巴恒星,胡鵬飛,李春義
綜 述
鹿科動物基因組學研究進展
巴恒星1,2,胡鵬飛1,2,李春義1,2
1. 長春科技學院,鹿茸科學與產(chǎn)品技術(shù)研究所,長春 130112 2. 吉林省鹿茸生物學重點實驗室,長春 130112
鹿科動物是世界上最豐富的大型哺乳動物之一,在極北地區(qū)、熱帶地區(qū)和高海拔地區(qū)都有分布。中國占世界鹿科動物40%以上,是鹿科動物進化的主戰(zhàn)場。鹿科動物除了具有反芻動物常見的獨特表型特征外,更是進化出周期性再生新器官——鹿茸角。鹿科動物是研究生態(tài)學、行為學和進化生物學非常有價值的動物模型,特別是在研究哺乳動物器官再生方面具有重要科學價值。鹿基因組是系統(tǒng)闡述鹿的進化和演變,解析鹿科動物獨特生物學性狀的依據(jù),對遺傳資源保護和利用具有重要意義。目前,隨著鹿科動物參考基因組的不斷完善,在鹿基礎(chǔ)科學研究上取得了諸多重要成果。本文詳細綜述了鹿科動物基因組學研究進展,主要包括鹿遺傳變異數(shù)據(jù)、適應(yīng)性進化分子基礎(chǔ)、獨特性狀鹿茸角的起源進化關(guān)鍵基因和功能基因組學,以期為鹿科動物的深入研究奠定理論基礎(chǔ)。
鹿科動物;參考基因組;遺傳變異;適應(yīng)性進化;鹿茸角;功能基因組學
鹿科(Cervidae)包括4個亞科,分別是鹿亞科(Cervinae)、獐亞科(Hydropotinae)、麂亞科(Mun-tiacinae)和空齒鹿亞科(Odocoileinae),共16屬約52種,在反芻亞目里,種類上僅次于???Bovidae),在極北地區(qū)、熱帶地區(qū)和高海拔地區(qū)都有分布。中國是鹿類動物最豐富的國家之一,占世界鹿科動物40%以上,是鹿科動物進化的主戰(zhàn)場[1]。鹿科動物除了具有反芻動物常見的獨特表型特征外,更是進化出周期性再生新器官——鹿茸角??茖W家們普遍認為,鹿科動物是非常有價值的生態(tài)學、行為學和進化生物學的研究模型[1],特別是哺乳動物器官再生的研究模型[2],具有重要科學價值。
近年來高通量測序技術(shù)日新月異,推動了動物基因組學的飛速發(fā)展,基因組學研究方法也在不斷地創(chuàng)新和改進,這些都為鹿科動物基因組學研究創(chuàng)造了前所未有的機遇,迎來鹿科學研究的新時代。目前,相關(guān)領(lǐng)域的研究人員已產(chǎn)生了大量鹿科動物的基因組學數(shù)據(jù),在此基礎(chǔ)上使解析鹿科動物的適應(yīng)性進化分子基礎(chǔ)、探究鹿茸角起源進化及鹿茸角再生發(fā)育相關(guān)通路和基因成為可能。不僅如此,基因組學研究還有利于加速家養(yǎng)鹿類動物品種培育和遺傳改良進程。本文對近年來鹿科動物基因組學研究領(lǐng)域所取得的重要進展進行了系統(tǒng)地分析和總結(jié),也對今后該領(lǐng)域研究方向進行了展望,以期為解析鹿科動物獨特的生物學性狀和遺傳資源保護利用提供參考依據(jù)。
鹿科動物基因組測序起步較晚,2011年首次由美國貝勒醫(yī)學院在NCBI GenBank上公開了白尾鹿()基因組,但未見文章發(fā)表。2014年也發(fā)布了西方狍()基因組Contig序列,仍未見文章報道。2017年,Li等[3]在和中國國家基因庫(China National GeneBank, CNGB)上發(fā)表了馴鹿()基因組。通過構(gòu)建9個不同長度插入片段測序文庫,基于Illumina HiSeq 4000平臺測序,組裝2.64 Gb的馴鹿基因組草圖,Contig和Scaffold N50大小分別為89.7 kb和0.94 Mb,注釋了21,555個蛋白編碼基因。隨著基因組測序成本快速降低,最近3年,鹿科動物基因組序列發(fā)表數(shù)量迅速增加,已達16個鹿種(表1),涵蓋了鹿科動物所有4個亞科,它們基因組組裝大小在2.5~2.8 Gb之間,但這些鹿基因組仍處于草圖水平,質(zhì)量還有待進一步提升。為了更好地利用基因組數(shù)據(jù)解析鹿科動物的特殊表型性狀,本文歸納了這16個鹿種的系統(tǒng)進化關(guān)系,并進一步總結(jié)了它們的染色體核型、形態(tài)學數(shù)據(jù)(圖1)及自然地理分布(圖2)。
目前,僅有5個鹿科動物的基因組組裝到染色體水平,分別是塔里木馬鹿()、赤鹿()、小麂()、赤麂()和梅花鹿(Nippon)。Ba等[4]利用由38,083個單核苷酸多態(tài)性位點(single nucleotide polymorphism, SNP)組成的高密度遺傳連鎖圖譜[5]將塔里木馬鹿基因組95.9%序列組裝到34對染色體。其中,3號、8號和31號染色體僅由1個Scaffold組成。這34對染色體組裝大小與遺傳圖譜評估大小相關(guān)系數(shù)高達0.987。由于構(gòu)建大型野生動物遺傳圖譜十分困難,利用Hi-C技術(shù)組裝基因組染色體也是目前最有力技術(shù)手段。Mudd等[6]利用Hi-C技術(shù)完成了小麂(2=?46)和赤麂(2=6♀/7♂)基因組的染色體組裝。類似地,梅花鹿基因組也是通過Hi-C技術(shù)掛載到33對染色體上,但未見文章報道。
馬鹿/赤鹿()是鹿科動物中最大的類群,由22個亞種組成,分布在歐洲南部和中部、北美洲、非洲北部和亞洲。在生態(tài)學、生物多樣性和種間雜交等研究領(lǐng)域中,該類群研究最為廣泛而備受關(guān)注。塔里木馬鹿是中亞僅有的亞種,被認為是最原始亞種[7],有特殊的進化地位,其染色體水平基因組圖譜將為馬鹿/赤鹿類群,乃至整個鹿類動物的科學研究提供最有價值的參考基因組數(shù)據(jù)資源。
表1 鹿科動物16個參考基因組基本信息
a:GenBank登錄號GCA_002102435.1;b:GenBank登錄號GCA_000751575.1;c:GenBank 登錄號GCA_007570765.1;d:CNGB登錄號GWHANOY00000000。
由于鹿科動物參考基因組缺乏,而且對野生動物進行大規(guī)?;蚪M測序顯然不太現(xiàn)實。目前,鹿科動物的遺傳變異數(shù)據(jù)主要是基因組SNP位點,其主要來源于簡化基因組測序[11,19~23]、牛和羊SNP芯片跨科物種分型[24,25]以及保守牛外顯子目標測序[26]和低覆蓋率重測序[27,28](表2),這嚴重制約了鹿科動物基因組變異數(shù)據(jù)的產(chǎn)出效率和質(zhì)量。比如,通常簡化基因組測序僅產(chǎn)生相當于1%~2%的基因組的SNP數(shù)據(jù)[22],另外簡化基因組測序短序列聚類時,多拷貝重復(fù)序列容易導致SNP位點的假陽性[29]。
在跨科物種SNP分型上,Haynes等[24]利用牛BovineSNP50芯片對北美白尾鹿和黑尾鹿()進行分型,分型成功率僅為38.7%。Kharzinova等[25]利用BovineSNP50和OvineSNP50芯片對馴鹿進行分型,分型成功率也僅為43.0%和47.0%。Shafer等[30]闡述在牛科和鹿科(分化時間大約2~3千萬年)之間跨芯片分型是不合適的,不僅分型成功率低,而且多態(tài)位點僅為1%。
