• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Buildings and Groups III

    2021-04-20 13:54:18

    (School of Mathematics and Statistics, Henan University, Kaifeng 475004, China)

    Abstract: This is the third part of a pedagogical introduction to the theory of buildings of Jacques Tits. We describe the construction and properties of the Bruhat-Tits building of a reductive group over a local field.

    Keywords: Reductive groups; Bruhat-Tits buildings

    §1. Introduction

    This is the third chapter of the paper: Buildings and groups. Chapter I is [62] and chapter II is [34].

    In this part we give a description of some parts of Bruhat-Tits theory of buildings for reductive groups over non-archimedean discrete valued fields. The account here follows [24], [25],[28], [101], [64], [88], [70]. Our goal is to help students in China who are interested to learn this theory but are not familiar with the literature. We present the definitions of the structures that appear in or related to Bruhat-Tits buildings; we hope that with these in mind the students would find it easier to get an orientation when reading original papers. We are mainly interested in those parts of the theory which often appear in applications in representation theory - this will be illustrated here by a section on Hecke algebras. Examples for results in this chapter have already appeared in chapter II.

    We assume that the readers are familiar with the theory of linear algebraic groups (see for example [8]; see [6], [93], [59] for a quick summary). We shall refer to [43] as SGA3.

    It is a pleasure to thank Donald Cartwright, Bill Casselman, Chao Kuok Fai, Paul Gérardin,Robert Howlett, George Seligman, Takuro Shintani, Donald Taylor, Jacques Tits, Harm Voskuil for discussions on buildings over the years. I would like to thank Professor Shuxia Feng, Director of the School of Mathematics and Statistics of Henan University, Professor Xiaosen Han and the Editors of Chinese Quarterly Journal of Mathematics for their support of this project. We would like to thank the referee for a careful reading and useful suggestions.

    Notation

    For an algebraic group G defined over a fieldFwe writeG=G(F). We shall often identify theF-rational points of an algebraic group with the group.

    §2. Root data

    We give definitions of structures associated with roots. Such structures play an important role in the theory of reductive groups.

    [1] We modify the definition of a root system given earlier for Lie algebras over algebraically closed fields (see [62] Chapter I§2.2).

    By aroot systemwe mean a subset Φ of a real vector spaceVsatisfying the following conditions:

    (RS0) Φ is finite, spansVand

    (RS1) For eachα∈Φ, there is aα∨in the dual spaceV ?ofVsuch thatα∨(α)=2.

    (RS2) Forα,β ∈Φ, definesα(β):=β ?α∨(β)α. Thensα(Φ)=Φ for allα∈Φ.

    (RS3) Ifα∈Φ, thenα∨(Φ)?Z.

    ( [19] Ch. VI,§1; [94]§7.4.1 p.124.)

    [2] Aroot datum(called ‘donnée radicielle’ in SGA3 XXI) is a quadruple Ψ=(X,Φ,X∨,Φ∨)where:XandX∨are free abelian groups of finite type, in duality by a pairingΦ and Φ∨are finite subsets ofXandX∨resp. and there is a bijectionof Φ onto Φ∨.In addition the following two axioms are imposed:

    (RD1) For allα∈Φ we have

    (RD2) For allα∈Φ we havesα(Φ)=Φ,sα∨(Φ∨)=Φ∨where

    LetQ(resp.Q∨) be the subgroup ofX(resp.X∨) generated by Φ (resp. Φ∨). We say Ψ is adjoint ifX=Qand is simply connected ifX∨=Q∨(SGA3 6.2.6).

    [3] LetVbe an Euclidean space and Φ?V ?be a root system. Choosing a basis Υ of Φ determines the positive roots Φ+. Aroot group datumin a groupGassociated to a root system Φ is (Z,(Uα,Mα)α∈Φ) which satisfies the following conditions:

    (DR1)Zandare subgroups ofG, for allα∈Φ. WriteU?α:=Uα{1}.

    (DR2)For allα,β ∈Φ the commutator subgroup(Uα,Uβ)is contained in the group generated by theUrα+sβforr,s∈N withrα+sβ ∈Φ.

    (DR3) Ifα,2α∈Φ then we haveU2α ?Uα.

    (DR4) For eachα∈Φ the setMα ∈ZG(a right coset) andU??α ?UαMαUα.

    (DR5) For allα,β ∈Φ andn∈Mαwe havenUβn?1=Usα(β).

    (DR6) IfU+(resp.U?) denotes the group generated by allUαwithα∈Φ+(resp.α∈Φ+),then we haveZU+∩U?={1}.

    We say the above root group datum is of type Φ and we say it is generating ifGis generated byZandUα, forα∈Φ. (See [24] 6.1.1).

