| 亚洲av不卡在线观看| 亚洲精品日韩av片在线观看| 韩国av在线不卡| 午夜日本视频在线| 99热全是精品| 亚洲欧美日韩无卡精品| 亚洲精品456在线播放app| 久久精品久久久久久噜噜老黄| 日日啪夜夜爽| 97超视频在线观看视频| 日本一本二区三区精品| 久久久国产一区二区| 老师上课跳d突然被开到最大视频| 国产精品一区二区在线观看99 | 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 国产精品久久久久久久电影| 国内精品宾馆在线| 久久久久久九九精品二区国产| 亚洲国产色片| 两个人的视频大全免费| 麻豆成人午夜福利视频| 午夜福利高清视频| 97精品久久久久久久久久精品| 亚洲精品乱码久久久久久按摩| 久久精品夜色国产| 亚洲真实伦在线观看| 青春草国产在线视频| 久久99蜜桃精品久久| 18禁动态无遮挡网站| 精华霜和精华液先用哪个| 国产精品蜜桃在线观看| 国产不卡一卡二| 亚洲国产精品国产精品| 国产精品久久久久久精品电影| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久大av| 日韩欧美国产在线观看| 97超视频在线观看视频| 啦啦啦韩国在线观看视频| 久久久久久久午夜电影| 国产成人一区二区在线|