Brauning等[28]對馬鹿/赤鹿類群8只個體基因組進行了低覆蓋率重測序,利用?;蚪M做參考比對并結(jié)合嚴格的SNP篩選策略,共獲得了1.8×105個SNP位點,產(chǎn)生了Illumina CervusSNP50芯片。Rowe等[31]利用CervusSNP50芯片對9個鹿種共396只個體進行SNP分型檢測,分型成功率為82.3%,遠遠高于牛羊芯片的分型成功率。Johnston等[5]利用CervusSNP50芯片構(gòu)建了馬鹿/赤鹿類群的遺傳連鎖圖譜,其標記密度和圖譜的完整性遠遠好于Slate等[32]在2002年發(fā)表的僅含有600個標記的鹿遺傳圖譜。
圖1 16個基因組測序鹿種系統(tǒng)進化關(guān)系及表型數(shù)據(jù)
系統(tǒng)進化拓撲關(guān)系參考文獻[14~16],表型數(shù)據(jù)參考圖書《中國鹿科動物》[1]和《The Biology of Deer》[17],核型數(shù)據(jù)參考王宗仁等[18],鹿科動物照片來源于Wikimedia共享(https://commons.wikimedia.org/)。體重和角重均為平均值。
我國鹿類動物遺傳資源十分豐富,同時也是重要的家養(yǎng)經(jīng)濟動物。Hu等[33]對我國5個主要鹿種(包含21個亞種/群體)進行了簡化基因組測序,平均測序深度16×,獲得197,543個SNP位點,并進行了遺傳多樣性和系統(tǒng)進化分析。Ba等[19]對我國東北7個地區(qū)飼養(yǎng)的42只梅花鹿純種個體進行雙酶切簡化基因組測序,平均測序深度23×,共篩選98,166個SNP位點,平均個體SNP密度為0.74 SNPs/kb,略高于經(jīng)歷過嚴重群體瓶頸的麋鹿(0.51 SNPs/kb)[34],但低于大熊貓(1.32 SNPs/kb)[35]和荷斯坦奶牛(1.35 SNPs/kb)[36]約2倍,而且出現(xiàn)雜合子缺陷。這些結(jié)果表明人們長期以茸重性狀為單一育種目標,強烈的人工選擇導致梅花鹿飼養(yǎng)群體經(jīng)歷了嚴重的凈化和遺傳漂變。Hu等[27]通過基因組重測序?qū)γ坊孤谷赘弋a(chǎn)和低產(chǎn)性狀進行關(guān)聯(lián)分析,共獲得94個與鹿茸重量相關(guān)的候選SNP位點。Hu等[37]進一步利用這94個SNP位點對341只個體進行分型,并結(jié)合高、低產(chǎn)鹿茸轉(zhuǎn)錄組學基因表達數(shù)據(jù)[38],篩選出16個SNP位點與茸重性狀顯著相關(guān)。
圖2 16個基因組測序鹿種的自然地理分布示意圖
數(shù)據(jù)來源于IUCM Red List網(wǎng)站(https://www.iucnredlist.org/)。
由于不同鹿種之間能夠雜交且后代可育,人們?yōu)榱朔庇弋a(chǎn)性狀的茸鹿,經(jīng)常在飼養(yǎng)梅花鹿和馬鹿之間進行雜交。Ba等[20]對純種梅花鹿和馬鹿及雜交F1共30只個體進行雙酶切簡化基因組測序,平均測序深度15×,獲得2015個梅花鹿和馬鹿種特異SNP標簽,這些標簽為純種和雜交種鑒定奠定了基礎(chǔ)。在鹿種鑒定上,Xie等[39]也通過挖掘鹿科動物基因組中保守且與牛羊比較存在突變位點的編碼基因,最終在基因序列上開發(fā)出1對鹿科動物PCR通用引物,與鹿種特異引物相比,通用引物節(jié)省了更多的人力和物力。
在鹿科動物基因組測序之前,科學家通常利用幾個牛微衛(wèi)星多態(tài)(short tandem repeats, STRs)標記對鹿科動物進行分型,由于標記數(shù)量少,多態(tài)信息嚴重不足。隨著高通量測序技術(shù)發(fā)展,鹿科動物STRs也被快速批量開發(fā)。Jia等[40]在梅花鹿多種組織轉(zhuǎn)錄組數(shù)據(jù)[41]中開發(fā)了29個STRs,對140只個體進行茸重性狀關(guān)聯(lián)分析,找到8個顯著關(guān)聯(lián)的標記。Wang等[42]在梅花鹿基因組數(shù)據(jù)中開發(fā)了29個STRs,其中10個高度多態(tài)的STRs被用作梅花鹿親子鑒定標記,排除準確率達99.99%。總之,鹿科動物遺傳變異數(shù)據(jù)的獲得不僅對鹿科學研究極具價值,也能為開發(fā)和利用經(jīng)濟價值極高的家養(yǎng)鹿類動物提供強有力的遺傳分析和改良工具。
表2 鹿科動物基因組變異資源
a:具有多態(tài)性;b:物種特異的SNP;c:最小等位頻率至少大于0.05。
染色體重排在驅(qū)動進化中的作用一直是進化生物學的長期問題。Farre等[45]重構(gòu)了反芻動物祖先染色體核型,發(fā)現(xiàn)反芻動物祖先與鯨偶蹄目(Cetar-tiodactyla)分離后染色體重排主要發(fā)生在染色體內(nèi)部,而在反芻亞目(Ruminantia)的有角下目(Pecora)譜系中,染色體重排也發(fā)生在染色體之間。反芻動物染色體斷點區(qū)域附近的基因在物種之間,尤其是在牛中表現(xiàn)出更多的差異表達,并且在具有增強子的基因中差異更大,與這些斷點區(qū)域的系統(tǒng)發(fā)生起源相一致。這些結(jié)果表明與染色體重排共定位的譜系特異性調(diào)控元件可能提供了有助于塑造反芻動物進化有價值的功能修飾。
在鹿科動物中,麂屬動物的核型在較短的分化時間內(nèi)(僅數(shù)百萬年)發(fā)生了巨大變化。除小麂(2= 46)外,其他麂屬動物的染色體數(shù)目通常只有6~9條,其中赤麂(2=6♀/7♂)是哺乳動物中染色體數(shù)目最少的物種。因此,麂屬動物成為研究哺乳動物染色體核型生物學研究的理想材料。通過細菌人工染色體文庫的熒光原位雜交建立了麂屬動物之間的高分辨比較染色體圖譜,確定了麂屬動物染色體的串聯(lián)融合進化方式[46~51]。最近,Mudd 等[6]通過基因組測序和染色體組裝,進一步發(fā)現(xiàn)小麂和赤麂這兩個近緣麂顯著的核型差異主要是在基因組上發(fā)生了大范圍的染色體串聯(lián)融合事件,而核型急劇變化對局部染色體改變影響甚小,甚至在融合位點附近參與染色體維護的基因很少顯示出快速進化的證據(jù)。對于不同鹿種的染色體進化,Huang等[52]證實梅花鹿(2= 33)和馬鹿(2=34)的染色體核型進化過程中存在唯一的羅伯遜易位。
另外,性染色體起源及演化機制一直是進化生物學家最感興趣的科學問題之一。Huang等[53]研究發(fā)現(xiàn)雄性黑麂基因組中1號常染色體短臂(1p)和4號常染色體發(fā)生羅伯遜易位,之后又經(jīng)歷了復(fù)雜的內(nèi)部重排形成年輕新性染色體1p+4。Zhou等[54]研究發(fā)現(xiàn)黑麂與哺乳動物Y染色體的演化歷程相似,可以成為哺乳動物性染色體演化研究的珍貴模型。關(guān)于麂屬動物的染色體核型進化,Huang等[55]在2012年進行了詳細綜述,限于篇幅限制,本文不再綜述。
鹿科動物在北極和熱帶均有分布,一些鹿種在長期進化中已經(jīng)適應(yīng)了極端環(huán)境。最近,Lin等[56]揭示了馴鹿適應(yīng)北極環(huán)境分子機制。通過比較基因組發(fā)現(xiàn)馴鹿維生素D代謝通路中的兩個關(guān)鍵基因(和)受到了強烈的自然選擇,基因編碼酶的活性比山羊和狍子()高,這可能使馴鹿對鈣的吸收能力大大增強。脂蛋白轉(zhuǎn)運()和脂質(zhì)合成()兩個重要基因在馴鹿中也發(fā)生了選擇性突變,這兩個基因也參與了企鵝()和北極熊()脂肪代謝進化,表明極地動物能量代謝經(jīng)歷了趨同進化。馴鹿節(jié)律通路中的核心調(diào)控基因()發(fā)生了馴鹿特異性突變,導致基因與另一個節(jié)律核心基因()無法結(jié)合,使得馴鹿喪失了晝夜節(jié)律分子鐘而適應(yīng)北極極晝和極夜的環(huán)境。這些結(jié)果使人們對極地動物的適應(yīng)性在分子水平上有了更深入和全面的了解,也為解決人類一些健康問題提供了重要線索,如維生素D對鈣沉積的影響、生物鐘調(diào)控與人類睡眠障礙的關(guān)系。