    [4] A family?=(?α)α∈Φof maps?α:Uα →R∪{∞}(α∈Φ) is called avaluation on the root group datum(Z,(Uα,Mα)α∈Φ) on a groupGif the following conditions are satisfied:

    (V0) For eachα∈Φ the image of?αcontains at least three elements.

    (V1) For eachα∈Φ andr ∈R∪{∞}the setis a subgroup ofUαand we setUα,∞={1}.

    (V2)For allα∈Φ andm∈Mαthe functionis constant.

    (V3) Letα,β ∈Φ andr,s∈R; ifthen the commutator group (Uα,r,Uβ,s) is contained in the subgroup of G generated by theUnα+mβ,nr+msforn,m∈N withnα+mβ ∈Φ.

    (V4) Ifα,2α∈Φ, then?2αis the restriction of 2?αtoU2α.

    (V5) Letα∈Φ,u∈Uα, andIf, then we have(See [24] 6.2.1).

    Lemma 2.1.Let ? be a valuation on the root group datum(Z,(Uα,Mα)α∈Φ)in a group G associated to a root systemΦin V ?. For z ∈Z, put z·?α(u)=?α(z?1uz). Then for each z ∈Z there exists a unique vector ν(z)=?+ν(z). Moreover this defines a group homomorphism

    (See [24] Prop. (6.2.10), Proof of (i); [64] Prop 10.17).

    §3. Reductive group

    LetFbe a field and G be a connected reductive group overF( [8] IV§11 p.158). We shall often identify theF-rational points of an algebraic group with the group and we writeGfor G(F).

    IfE/Fis a field extension we write GEfor G×F E.

    Assume that G has a torus defined overFand split overF. Let S be a maximalF-split torus.X?(S) (resp.X?(S)) denote group of algebraic characters (resp. cocharacters) of S.There is a perfect pairing of abelian groups ( [8] III 8.11):

    whereis the integer such that

    3.1. Roots

    The Lie algebra of G is denoted g. The group G operates on itself by inner automorphisms Intwherex,g ∈G. The differential of Intgat identity is denoted Adg.Thenis aF-morphism of algebraic groups which is called theadjoint representationof G.

    Since S is a torus, AdSis diagonalizable, i.e.

    where Φ=Φ(G,S) is a subset of the nontrivial charactersX?(S){1}and

    Then ( [8] V 21.1; [94] p.115, thm 7.1.9, p.257, lem 15.3.7)

    (1) Φ is a root system inX?(S)?R.

    (2) The Weyl group generated by the reflections{sα;α∈Φ}is isomorphic to the group(NG(S)/ZG(S))(F) which acts via conjugation - every element of (NG(S)/ZG(S))(F) has a representative inNG(S)(F), forn∈NG(S)(F),χ∈X?(S), put (n·χ)(s)=χ(nsn?1).

    Forα,β ∈Φ, let (α,β)={pα+qβ:p,q ∈N>0}∩Φ. A subset Ψ?Φ is calledclosed, if (α,β)?Ψ for allα,β ∈Ψ. If in addition Ψ lies in an open half-space ofX?(S)?R, then Ψ is calledpositively closed.

    Let Φndorbe thereduced rootsystem consisting of non-divisible roots in Φ.

    3.2. Root data

    There is a maximal torus T of G defined overFcontaining S;T splits over a finite separable extension ofF.

    The Weyl groupW(G,T)=(NG(T)/ZG(T))(F) acts on the character groupX?(T) and thus onV:=X?(T)?R. We can choose a positive definite symmetric bilinear form (,) onVwhich isW-invariant. Use this form to identifyVwith its dual spaceV ?.

    The cocharacter groupX?(S) is a subgroup ofX?(T) viaLetX?(S)⊥:={χ∈X?(T):χ?φ=1,?φ∈X?(S)}. Then we have an exact sequence

    and thus an exact sequence

    This leads to the orthogonal direct sum

    So (,) is a positive definite symmetric bilinear form onX?(S)?R and forχ∈X?(S) we can define

    Moreover the orthogonal projectionis the map given by the restriction map

    and Φ(G,S)=πΦ(G,T){0}.

    Put Φ(G,S)∨:={α∨:α∈Φ(G,S)}.

    Theorem 3.1.( [94] 15.3.8)(X?(S),Φ(G,S),X?(S),Φ(G,S)∨)is a root datum.

    3.3. Root group data

    (1) To each rootα∈Φ there is a unique closed connected unipotent subgroupUα ?Gnormalized byZGSand has Lie algebra gα+g2α; this is called theroot subgroupofα. ( [8],21.9, 14.5; [94]§15.4.)

    (2) If Ψ?Φ is positively closed, then

    (i)there exists a unique closed,connected,unipotentF-subgroupUΨofGwhich is normalized byZGSand has Lie algebraSetU?={1}.