另外,Weldenegodguad等[57]發(fā)現(xiàn)西伯利亞人極地寒冷適應(yīng)性基因在馴鹿基因組上發(fā)生了基因家族擴張和正選擇,特別是離子通道受體和離子交換調(diào)控基因,如和等,這可能是對溫度敏感適應(yīng)性的主要原因。在類似的研究中,Yang等[58]對不同棲息環(huán)境下的脊椎動物重要的冷感受器蛋白TRPM8進行了氨基酸成像與蛋白質(zhì)三維結(jié)構(gòu)計算建模的研究,發(fā)現(xiàn)TRPM8通道的功能結(jié)構(gòu)在南極洲的帝企鵝()與非洲大陸的非洲象()之間存在重大差異,帝企鵝的冷敏感性顯著低于非洲象。在鹿科動物中,塔里木馬鹿生存于極端干燥、炎熱和強烈太陽輻射的沙漠環(huán)境。Ababaikeri等[59]通過對塔里木馬鹿比較基因組學研究發(fā)現(xiàn)該物種的沙漠環(huán)境適應(yīng)性候選基因,主要參與了氧化應(yīng)激、水分再吸收、能量代謝、熱應(yīng)激、呼吸系統(tǒng)適應(yīng)、DNA損傷和修復(fù)等生物過程。同時,這些候選基因與其他沙漠動物適應(yīng)性基因均有重疊,表明沙漠物種對沙漠環(huán)境適應(yīng)經(jīng)歷了趨同進化。
麋鹿被認為是急劇恢復(fù)和拯救高度瀕危動物的經(jīng)典例子。我國現(xiàn)存麋鹿群體是來自于英國動物園的18只個體繁育后代,這預(yù)示著嚴重的瓶頸效應(yīng)和近交衰退。Zhu等[34]利用比較基因組學對麋鹿種群的適應(yīng)性進行了評估,盡管麋鹿群體存在極端的種群瓶頸,但其仍具有較高的遺傳多樣性,延長的近親繁殖歷史可能有助于清除有害的隱性等位基因,同時,與生殖,胚胎發(fā)育和免疫反應(yīng)相關(guān)的17個基因忍受著高選擇壓力。另外,麋鹿對高鹽食物的潛在適應(yīng)可能是由于基因受到強烈正選擇,參與控制體內(nèi)鈉重吸收。另外的29個正選擇基因涉及血壓調(diào)節(jié)、心血管發(fā)育、膽固醇調(diào)節(jié)、血糖控制和甲狀腺激素合成。這些正選擇的基因可能也反應(yīng)了麋鹿對高鹽食物的適應(yīng)與響應(yīng)。
鹿科動物進化不僅僅體現(xiàn)在極端環(huán)境適應(yīng)性方面,Ba等[60]發(fā)現(xiàn)鹿嗅覺系統(tǒng)適應(yīng)性進化的分子證據(jù)。有51個快速進化基因與感受器官細胞纖毛(cilia)組裝有關(guān),同時,實現(xiàn)細胞纖毛波形功能的軸突纖毛絲動力蛋白(dynein)家族重鏈基因在基因組上發(fā)生了擴張,也發(fā)現(xiàn)了14個嗅覺受體基因中89個位點在鹿上發(fā)生了正選擇。由于鹿存在多處皮膚腺體,散發(fā)的化學小分子是彼此之間通訊的重要信息素,推測嗅覺系統(tǒng)在接受信息素的長期進化過程中一定也受到了適應(yīng)性進化的選擇壓力。
鹿茸角是哺乳動物中唯一的胚胎組織在成體后發(fā)育的器官[61],是鹿科動物防御天敵和爭奪配偶的武器。更重要的是,鹿茸角能周期性再生而保持最佳戰(zhàn)斗狀態(tài),被認為是鹿科動物長期進化過程中一個器官創(chuàng)新。最近,Wang等[14]對反芻動物角起源進化的比較基因組研究發(fā)現(xiàn),鹿茸角新器官的起源依賴招募骨組織、皮膚組織、腦組織和睪丸組織的基因。鹿科動物正選擇基因、加速進化元件以及生茸組織高表達基因都參與了神經(jīng)脊細胞遷移通路,揭示神經(jīng)脊干細胞在鹿角起源發(fā)育中扮演重要角色[62]。Price等[63]也報道了生茸組織特異性高表達神經(jīng)脊細胞的關(guān)鍵標志物,如等。
鹿科動物中僅有獐在自然條件下是不長茸角的,被認為是在進化過程中發(fā)生了茸角丟失[64],因此,利用比較基因組學研究鹿角關(guān)鍵再生基因,獐是唯一的選擇。Wang等[14]發(fā)現(xiàn)綿羊角的關(guān)鍵調(diào)控基因在麝科和獐兩個無角反芻動物支系中發(fā)生趨同的假基因化,認為也是決定鹿科動物茸角再生的關(guān)鍵基因。Lin等[56]發(fā)現(xiàn)馴鹿基因組上促進細胞增殖的細胞周期因子基因上游增加了一個雄性激素受體結(jié)合區(qū)域,這可能使馴鹿在更低的雄激素水平下能促成雌性馴鹿長角。結(jié)果表明,鹿科動物進化過程中,細胞周期相關(guān)基因與鹿茸角的發(fā)生與再生關(guān)聯(lián)緊密。
總之,比較基因組學是從進化的視角去解析復(fù)雜的生物學問題和探尋調(diào)控基因。隨著多個鹿基因組序列完成,基因組質(zhì)量也越來越高,將進一步加快鹿科動物比較基因組學研究進程,探索適應(yīng)性進化和新器官起源的奧秘。
目前,鹿類動物功能基因組學研究主要集中在鹿茸干細胞、鹿茸再生以及鹿茸生長中心的快速生長發(fā)育等研究,本文主要針對這幾方面進行了總結(jié)。
鹿茸發(fā)生和再生過程是由干細胞驅(qū)動的,被稱為鹿茸干細胞(antler stem cell, ASC)[2,65,66]。國內(nèi)外多個實驗室已對ASC進行了分離鑒定,其不僅表達多種成體干細胞標記因子,如CD73、CD90、CD29、CD44、CD146、CD105、CD166、STRO-1、Vimentin和Nestin,還表達部分胚胎干細胞標記因子,如C-Myc和OCT4[67~70]。最近,Wang等[69]通過膜蛋白組學發(fā)現(xiàn)RXFP2在ASC中高表達,而在對照的面部骨膜細胞中幾乎不表達,該蛋白與反芻動物長角有關(guān),可能作為ASC鑒定的一個新標記。在microRNA水平上,Ba等[71]通過測序顯示ASC表達小鼠胚胎期特異表達的。Ba等[72]也對培養(yǎng)的ASC進行單細胞RNA-seq測序,表明ASC在培養(yǎng)過程中仍然保持著高度的干性和同質(zhì)性。Wang等[70]構(gòu)建胚胎嵌合實驗?zāi)P妥C實了ASC不同于胚胎干細胞嵌合到整個宿主的組織中,也不同于間充質(zhì)干細胞完全消失,而是有限地嵌合到一些組織中,特別是嵌合到了生殖系統(tǒng)中。這些結(jié)果證實ASC不僅是成體干細胞,還具有胚胎干細胞部分屬性。