    (3) Suppose thatα,β ∈Φ are linear independent. Then (α,β) is positively closed and the commutator group (Uα,Uβ) is contained inU(α,β).

    (4) For an order on Φ, the groupsUΦ+andUΦ?will also be denoted byU+andU?respectively. ThenU+U?∩NG(S)={1}.

    (5) Forα∈Φ and eachu∈Uαwe have a one element set

    Forthe elementmα(u) induces the reflectionsαinX?(S) and inX?(S). ( [64] 0.19; [14]§5; [101] 1.4; [24] 6.1.2 (2) p. 108.)

    3.4. Pinning

    [1] A reductiveF-group is said tosplitoverFif there is a maximal torus which is defined overFand splits overF(see [8] 18.7).

    LetGbe a reductive group defined overFand split overFandTbe aF-torus ofGsplit overF. An épinglage (or pinning) ofGas defined in SGA3 XXIII 1.1 is defined as a pair(Υ,(eα)α∈Υ) with a choice Υ as a basis of the roots Φ=Φ(G,T) andSuch aneαcorresponds exactly with isomorphismxα:Ga→Uα, namely, givenxαtakeeα=dxα(1). Thus we can also define anépinglageofG(with respect toT) as (Υ,(xα:Ga→Uα)α∈Υ).

    Forα∈Φ(G,T), we sayF-isomorphismsxα:Ga→Uαandx?α:Ga→U?αareassociatedif there is aF-group monomorphismsuch that for allu∈Ga(F)=F, the following conditions hold:

    Let

    AChevalley systemofG(with respect toT) is a setof isomorphisms such that:

    a)xαandx?αare associated?α∈Φ.

    b)?α,β ∈Φ,?ε=±such that?u∈Ga(F) we have:

    You can see such conditions in [97].

    [2] A reductiveF-group is calledquasi-splitoverFif it has a Borel subgroup ( [8]§11.1) defined overF. In this case the centralizer of a maximalF-split torus is a maximal torus (see [8] 20.5 and 20.6 (iii)).

    Let G be a quasi-split reductiveF-group, S be a maximalF-split torus of G and Z be the centralizer of S in G. Then Z is a maximal torus of G defined overF.

    Let ΥEbe a basis of the root system Φ(GE,ZE,E). LetE/Fbe a finite separable Galois extension splitting Z and Θ denotes the Galois group Gal(E/F). Then the action of Θ on conjugacy classes of maximal parabolic subgroups leads to a?-action of Θ on ΥEand the fact thatGis quasi-split implies that the image Υ of the restriction mapon ΥEis a basis of the root system Φ(G,S,F) and each fibre ofπis a single orbit in ΥEfor the?-action of Θ(we shall often not mention the?of this action). (See [99] end of§2.3; [14] 6.4 (2), 6.8).

    Θ acts on the set of root subgroups{Ua:a∈Φ(GE,ZE,E)}andσUa=Uσaforσ ∈Θ. Let Θabe the stabilizer ofain Θ and letEa=EΘa. ThenUais defined overEa.

    GEsplits overE. AChevalley-Steinberg systemofGis a Chevalley systema∈Φ(GE,ZE,E)) such that:

    (i) ifa∈Φ(GE,ZE,E) anda|S ∈Φ(G,S,F) is a non-divisible root, thenxσa=σ?xa ?σ?1for allσ ∈Θ.

    (ii) ifa∈Φ(GE,ZE,E) anda|S ∈Φ(G,S,F) is a divisible root and ifsuch that, then, for allσ ∈Θ, there exists ansuch that the following condition holds for allu∈E:

    Compare: [95], [55], [56].

    Proposition 3.1.( [64] Prop. 4.4) A quasi-split group has a Chevalley-Steinberg system.

    §4. Apartments

    4.1. Affine space

    SupposeEis a set,Vis a vector space over a field and the map

    defines an action of the additive group ofVonEsuch that there exists an elementa∈EwithV+a=E. (Note the symbol ‘+’ denotes the action and not the addition of vectors inV.) Then we sayEis an affine space underVand an element t∈Vis a translation onE(Bourbaki,Algebra, Chap II§9.1.).

    SupposeE(resp.is an affine space underV(resp.). Then a mapis called an affine map if there is a linear mapsuch that

    for allx∈Eand t∈V(Bourbaki, Algebra, Chap II§9.4). We callvthevector partofu. The group of all affine automorphisms ofEis denoted by Aff(E).

    If we fix an elemento ∈E,then any elementy ∈Ecan be written as(y?o)+owith(y?o)∈Vand thus we can write an affine mapuwith vector partvas

    4.2. Affine apartment

    Fa nonarchimedean locally compact field,the ring of integers inF,πa fixed prime element inthe residue field,ω:F×→Z the discrete valuation normalized byv(π)=1.