干細胞的自我更新、分化與成熟均與其所處的微環(huán)境有關(guān)。研究發(fā)現(xiàn)鹿皮可能為ASC提供了類似的微環(huán)境[73]。在鹿茸發(fā)生時,雄性激素刺激ASC緩慢增殖和分化,而當分化的組織與頭部皮膚變得接觸并緊密相貼時,皮膚給ASC提供了特殊的微環(huán)境,這個微環(huán)境觸發(fā)了ASC快速增殖(分裂速度比接觸前至少快10倍)和定向分化,最終導致鹿茸的發(fā)生。類似地,當骨化的鹿角脫落后,傷口開始愈合,ASC再次與皮膚緊密接觸并被致敏,ASC再由致敏狀態(tài)轉(zhuǎn)變成激活狀態(tài),啟動鹿茸再生。Dong等[74~76]通過蛋白質(zhì)組學研究表明鹿茸再生的起始階段是一系列蛋白調(diào)控的,可能與上皮-間質(zhì)轉(zhuǎn)化過程有關(guān),包括無疤痕愈合的第一階段,源于ASC分化細胞的移動性也受到高度調(diào)節(jié),休眠期的ASC和面部骨膜細胞可能使用相似機制來維持干細胞的休眠狀態(tài)。Sun等[77]通過建立ASC與毛乳頭細胞共培養(yǎng)體系,鑒定出128個小分子,60%以上與外泌體相關(guān),信號通路富集分析表明這些分子參與PI3K/AKT信號,可能影響ASC成骨細胞分化和血管生成。Li等[78]利用雙向電泳方法對ASC與面部骨膜細胞進行蛋白質(zhì)組學比較研究,也發(fā)現(xiàn)了PI3K/AKT信號在ASC細胞差異表達蛋白中富集。Liu等[79]利用小分子抑制劑影響PI3K/AKT信號的細胞生物學實驗進一步證實PI3K/AKT信號在ASC生物學功能中扮演重要角色。
鈣網(wǎng)蛋白CALR是一種多功能蛋白,在內(nèi)質(zhì)網(wǎng)管腔內(nèi)主要起鈣離子結(jié)合蛋白的作用,與多種信號系統(tǒng)有關(guān),例如蛋白質(zhì)折疊和鈣的調(diào)節(jié)體內(nèi)平衡。最新證據(jù)表明,CALR可在細胞核中與雄激素受體結(jié)合,抑制雄激素受體下游轉(zhuǎn)錄活動[80]。Dong等[76]通過蛋白質(zhì)組學研究發(fā)現(xiàn)CALR在開始分化的ASC中高表達,并在蛋白互作網(wǎng)絡(luò)中扮演核心(hub)基因的角色。Akhtar等[81]通過對鹿施以外源雄性激素,也發(fā)現(xiàn)雄性激素在低水平時ASC開始分化,高表達CALR,進一步證實了該因子可能是雄激素依賴性鹿茸角再生的主要調(diào)節(jié)因子。
2004年和2012年,研究人員分別利用蛋白質(zhì)組學和轉(zhuǎn)錄組學研究鹿茸生長中心的基因表達。Park等[82]鑒定到了130個蛋白,其中MAPK1COL1A1SMUBP2和ZFP28等僅在鹿茸生長中心高表達,推測這些蛋白對鹿茸的快速生長極其重要。Yao等[83,84]建立了鹿茸生長中心快速生長和骨化的轉(zhuǎn)錄組表達譜,涉及轉(zhuǎn)錄因子、信號分子和細胞外基質(zhì)等。鹿茸快速生長發(fā)育是基于鹿茸頂端生長中心的ASC增值和分化的。鹿茸發(fā)育60天進入快速生長期,90天時開始快速骨化。為了研究不同時間點鹿茸生長發(fā)育相關(guān)基因表達動態(tài),很多學者都對不同發(fā)育時間的鹿茸生長中心進行了轉(zhuǎn)錄組和蛋白組分析[83,85~87]。然而,由于鹿茸生長中心組織層結(jié)構(gòu)發(fā)育關(guān)系復(fù)雜,這些研究的樣品采集標準不盡相同,難以在不同的研究之間進行有效地比較。
Li等[88]根據(jù)發(fā)育生物學理論對鹿茸生長中心進行了組織層空間劃分,即從遠端到近端劃分5個連續(xù)發(fā)育狀態(tài)的組織層,包括間充質(zhì)層、前軟骨層、過渡層、軟骨層和礦化層?;谏L中心組織層發(fā)育關(guān)系,Ba等[89]對這5個組織層進行了轉(zhuǎn)錄組測序,發(fā)現(xiàn)不同組織層之間有明顯的表達譜特征,而且共表達網(wǎng)絡(luò)分析鑒定了9個基因表達模塊,其中370個核心(hub)基因參與調(diào)控了軟骨、骨和血管生成,為鹿茸生長中心生長發(fā)育研究奠定了分子基礎(chǔ)。Ker等[90]建立了鹿茸頂端ASC和人間充質(zhì)細胞的比較模型,通過轉(zhuǎn)錄組測序及體外實驗驗證闡明對鹿茸細胞快速增殖起主要作用,而是鹿茸礦化的關(guān)鍵基因。Chen等[91]分析lncRNA在鹿茸生長中心間充質(zhì)組織和軟骨組織中的表達動態(tài)。與軟骨組織相比,間充質(zhì)組織中有1212個lncRNA和518個mRNA的轉(zhuǎn)錄水平發(fā)生了顯著改變,表明lncRNA通過調(diào)節(jié)細胞增殖、遷移和成骨相關(guān)基因,促進了鹿茸間充質(zhì)組織向軟骨組織的分化。
Hu等[38]對具有快速和慢速兩種表型的鹿茸生長中心進行microRNA表達譜比較,發(fā)現(xiàn)與鹿茸快速生長的18個microRNA分子,構(gòu)建microRNA- mRNA調(diào)控網(wǎng)絡(luò),確定14個基因與鹿茸快速生長相關(guān)。Yao等[92]也對鹿茸主干和眉支兩個生長中心進行轉(zhuǎn)錄組測序,比較發(fā)現(xiàn)主干生長中心的軟骨發(fā)育基因顯著上調(diào),如和等,而骨化基因顯著下調(diào),如和等。
“人類基因組計劃”的完成標志著人類對于生命現(xiàn)象和過程有了本質(zhì)的認識。鹿科動物在長期自然進化過程中,產(chǎn)生了諸多優(yōu)異性狀,如鹿茸角的再生和快速生長[65,93~95]、低癌癥發(fā)生率[96,97]、無傷疤傷口愈合能力[98,99]、骨質(zhì)疏松快速逆轉(zhuǎn)[100~102]和大型哺乳動物滯育模型(狍子)[103~107]等。這些都觸及了重大基礎(chǔ)生物學和醫(yī)學問題,其背后所蘊藏的遺傳機理非常值得人們?nèi)フJ知和掌握。隨著測序技術(shù)的發(fā)展,以單分子熒光和納米孔為代表的三代測序技術(shù)將進一步提升鹿科動物基因組質(zhì)量,完整的基因組學數(shù)據(jù)將為這些優(yōu)異獨特的生物學性狀相關(guān)基因發(fā)現(xiàn)奠定了基礎(chǔ)。
最近,家養(yǎng)梅花鹿和馬鹿也已被納入我國畜禽遺傳資源目錄。鹿遺傳變異數(shù)據(jù)大規(guī)模產(chǎn)出和利用能有效加快家養(yǎng)鹿類動物的遺傳改良和品種保護,比如,利用基因組學數(shù)據(jù)全面評估我國茸鹿品種遺傳結(jié)構(gòu)多樣性,利用連鎖分析和關(guān)聯(lián)分析等基因組學方法,高效挖掘茸鹿品種中有利等位基因,提出其利用途徑和具體方案,并在品種資源創(chuàng)新過程中充分利用基因組學研究成果提高創(chuàng)新效率。
重要的是,針對鹿茸角這一進化過程中獨特進化的再生器官,尚有不少重要問題有待解決,如多種細胞類型參與和調(diào)控下的鹿茸再生和發(fā)育,其它再生模式生物中扮演“總開關(guān)”調(diào)控角色的免疫細胞是否也扮演了類似的角色。常規(guī)組學技術(shù)無法詳細系統(tǒng)地研究鹿茸角再生和發(fā)育過程中細胞類型、發(fā)育狀態(tài)和分化路徑。然而,近年來快速發(fā)展的單細胞測序技術(shù)給發(fā)育生物學帶來了革命性的變化,能夠?qū)蝹€細胞內(nèi)基因表達和調(diào)控進行無差別的分析,通過更多維、更精準的研究視角,去系統(tǒng)地、全面地揭示和解析細胞的功能。目前,本研究團隊正在利用單細胞測序技術(shù)繪制鹿茸角再生和發(fā)育過程中單細胞圖譜,解析不同細胞類型之間互作和通訊以及細胞譜系演化路徑等,在單細胞水平上詮釋鹿茸干細胞如何再生和發(fā)育成完整器官的關(guān)鍵科學問題。未來,可以通過建立以鹿茸為再生醫(yī)學研究模型開展人類再生醫(yī)學研究。在實現(xiàn)這些研究目標過程中,鹿基因組學研究將起到不可替代的作用,由此可見,鹿科動物基因組學研究才剛剛開始。
[1] 盛和林. 中國鹿科動物. 生物學通報, 1992, (05): 4–7.
[2] Li CY, Yang FH, Sheppard A. Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers., 2009, 4(3): 237–251.
[3] Li ZP, Lin ZS, Ba HX, Chen L, Yang YF, Wang K, Qiu Q, Wang W, Li GY. Draft genome of the reindeer ()., 2017, 6(12): 1–5.
[4] Ba HX, Cai ZX, Gao HY, Qin T, Liu WY, Xie LW, Zhang YL, Jing BY, Wang DT, Li CY. Chromosome- level genome assembly of tarim red deer,., 2020, 7(1): 187.
[5] Johnston SE, Huisman J, Ellis PA, Pemberton JM. A high-density linkage map reveals sexual dimorphism in recombination landscapes in red deer ()., 2017, 7(8): 2859–2870.
[6] Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution., 2020, 3(1): 480.
[7] Ludt CJ, Schroeder W, Rottmann O, Kuehn R. Mitochondrial DNA phylogeography of red deer ()., 2004, 31(3): 1064– 1083.
[8] Bana Ná, Nyiri A, Nagy J, Frank K, Nagy T, Stéger V, Schiller M, Lakatos P, Sugár L, Horn P, Barta E, Orosz L. The red deergenome cerela1.0: Sequencing, annotating, genes, and chromosomes., 2018, 293(3): 665–684.
[9] Zhang CZ, Chen L, Zhou Y, Wang K, Chemnick LG, Ryder OA, Wang W, Zhang GJ, Qiu Q. Draft genome of the milu ()., 2018, 7(2).
[10] Wang W, Yan HJ, Chen SY, Li ZZ, Yi J, Niu LL, Deng JP, Chen WG, Pu Y, Jia XB, Qu Y, Chen A, Zhong Y, Yu XM, Pang S, Huang WL, Han Y, Liu GJ, Yu JQ. The sequence and de novo assembly of hog deer genome., 2019, 6: 180305.
[11] Russell T, Cullingham C, Kommadath A, Stothard P, Herbst A, Coltman D. Development of a novel mule deer genomic assembly and species-diagnostic snp panel for assessing introgression in mule deer, white-tailed deer, and their interspecific hybrids., 2019, 9(3): 911–919.
[12] Chen L, Qiu Q, Jiang Y, Wang K, Lin ZS, Li ZP, Bibi F, Yang YZ, Wang JH, Nie WH, Su WT, Liu GC, Li QY, Fu WW, Pan XY, Liu C, Yang J, Zhang CZ, Yin Y, Wang Y, Zhao Y, Zhang C, Wang ZK, Qin YL, Liu W, Wang B, Ren YD, Zhang R, Zeng Y, da Fonseca RR, Wei B, Li R, Wan WT, Zhao RP, Zhu WB, Wang YT, Duan SC, Gao Y, Zhang YE, Chen CY, Hvilsom C, Epps CW, Chemnick LG, Dong Y, Mirarab S, Siegismund HR, Ryder OA, Gilbert MTP, Lewin HA, Zhang GJ, Heller R, Wang W. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits., 2019, 364(6446): eaav6202.
[13] de Jong MJ, Li ZP, Qin YL, Quéméré E, Baker K, Wang W, Hoelzel AR. Demography and adaptation promoting evolutionary transitions in a mammalian genus that diversified during the pleistocene., 2020, 29(15): 2777–2792.
[14] Wang Y, Zhang CZ, Wang NN, Li ZP, Heller R, Liu R, Zhao Y, Han JG, Pan XY, Zheng ZQ, Dai XQ, Chen C, Dou M, Peng SJ, Chen XQ, Liu J, Li M, Wang K, Liu C, Lin ZS, Chen L, Hao F, Zhu WB, Song CC, Zhao C, Zheng CL, Wang JM, Hu WS, Li CY, Yang H, Jiang L, Li GY, Liu MJ, Sonstegard TS, Zhang GJ, Jiang Y, Wang W, Qiu Q. Genetic basis of ruminant headgear and rapid antler regeneration., 2019, 364(6446): eaav6335.
[15] Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A. Pattern and timing of diversification of(mammalia, laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes., 2012, 335(1): 32–50.
[16] Pitra C, Fickel J, Meijaard E, Groves PC. Evolution and phylogeny of old world deer., 2004, 33(3): 880–895.