    LetGbe a connected reductive group overF.

    Fix a maximalFsplit torusSin G.

    is the perfect pairing of abelian groups defined by evaluation ( [8] III 8.11).

    WriteV1=X?(S)?ZR. IdentifyandX?(S)?ZR. Extendto

    We obtain a unique homomorphism

    such that for anyF-algebraic characterχofZG(S) we have

    for anyg ∈ZG(S). ( [64] Chap I, Lem 1.1).

    LetCdenote the connected center ofG. LetX?(C)denote the group of algebraic cocharacters ofC. LetV0:={v ∈V1:α(v)=0,?α∈Φ}. ThenV0=X?(C)?R. PutV=V1/V0. Then

    Let Φ=Φ(G,S,F) be the root system inV ?ofGwith respect toS( [8] V 21.1).

    Eachα∈Φ defines a reflectionsαonV. The Weyl group of Φ is the group generated by{sα:α∈Φ}. Hence there is a group homomorphismj:W →GL(V).Wis isomorphic toNG(S)/ZG(S) ( [8] 21.1).

    4.3. Affine extension

    Denote the kernel ofν1byZb. As the ground fieldFis locally compactZbis the maximal compact subgroup ofZG(S) ( [64] Chap I, Prop 1.2). Then Λ=ZG(S)/Zbis a free abelian group with rank equals to dimV1. Letνbe the compositionThis map induces homomorphismν:Λ→V.

    The extended Weyl group is defined to beThere is a group homomorphismwhich makes the diagram

    commutative ( [64] Chap I, Prop 1.6).

    (1) The above commutative diagram says that there is an affine spaceAunderV, (thusso that there exists a group homomorphismν:NG(S)→Aff(A)extendingν:ZG(S)→V.

    (2)Up to a unique isomorphism,Ais unique([64]Chap I,Prop 1.8;[101]§1.2). All possible other such extensions are given bywherex0∈Ais a fixed but arbitrary point.

    (3) Ifw ∈Wis the image ofn∈NG(S), thenis equal to the vector part of the affine transformationThe projection ofν(mα(u)) toWis the reflectionsαand soν(mα(u)) is an affine reflection whose vector part issα( [101] 1.4).

    (4) The translation part of the affine transformationis given byfor some real number tα(u), i.e.

    4.4. Affine roots

    We may viewmα(u) as the reflection with respect to the affine hyperplane{x∈A:α(x)+tα(u)=0}( [101] 1.4). Put

    This is a discrete subset in R and Γ?α=?Γα( [24] 6.2.16). In the case of Chevalley groups we have seen in chapter II that Γα=Z. The affine functions (α,t)=α(·)+t on A forα∈Φredand t∈Γαare calledaffine roots.Write Φafffor the set of affine roots. We identify an elementα∈Φ with the affine function (α,0); then Φ?Φaff. The action ofWon Φ extends to an action ofon Φaff. Explicitly, ifis the composition of the translation byλ∈Λ withw ∈W, then the action ofon the affine root (α,tα(u)) withu∈Uαis

    wherevis the valuation ofF. Check thatThe map Φaff→is surjective and equivariant with respect to the projection map

    The setsa?1(0) fora∈Φaffare called thewallsofA. The connected components of the complements inAof the union of all walls are calledalcoves(or chambers). Two points x and y inAare called equivalent if each affine root is either positive or zero or negative at both points;the corresponding equivalence classes are calledfacets. The chambers are the open facets.

    A pointxofAis called anspecial pointif for any wallLofAthere exists a wallsuch thatandis a translation ofL. Any special point is an extremal point of the closure of a chamber. For any chamber there exists at least one special point in its closure. ( [19], chap V,§3, no 10, cor of prop 11)

    A pointxofAis said to behyperspecialif:

    (1) there exists an unramified Galois extensionF1/FandGsplits overF1.

    (2) there exists a maximalF1-split torus ofGdefined overFand containingS.

    (3) letA1=A(G,S1,F1) be the apartment ofS1and let Φaff1=ΦaffG,S1,F1) be the corresponding affine root system, andxis special for Φaff1( [101]§1.10.2). Hyperspecial points does not always exist.

    We choose once and for all a special vertexx0inAand a chambersuch thatWe use the pointx0to identify the affine spaceAwith the real vector space

    We callAtheapartment coming from the torus S.

    Φ is a root system inV ?, by ( [19] VI§1.1 Prop3)V ?has aW-invariant scalar product which is uniquely determined on every irreducible component ofV ?up to a scalar factor ( [19]VI§1.3 Prop 7). Using the canonical pairing:V ×V ?→R we obtain aW-invariant scalar product onVwhich now use to define a metricdon the apartmentA.