[17] Leberg P, Smith MH, Brisbin IL. The biology of deer. Springer New York, 1992.
[18] 王宗仁, 杜若甫. 鹿科動物的染色體組型及其進化. 動物學報, 1983, (03): 214–222.
[19] Ba HX, Jia BY, Wang GW, Yang YF, Kedem G, Li CY. Genome-wide snp discovery and analysis of genetic diversity in farmed sika deer () in northeast china using double-digest restriction site-associated DNA sequencing., 2017, 7(9): 3169–3176.
[20] Ba HX, Li ZP, Yang YF, Li CY. Development of diagnostic snp markers to monitor hybridization between sika deer () and wapiti ()., 2018, 8(7): 2173–2179.
[21] Bl?hed IM, K?nigsson H, Ericsson G, Spong G. Discovery of snps for individual identification by reduced representation sequencing of moose ()., 2018, 13(5): e0197364.
[22] Seabury CM, Bhattarai EK, Taylor JF, Viswanathan GG, Cooper SM, Davis DS, Dowd SE, Lockwood ML, Seabury PM. Genome-wide polymorphism and com-parative analyses in the white-tailed deer (): A model for conservation genomics., 2011, 6(1): e15811.
[23] Wang W, Yan HJ, Yu JQ, Yi J, Qu Y, Fu MZ, Chen A, Tang H, Niu LL. Discovery of genome-widesnps by rad-seqand the genetic diversity of captive hog deer ()., 2017, 12(3): e0174299.
[24] Haynes GD, Latch EK. Identification of novel single nucleotide polymorphisms (snps) in deer () using the bovinesnp50 beadchip., 2012, 7(5): e36536.
[25] Kharzinova VR, Sermyagin AA, Gladyr EA, Okhlopkov IM, Brem G, Zinovieva NA. A study of applicability of snp chips developed for bovine and ovine species to whole-genome analysis of reindeer rangifer tarandus., 2015, 106(6): 758–761.
[26] Powell JH, Amish SJ, Haynes GD, Luikart G, Latch EK. Candidate adaptive genes associated with lineage diver-gence: Identifying snps via next-generation targeted resequencing in mule deer ()., 2016, 16(5): 1165–1172.
[27] Hu PF, Xu JP, Ai C, Shao XJ, Wang HL, Dong YM, Cui XZ, Yang FH, Xing XM. Screening weight related genes of velvet antlers by whole genome re-sequencing., 2017, 39(11): 1090–1101.胡鵬飛, 徐佳萍, 艾成, 邵秀娟, 王洪亮, 董依萌, 崔學哲, 楊福合, 邢秀梅. 利用全基因組重測序分析鹿茸重量相關(guān)基因. 遺傳, 2017, 39(11): 1090–1101.
[28] Brauning R, Fisher PJ, McCulloch AF, Smithies RJ, Ward JF, Bixley MJ, Lawley CT, Rowe SJ, McEwan JC. Utilization of high throughput genome sequencing technology for large scale single nucleotide polymer-phism discovery in red deer and canadian elk., 2015: 027318.
[29] Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of rad sequencing data: Implications for genotyping., 2013, 22(11): 3151–3164.
[30] Shafer ABA, Miller JM, Kardos M. Cross-species application of snp chips is not suitable for identifying runs of homozygosity., 2016, 107(2): 193–195.
[31] Rowe SJ, Clarke SM, van Stijn TC, Hyndaman DL, ward JF, Km M, Dodds KG, Mcewan JC, Newman S-AN, GW A. Brief communication: Developing genomic tools in the new zealand deer industry., 2015(75): 91–93.
[32] Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, Mathias HC, Bixley MJ, Stevens DR, Molenaar AJ, Beever JE, Galloway SM, Tate ML. A deer (subfamily) genetic linkage map and the evolution of ruminant genomes., 2002, 160(4): 1587–1597.
[33] Hu PF, Shao Y,C Xu JP, Wang TJ, Li YQ, Liu HM, Rong M, Su WL, Chen BX, Cui SH, Cui XZ, Yang FH, Tamate H, Xing XM. Genome-wide study on genetic diversity and phylogeny of five species in the genus cervus., 2019, 20(1): 384.
[34] Zhu LF, Deng C, Zhao X, Ding JJ, Huang HS, Zhu SL, Wang ZW, Qin SS, Ding YH, Lu GQ, Yang ZS. Endangered père david’s deer genome provides insights into population recovering., 2018, 11(10): 2040–2053.
[35] Zhao SC, Zheng PP, Dong SS, Zhan XJ, Wu Q, Guo XS, Hu YB, He WM, Zhang SN, Fan W, Zhu LF, Li D, Zhang XM, Chen Q, Zhang HM, Zhang ZH, Jin XL, Zhang J, Yang HM, Wang J, Wang J, Wei FW. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation., 2013, 45(1): 67–71.
[36] Szyda J, Fraszczak M, Mielczarek M, Giannico R, Minozzi G, Nicolazzi EL, Kamiński S, Wojdak- Maksymiec K. The assessment of inter-individual variation of whole-genome DNA sequence in 32 cows., 2015, 26(11–12): 658–665.
[37] Hu PF, Deng YY, Ba HX, Li CY. Association analysis of thirty-one single nucleotide polymorphisms with antler weight in sika deer.2020, 51(6): 990–991.
[38] Hu PF, Wang TJ, Liu HM, Xu JP, Wang L, Zhao P, Xing XM. Full-length transcriptome and microrna sequencing reveal the specific gene-regulation network of velvet antler in sika deer with extremely different velvet antler weight., 2019, 294(2): 431–443.
[39] Xie LW, Deng YY, Shao XQ, Hu PF, Zhao DW, Li CY, Ba HX. Design of a universal primer pair for the identification of deer species., 2020, 13(1): 9–12.
[40] Jia BY, Wang GW, Zheng JJ, Yang WY, Chang SZ, Zhang JL, Liu Y, Li QN, Ge CX, Chen G, Liu DD, Yang FH. Development of novel est microsatellite markers for genetic diversity analysis and correlation analysis of velvet antler growth characteristics in sika deer., 2020, 157(1): 24.
[41] Jia BY, Ba HX, Wang GW, Yang Y, Cui XZ, Peng YH, Zheng JJ, Xing XM, Yang FH. Transcriptome analysis of sika deer in china., 2016, 291(5): 1941–1953.
[42] Yang WY, Zheng JJ, Jia BY, Wei HJ, Wang GW, Yang FH. Isolation of novel microsatellite markers and their application for genetic diversity and parentage analyses in sika deer., 2018, 643: 68–73.
[43] Tanaka K, Hoshi A, Nojima R, Suzuki K, Takiguchi H, Takatsuki S, Takizawa T, Hosoi E, Tamate HB, Hayashida M, Anezaki T, Fukue Y, Minami M. Genetic variation in y-chromosome genes of sika deer () in japan., 2020, 37(5): 411–416.
[44] Frank K, Bana Ná, Bleier N, Sugár L, Nagy J, Wilhelm J, Kálmán Z, Barta E, Orosz L, Horn P, Stéger V. Mining the red deer genome (cerela1.0) to develop x-and y-chromosome-linked str markers., 2020, 15(11): e0242506.
[45] Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI, Li QY, Zhou Y, Xiong YQ, Johnson JL, Perelman PL, Johnson WE, Warren WC, Kukekova AV, Zhang GJ, O'Brien SJ, Ryder OA, Graphodatsky AS, Ma J, Lewin HA, Larkin DM. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks., 2019, 29(4): 576–589.
[46] Zhou Q, Huang L, Zhang JG, Zhao XY, Zhang QP, Song F, Chi JX, Yang FT, Wang W. Comparative genomic analysis links karyotypic evolution with genomic evolution in the indian muntjac ()., 2006, 115(6): 427–436.
[47] Lee C, Sasi R, Lin CC. Interstitial localization of telomeric DNA sequences in the indian muntjac chro-mosomes: Further evidence for tandem chromosome fusions in the karyotypic evolution of the asian muntjacs., 1993, 63(3): 156–159.
[48] Yang F, Carter NP, Shi L, Ferguson-Smith MA. A comparative study of karyotypes of muntjacs by chromosome painting., 1995, 103(9): 642–652.
[49] Yang F, O'Brien PC, Wienberg J, Ferguson-Smith MA. Evolution of the black muntjac () karyotype revealed by comparative chromosome painting., 1997, 76(3–4): 159–163.
[50] Yang F, O'Brien PC, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA. Chromosomal evolution of the chinese muntjac ()., 1997, 106(1): 37–43.
[51] Tsipouri V, Schueler MG, Hu S, Program NCS, Dutra A, Pak E, Riethman H, Green ED. Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the indian muntjac genome., 2008, 9(10): R155.
[52] Huang L, Chi J, Nie WH, Wang JH, Yang FT. Phylogenomics of several deer species revealed by comparative chromosome painting with chinese muntjac paints., 2006, 127(1–3): 25–33.
[53] Huang L, Chi JX, Wang JH, Nie WH, Su W, Yang FT. High-density comparative bac mapping in the black muntjac (): Molecular cytogenetic dissection of the origin of mcr 1p+4 in the x1x2y1y2y3 sex chromosome system., 2006, 87(5): 608– 615.
[54] Zhou Q, Wang J, Huang L, Nie WH, Wang JH, Liu Y, Zhao XY, Yang FT, Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes., 2008, 9(6): R98.
[55] Huang L, Jing MD, Zhou Q, Yang FT, Wang W. Research advances in genome evolution of muntjacs ()., 2012,42(2): 87–95.黃玲, 靖美東, 周琦, 楊鳳堂, 王文. 鹿科麂屬動物基因組演化研究進展. 中國科學:生命科學, 2012, 42(2): 87–95.
[56] Lin ZS, Chen L, Chen XQ, Zhong YB, Yang Y, Xia WH, Liu C, Zhu WB, Wang H, Yan BY, Yang YF, Liu X, Sternang Kvie K, R?ed KH, Wang K, Xiao WH, Wei HJ, Li GY, Heller R, Gilbert MTP, Qiu Q, Wang W, Li ZP. Biological adaptations in the arctic cervid, the reindeer ()., 2019, 364(6446): eaav6312.
[57] Weldenegodguad M, Pokharel K, Ming Y, Honkatukia M, Peippo J, Reilas T, R?ed KH, Kantanen J. Genome sequence and comparative analysis of reindeer () in northern eurasia., 2020, 10(1): 8980.
[58] Yang SL, Lu XC, Wang YF, Xu LZ, Chen XY, Yang F, Lai R. A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in trpm8., 2020, 117(15): 8633–8638.
[59] Ababaikeri B, Abduriyim S, Tohetahong Y, Mamat T, Ahmat A, Halik M. Whole-genome sequencing of tarim red deer () reveals demographic history and adaptations to an arid-desert environment., 2020, 17(1): 31.
[60] Ba HX, Qin T, Cai ZX, Liu WY, Li CY. Molecular evidence for adaptive evolution of olfactory-related genes in cervids., 2020, 42(4): 355–360.
[61] Li CY, Suttie JM. Deer antlerogenic periosteum: A piece of postnatally retained embryonic tissue?, 2001, 204(5): 375–388.
[62] Kierdorf U, Li CY, Price JS. Improbable appendages: Deer antler renewal as a unique case of mammalian regeneration., 2009, 20(5): 535– 542.
[63] Price JS, Allen S, Faucheux C, Althnaian T, Mount JG. Deer antlers: A zoological curiosity or the key to understanding organ regeneration in mammals?, 2005, 207(5): 603–618.
[64] Randi E, Mucci N, Pierpaoli M, Douzery E. New phylogenetic perspectives on the() are provided by the mitochondrial cytochrome b gene., 1998, 265(1398): 793–801.
[65] Li CY. Deer antler regeneration: A stem cell-based epimorphic process., 2012, 96(1): 51–62.
[66] Li CY, Chu WH. The regenerating antler blastema: The derivative of stem cells resident in a pedicle stump., 2016, 21: 455–467.
[67] Rolf HJ, Kierdorf U, Kierdorf H, Schulz J, Seymour N, Schliephake H, Napp J, Niebert S, W?lfel H, Wiese KG. Localization and characterization of stro-1 cells in the deer pedicle and regenerating antler., 2008, 3(4): e2064.
[68] Seo MS, Park SB, Choi SW, Kim JJ, Kim HS, Kang KS. Isolation and characterization of antler-derived multipotent stem cells., 2014, 23(7): 831–843.
[69] Wang DT, Ba HX, Li CG, Zhao QM, Li CY. Proteomic analysis of plasma membrane proteins of antler stem cells using label-free LC-MS/MS., 2018, 19(11): 3477.
[70] Wang DT, Berg DB, Ba HX, Sun HM, Wang Z, Li CY. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler., 2019, 10(6): 443.
[71] Ba HX, Wang DT, Li CY. Microrna profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration., 2016, 291(2): 943–955.
[72] Ba HX, Wang DT, Wu WY, Sun HM, Li CY. Single-cell transcriptome provides novel insights into antler stem cells, a cell type capable of mammalian organ rege-neration., 2019, 19(4): 555–564.
[73] Li CY, Yang FH, Li GY, Gao XH, Xing XM, Wei HJ, Deng XM, Clark DE. Antler regeneration: A dependent process of stem tissue primed via interaction with its enveloping skin., 2007, 307(2): 95–105.
[74] Dong Z, Ba HX, Zhang W, Coates D, Li CY. Itraq-based quantitative proteomic analysis of the potentiated and dormant antler stem cells., 2016, 17(11): 1778.
[75] Dong Z, Coates D, Liu QX, Sun HM, Li CY. Quantitative proteomic analysis of deer antler stem cells as a model of mammalian organ regeneration., 2019, 195: 98–113.
[76] Dong Z, Haines S, Coates D. Proteomic profiling of stem cell tissues during regeneration of deer antler: A model of mammalian organ regeneration., 2020, 19(4): 1760–1775.
[77] Sun HM, Sui ZG, Wang DT, Ba HX, Zhao HP, Zhang LH, Li CY. Identification of interactive molecules between antler stem cells and dermal papilla cells using anco-culture system., 2020, 51(1): 15–31.
[78] Li CY, Harper A, Puddick J, Wang WY, McMahon C. Proteomes and signalling pathways of antler stem cells., 2012, 7(1): e30026.
[79] Liu Z, Zhao HP, Wang D, McMahon C, Li CY. Differential effects of the pi3k/akt pathway on antler stem cells for generation and regeneration of antlers., 2018, 23: 1848– 1863.
[80] Dedhar S, Rennie PS, Shago M, Hagesteijn CY, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ. Inhibition of nuclear hormone receptor activity by calreticulin., 1994, 367(6462): 480–483.
[81] Akhtar RW, Liu Z, Wang DT, Ba HX, Shah SAH, Li CY. Identification of proteins that mediate the role of androgens in antler regeneration using label free proteomics in sika deer ()., 2019, 283: 113235.
[82] Park HJ, Lee DH, Park SG, Lee SC, Cho S, Kim HK, Kim JJ, Bae H, Park BC. Proteome analysis of red deer antlers., 2004, 4(11): 3642–3653.