    The finite Weyl groupWof the root system Φ is generated by the set{sα:α∈Υ}of reflections with respect to the root hyperplanes of the simple roots.Whas a length functiondefined by counting the number of elements in a word. We extendtoin such a way that the length ofis the cardinality of( [65] 1).

    For any affine root (α,t) we have inthe reflection at the affine hyperplaneα(·)=?t given bys(α,t)= image inWofmα(u) whereu∈Uαsuch that t=tα(u). The affine Weyl group is defined as the subgroup

    Choose of Υ allows to define, forα,β ∈Φ,α≤βifβ ?αis a sum of simple roots with non-negative integer coefficients. Let Φminbe the set ofα∈Φ such thatαis minimal for≤. Put

    Then (1) (Waff,Saff) is a Coxeter system ( [5] Satz 2.2.16) and

    §5. Building of a reductive group

    5.1. Quasi-split groups

    We shall deal with a special case of quasi-split groups.

    LetFbe a complete discrete valuation field which is strictly Henselian,ω:F×→Z is the valuation onF, and O=OFthe ring of integers inF.

    Let G be a quasi-split reductiveF-group, S be a maximalF-split torus of G and Z be the centralizer of S in G.

    LetE/Fbe a splitting Z and Θ denotes the Galois group Gal(E/F). We have root systems Φ=Φ(G,S,F)and Φ(GE,ZE,E). Fix a Chevalley-Steinberg systemonG.

    (2) ForR, put

    (3) Put

    ( [64] 4.8.)

    The case 2α∈Φ: we havesuch thatWe construct group isomorphisms(SU3parametrization)

    Then

    (1) Define?α:Uα →R∪{∞}bywhenxα(a,b)=u. Define?2α:U2α →R∪{∞}by?2α(u):=ω(b) whenxα(0,b)=u.

    (2)ForR, put

    ( [64] 4.14.)

    Just as in the case of Chevalley groups where we can construct a group scheme over Z whose generic fibre is the given Chevalley group, we can in the situation here, for a bounded subset ?of the apartment construct-group schemewhose generic fibre isG. This is done in 4 steps:

    1. Lift the maximal torus Z to a-group schemewhose generic fibre isZ. This is done by using Neron models in ( [64] Prop 3.2).

    3. Construct a ration group law in the big cell

    5.2. Filtration on root groups

    Fa nonarchimedean locally compact field,the ring of integers inF,πa fixed prime element inbe the residue field,ω:F×→Z the discrete valuation normalized byω(π)=1.

    Let G be a connected reductive overF. For an extensionE/Fwe put GE=G×F E, and we writeGfor G(F),GEfor GE(E). So for a root subgroupUαis Uα(F).

    Fis locally compact impliesκis finite and thus perfect, henceGis quasi-split over the strict HenselizationFshofF( [64] Prop 10.1).

    Fix a maximalFsplit torusSin G. Denote the root system of G with respect to S by Φ.Write; letbe a maximalFsh-split torus ofsuch thatandbe the root system ofwith respect to. Moreovercan be chosen to be defined overFand containsS( [64] 10.12 (ii)). So we can assume thatis of the formTFshfor aF-torusT.

    We choose abasisΥ of the root system Φ and fix a pointo ∈Awith the property that for allα∈Υ, there exists an elementwithν(mα(u))(o)=o.

    Let ? be a non-empty bounded subset ofA. Then ? is a Gal(Fsh/F)-invariant subset ofSinceis quasi-split overFsh, up to a unique isomorphism there is a unique smooth affine-group schemewith generic fibre( [64] Thm 6.1). Moreover thisdescends ( [18]6.2), we have - up to a unique isomorphism there is a unique smooth affine-group schemewith generic fibreGsuch that( [64] Cor 10.10).

    Forα∈Φ=Φ(G,S) (resp.denote the root subgroups ofG(resp.) byUα(resp.Ua).

    (i) Forlet

    PutWe make the usual conventions for the case that

    (ii) Forα∈Φ, define?α:Uα →R∪{∞}by

    (iii) Let Γα={?α(u):u∈Uα{1}}?R.

    Thegives an exhaustive and separated discrete filtration onUαby subgroups ( [24]6.2.12 b).

    Forα∈Φred, we also have

    Forα∈Φ(G,S,F),Uαis the root subgroup, put

    Lemma 5.1.( [64] Lem 10.20, 11.4)is a valuation on the root groupdatum(ZG(S),(Uα,Mα)α∈Φ)on the group G.

    Take a nonempty bounded subset ? ofAandα∈Φ, choosesuch thata|S=α, putf?(α):=?sup{a(x):x∈?}.