[83] Yao BJ, Zhao Y, Wang Q, Zhang M, Liu MC, Liu HL, Li J. De novo characterization of the antler tip of chinese sika deer transcriptome and analysis of gene expression related to rapid growth., 2012, 364(1–2): 93–100.
[84] Yao BJ, Zhao Y, Zhang HS, Zhang M, Liu MC, Liu HL, Li J. Sequencing and de novo analysis of the chinese sika deer antler-tip transcriptome during the ossification stage using illumina rna-seq technology., 2012, 34(5): 813–822.
[85] Zhao Y, Yao BJ, Zhang M, Wang SM, Zhang H, Xiao W. Comparative analysis of differentially expressed genes in sika deer antler at different stages., 2013, 40(2): 1665–1676.
[86] Han RB, Han L, Wang SN, Li HP. Whole transcriptome analysis of mesenchyme tissue in sika deer antler revealed the cernas regulatory network associated with antler development., 2019, 10: 1403.
[87] Zhang YY, Liu HM, Shao YC, Zhou PY, Su Y, Wang L, Xing XM. Comparative proteomic analysis in different growth stages of sika deer velvet antler,, 2016, 47(3): 493–501.張然然, 劉華淼, 邵元臣, 周盼伊, 蘇瑩, 王磊, 邢秀梅. 不同生長時期梅花鹿鹿茸差異蛋白質(zhì)組學分析. 畜牧獸醫(yī)學報, 2016, 47(3): 493–501.
[88] Li CY, Clark DE, Lord EA, Stanton JA, Suttie JM. Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery., 2002, 268(2): 125–130.
[89] Ba HX, Wang DT, Yau TO, Shang YD, Li CY. Transcriptomic analysis of different tissue layers in antler growth center in sika deer ()., 2019, 20(1): 173.
[90] Ker DFE, Wang D, Sharma R, Zhang B, Passarelli B, Neff N, Li CY, Maloney W, Quake S, Yang YP. Identifying deer antler uhrf1 proliferation and s100a10 mineralization genes using comparative rna-seq., 2018, 9(1): 292.
[91] Chen DY, Jiang RF, Li YJ, Liu MX, Wu L, Hu W. Screening and functional identification of lncrnas in antler mesenchymal and cartilage tissues using high- throughput sequencing., 2020, 10(1): 9492.
[92] Yao BJ, Wang CN, Zhou ZW, Zhang M, Zhao DQ, Bai XY, Leng XY. Comparative transcriptome analysis of the main beam and brow tine of sika deer antler provides insights into the molecular control of rapid antler growth., 2020, 25: 42.
[93] Li CY, Zhao HP, Liu Z, McMahon C. Deer antler--a novel model for studying organ regeneration in mammals.2014, 56: 111–122.
[94] Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L, Kierdorf U. Antlers-evolution, development, structure, composition, and biomechanics of an out-standing type of bone., 2019, 128: 115046.
[95] Fennessy PF. Deer antlers: Regeneration, function and evolution., 1984, 14(3): 290–291.
[96] Lombard LS, Witte EJ. Frequency and types of tumors in mammals and birds of the philadelphia zoological garden.,1959, 19(2): 127–141.
[97] Griner LA. A review of necropsies conducted over a fourteen-year period at the san diego zoo and san diego wild animal park. In: Pathology of Zoo Animals. 1983.
[98] Rong XL, Chu WH, Zhang HY, Wang YS, Qi XY, Zhang GK, Wang YM, Li CY. Antler stem cell- conditioned medium stimulates regenerative wound healing in rats.2019, 10(1): 326.
[99] Willyard C. Unlocking the secrets of scar-free skin healing., 2018, 563(7732): S86–S88.
[100] Banks WJ, Epling GP, Kainer RA, Davis RW. Antler growth and osteoporosis. I. Morphological and mor-phometric changes in the costal compacta during the antler growth cycle., 1968, 162(4): 387–397.
[101] Jr WJB, Epling GP, Kainer RA, Davis RW. Antler growth and osteoporosis. II. Gravimetric and chemical changes in the costal compacta during the antler growth cycle., 1968, 162(4): 399–405.
[102] Stéger V, Molnár A, Borsy A, Gyurján I, Szabolcsi Z, Dancs G, Molnár J, Papp P, Nagy J, Puskás L, Barta E, Zomborszky Z, Horn P, Podani J, Semsey S, Lakatos P, Orosz L. Antler development and coupled osteoporosis in the skeleton of red deer cervus elaphus: Expression dynamics for regulatory and effector genes., 2010, 284(4): 273–287.
[103] van der Weijden VA, Ulbrich SE. Embryonic diapause in roe deer: A model to unravel embryo-maternal communication during pre-implantation development in wildlife and livestock species., 2020, 158: 105–111.
[104] Beyes M, Nause N, Bleyer M, Kaup FJ, Neumann S. Description of post-implantation embryonic stages in european roe deer (capreolus capreolus) after embryonic diapause., 2017, 46(6): 582–591.
[105] Drews B, Rudolf Vegas A, van der Weijden VA, Milojevic V, Hankele AK, Schuler G, Ulbrich SE. Do ovarian steroid hormones control the resumption of embryonic growth following the period of diapause in roe deer ()?, 2019, 19(2): 149–157.
[106] Korzekwa AJ, Kotlarczyk AM, Zadroga A. Profiles of maternal origin factors during transition from embryonic diapause to implantation in roe deer., 2019, 90(11): 1444–1452.
[107] van der Weijden VA, Puntar B, Rudolf Vegas A, Milojevic V, Schanzenbach CI, Kowalewski MP, Drews B, Ulbrich SE. Endometrial luminal epithelial cells sense embryo elongation in the roe deer independent of interferon-tau?., 2019, 101(5): 882–892.
Progress on deer genome research
Hengxing Ba1,2, Pengfei Hu1,2, Chunyi Li1,2
Deer family is one of the most abundant mammalian families in the world. Deer species are distributed in wide geographic ranges including the North Pole, tropical regions and high-altitude mountains. Of these deer species, China accounts for more than 40% of them and is the main site for deer evolution. Besides the common phenotypical attributes for ruminants, deer family is evolved to possess the unique head gears with periodic regeneration, i.e. antlers. It is currently well accepted that deer is a very valuable model for the studies of ecology, behavior, evolution and biology, especially for the study of mammalian organ regeneration. Reference deer genome is the basis for systematically illustrating deer evolution, deciphering unique biological attributes of deer species, and is significant in protection and utilization of deer genetic resources. In this review, we summarize the recent progress in the field of deer genome research, including data of deer genetic variation, molecular basis of adaptive evolution, and key genes and functional genomics involved in deer antler origin and evolution. The overall aim of the paper is to provide the reference neccessary for in depth investigation of deer species.
cervids; deer genome; genetic variation; adaptive evolution; velvet antler; functional genomic
2020-10-28;
2020-12-29
國家自然科學基金項目(編號:31402035, U20A20403) 和吉林省科技發(fā)展計劃項目(編號:20200602013ZP)資助[Supported by the National Natural Science Foundation of China (Nos. 31402035, U20A20403), and the Science and Technology Development Project of Jilin Province (No. 20200602013ZP)]
巴恒星,博士,研究員,研究方向:特種動物基因組學。E-mail: bahengxing@caas.cn
李春義,博士,研究員,研究方向:鹿茸生物學。E-mail: lichunyi1959@163.com
巴恒星,博士,研究員,研究方向:特種動物基因組學。E-mail: bahengxing@caas.cn
10.16288/j.yczz.20-362
2021/3/11 17:23:28
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210310.1027.003.html
(責任編委: 姜雨)