    DefineU?to be the subgroup ofGgenerated by allUα,f?(α)forα∈Φ. When ?={x}we writeUx; same applies to other notations; in particular forwe can write (Uα,)x(which we will shortened as

    PutN?={n∈NG(S):ν(n)x=x,?x∈?}.

    LetP?be the subgroup ofGgenerated byN?andU?.

    For any decomposition Φ=Φ+∪Φ?into positive and negative roots letU±denote the subgroup ofGgenerated by allUαforα∈Φ±.Then ( [64] Chap IV Prop 12.5, 12.6; [24] 6.4.9)

    1.n∈NG(S)?nU?n?1=Uν(n)?;

    2.U?∩NG(S)?N?.

    3.P?={g ∈G:gx=x,?x∈?}

    4.U?∩Uα=Uα,f?(α).

    5.U?=(U?∩U?)(U?∩U+)(U?∩NG(S)).

    6. The bijection induced by the product map is independent of the choice of ordering of the factors on the left hand side.

    7. For, we haveP?=∩x∈?Px.

    8. Forwe have

    5.3. Construction of the building

    LetGbe a connected reductive over a nonarchimedean locally compact fieldF.

    Recall that the real vector spaceA=(X?(S)/X?(C))?R is the apartment coming from a maximal split torusS. Introduce an equivalence relation~on the setG×Aby (g,x)~(h,y)if there is ann∈NG(S) such thatnx=yandg?1hn∈Ux. The set of equivalence classes is denoted by

    ( [24] 7.4.2) We sometimes writeX(G) forX,for the equivalence class of (g,x). The formula

    defines an action ofGonXand that the map

    is injective andNG(S) equivariant; allowing us to writegxfor the classThen

    1.P?={g ∈G:gx=x,?x∈?}( [24] 7.4.4).

    2. Forα∈Φredandu∈Uα{1}we have ( [24] 7.4.5)

    3. For anyg ∈Gthere exists an∈NG(S) such thatgx=nxfor anyx∈A∩g?1A( [24]7.4.8).

    We callXthe Bruhat-Tits building ofG. The subsets of X of the formgAwithg ∈Gare called apartments. Two points x and y inAare called equivalent if each affine root is either positive or zero or negative at both points; the corresponding equivalence classes are called

    facets. A subsetis called a facet if it is of the formfor someg ∈Gand some facetF ?A. Open facets in apartments are calledchambers. Furthermore the following holds -

    (B3) Any two points and even any two facets in X are contained in a common apartment( [24] 7.4.18).

    (B4) Ifandare two apartments, there is an elementg ∈Gsuch thatandgfixespointwise; in addition,is a closed union of facets inand in. ( [24]7.4.8).

    Remark 5.1.The building X defined above is sometimes called the semi-simple building and there is a notion of expanded building (see [25] 4.2.16) which is used in the theory of Iwahori Hecke algebra.

    [32] Chapter 1 contains a quick summary on the building of a reductive group over a local field.

    [12], [11], [88] contain some results on the algebraic topology of buildings.

    §6. Compactification of buildings

    LetGbe a connected semi-simple non-compact Lie group with finite center,Kbe a maximal compact subgroup ofG. The quotient spaceX=G/Khas the Riemannian structure of a non-compact symmetric homogeneous space (see [46]), and in some particular cases this has a complex structure and is a bounded symmetric domain, in this case we writeDforG/K. Let Γ be a discrete subgroup ofGof cofinite volume. Then the orbit space ΓXor ΓDis locally symmetric [9], [46], [73], [86], [110], [111], [112]. People are interested in explicit constructions of the compactificationsandToroidal compactifications was carried out by [1]; see also [63]. Compactification of symmetric spaces has a long history, see [10], [58].

    In the following table we give a short summary.

    For the rest of this section we consider a similar problem for buildings. We follow [64].See [75], [76], [77] for another method of compactification using Berkovich spaces.

    6.1. Compactifying apartments

    We take a root system Φ inV ?. (Note that we had takenVto be Euclidean and often identifyVwithV ?.) As in Chap 1§4.2, forx,y ∈V, we putx~yif and only if for allα∈Φ,the following condition is valid:α(x) andα(y) have the same sign or are both equal to zero. In this way Φ defines a Coxeter complex Σ inVsuch that its faces are the equivalence classes with respect to~.

    A base Υ of Φ determines a positive set Φ+and then a chamber

    This is a canonical bijectionbetween the set of chambers in Σ and the set of bases of Φ. There is also a bijection between the set of facesFcontained in the closureand the set of subsets Υ(F) of Υ(C) with Υ(F)={α∈Υ(C):α|F>0}. The inverse map is denoted asθ ?Υ

    as basis to define the the topology on

    For any chamberC ∈Σ the corner of a chamberCis defined to be

    wheredenotes the subspace spanned byF. Take any subsetU ?V, for a faceFcontained indefine subset

    We define a topology onV Cby choosingwhereFruns over the faces ofCandUopen subsets ofV.

    Now we try to ‘realize’ a corner - suppose Υ(C)={α1,...,αn}. Define a mapby

    Thenfis a homeomorphism ( [64]§2, Lem 2.4).

    LetDeclareU ?VΣto be open ifU ∩V Cis open inV Cfor all chambersC ∈Σ. ThenVΣis compact Hausdorff andVis dense inVΣ( [64]§2, Prop 2.8).

    Now letAbe an affine space underV, so that there exists a group homomorphismν:NG(S)→Aff(A)extendingν:ZG(S)→V(see§4.3). We putwhere(a,x)~(b,y),if there is a vectorv ∈Vsatisfyinga+v=bandy+v=x. And we take the product-quotient topology onThenis compact Hausdorff,Ais a dense, open subset ofand the actionνofNG(S) onAcan be extended uniquely to a continuous action ofNG(S) on

    6.2. Metric

    Letdbe the metric we have defined on the apartmentAusing theW-invariant scalar product onV(see§4.4).

    On the apartment=gAwithg ∈G(K) the map

    defines a metric on

    There exists a unique metricd:X(G)×X(G)→R such that the restriction to any apartmentcoincides with the metricgiven above andG(K) acts by isometries ( [64] p.130).

    6.3.

    Onthere is an equivalence relation defined by: (g,x)~?(h,y), if there is an elementn∈Nwithy=ν(n)(x) andg?lhn∈Ux.

    Letdenote the setequipped with the product-quotient topology,whereG=G(F) carries the topology coming fromFandthe topology defined ( [64] p.133).

    Theorem 6.1.(1) The topological space

    of G and the induce topology on X(P/Ru(P))coincides with the metric topology.

    (3) The closure of X(P/Ru(P))in(Q/Ru(Q))where Q are K-parabolicsubgroups contained in P.

    (4) The action of G on(G)induced by the map

    is continuous and this action extends that of G on X(G).( [64] Cor. 14.16, Prop 14.17, Cor 14.30, Thm 14.31).

    §7. Congruence subgroup

    In this section we catch up on the materials which should have been discussed earlier when the preference was given to the presentation of the construction of buildings over the logical order.

    Letbe a smooth group scheme overwith generic fiberX. Then for eachn≥0, there exists a smooth modelsuch thatMoreover,

    (ii) The Lie algebrafor alln≥0.( [113]§2.8).

    But if G is a reductive group overFwe would like to have a group schemeover(which depends on some parameters) such that the generic fibre ofis G and then we useto define congruence subgroups.

    7.1. Models

    LetX/Fbe a smooth separated scheme. A Néron model forXis a smooth separated schemewhich satisfies the Néron mapping property: the natural map

    is a bijection, for any smooth schemeoverwhereis the generic fibre of

    As a special case of the Néron mapping property, we see that the natural mapis a bijection, i.e., allF-points ofXextend to-points ofThus, from the perspective ofF-points, the Néron model behaves as if it were proper. This is not true forF-points ifF/Fis a ramified extension!

    The definition given above of a Néron model for a smooth separated scheme overFis in( [18]§10.1) where this is referred as locallt of finite type Néron model, in contrast with ( [18]§1.2) where the Néron models are supposed to be of finite type. Chapter 10 of [18] deals with unipotent groups and tori.

    For a torusdefined overFwe shall letbe the smooth model with connected generic fibre such thatis the maximal bounded subgroup ofT(Fsh); this model is of finite type over O. (See [35]).

    For the rest of this subsection we consider an affine schemeXof finite type overF. By a model ofX, we mean a flat-schemeof the form SpecAsuch thatis a sub--algebra of finite type overwithA modelXis smooth ifis smooth. The following proposition helps us to understand ( [25]§1.7).

    Proposition 7.1.Assume that X,Y are smooth affine schemes over F.

    (1) Letbe smooth models of X such thatIn fact we have

    (2) Letbe models of X and Y. Assume thatis smooth, and φ:X →Y is aF-morphism such that φ(X())?Y(Osh), then φ extends to a uniqueO-morphism

    7.2. Smooth models of root subgroups

    In subsection§5.2 we implicitely used models to construct filtrations on root subgroups and we have introducedUα,r,xwithαa root,r ∈R andxa point in the building.

    Proposition 7.2.Let G/F be a connected reductive group. Let S be a maximal F-split torus of G. Assume that S ?F Fsh is a maximal Fsh-split torus of G?F Fsh. Fix a point x in the building of G. We replace F by Fsh to define Uα(Fsh)r,x for α a root and r ∈R.

    (1) For any α∈Φ, any r ∈R, there exists an unique smooth-schemewhich is amodel of Uα such thatMoreover, we have

    (i)is connected and its closed fibreis unipotent.

    (ii) The congruence subgroupis equal to Uα(F)n+r,x for any integer n≥0.

    (2)For any α∈Φsuch that2α∈Φ,and r,s∈Rsuch that2r ≥s,there exists an unique smoothmodel schemeof Uα such thatMoreover,

    (i)is connected andis unipotent.(ii) The congruence subgroupis equal tofor anyinteger n≥0.(See [25]§4.3).

    7.3. Filtrations on tori

    For a torusTover henselian local fieldFdefineas follows: First putNext letr>0. IfTis an induced torus i.e.Tisthen put

    whereωiis the valuation onFiextendingωonF. In general, choose an induced torusIcontainingT, put

    and then check that this is independent of the choice ofI.

    By anadmissible filtrationwe mean an assignment from tori over henselian local fields to sequence of groups:satisfying the following conditions:

    F0.for alls≥r ≥0.

    F2.ifTis an induced torus.

    F3. Ifis a morphism between tori overF, thenmapsintofor allr ≥0.

    F4. Ifis unramified, then

    Say an admissible filtration isschematicif

    S1. For eachr ≥0, there is a unique smooth group schemeoversuch that

    S3. For anyT/F, there is a strictly increasing sequence{ri}i≥1of non-negative real number such thatri →∞asi→∞, andonly whenr=rifor somei.

    A schematic filtration is calledconnectedif the following condition is satisfied

    CN. For eachr ≥0, the group schemeis connected.

    A schematic filtration is calledcongruentif the following condition is satisfied

    Definition 7.1.Let T be a torus over a henselian local field F.

    For0

    For r ≥1, we write r=n+r0with n∈Zand0≤r0<1. Then we putequal the n-thcongruence subgroup

    Proposition 7.3.is an admissible filtration which is schematic, con-nected and congruent ( [113]).

    7.4. Smooth models associated to concave functions

    LetG/Fbe a connected reductive group. LetSbe a maximalF-split torus ofG,Φ=Φ(G,S)the relative system. LetTbe the centralizer ofSinG. WhenGis quasi-split,Tis a maximal torus ofG. IfFis strictly henselian, thenGis quasi-split.

    We fix a schematic admissible filtration on

    In order to haveα=0 we set up the following convention - for allr ≥0 and any pointxin the building ofG/F, we put (U0,r)(F)x=T(F)rand

    We say thatis aconcave functionif for any non-empty finite familyof elements in Φ∪{0}such thatbelongs to Φ∪{0}we have

    For a pointxin the building ofG/Fand a concaveletG(F)f,xbe the subgroup ofG(F) generated by (Uα,f(α))xfor allα∈Φ∪{0}. Ifα∈Φ is such thatwe letIfα∈Φ is such that 2α∈Φ, we let(see§7.2).

    Theorem 7.1.Assume that F is strictly henselian. Fix a point x in the building X of G.Given a concave functionThen

    (i) There is a unique smooth modelsuch that

    (ii) For each α∈Φnd the schematic closure ofUα in

    (iii) The multiplication morphism

    is an open immersion, and induces an isomorphism on the special fibre if f(0)>0. Herethe two productscan be taken in any order.

    (See [113] Thm 8.3; [88] prop I.2.2; [25] 4.6.4, 5.1.3).

    Theorem 7.2.Assume that the schematic filtrationis congruent. Then

    for all integer n≥0. In particular,

    for all r ≥0, integer n≥0.(See [113] Cor. 8.8).

    §8. Bounded subgroups

    It is well known that all maximal compact subgroups of a connected semisimple Lie groupGare conjugate under inner automorphisms ( [46] VI§2) andGhas Cartan decomposition and Iwasawa decomposition ( [54] VI§3,4, VII§3; [53]). It is important to have the analogues of these properties forp-adic reductive groups.

    8.1. Maximal bounded subgroups

    Every bounded subgroup ofGis contained in a maximal bounded subgroup and every maximal bounded subgroup is the stabilizer of a point in the building ofG.

    IfGis semisimple and simply connected, the maximal bounded subgroups ofGare precisely the stabilizers of the vertices of the building ofG; they formconjugacy classes,where1denote the relative ranks of the quasi-simple factors ofG. This is clearly different from the case of real Lie groups.

    8.2. Parabolics

    LetGbe a connected reductive group defined over a fieldk. Aparabolic subgroupofGis defined to be a closed subgroupPofGdefined overksuch thatG/Pis a projective variety. The minimal parabolic subgroups ofGare conjugate overk( [14] 5.9 Cor). Choosing a minimal parabolic subgroupP0corresponds to fixing a basis Υ of the root system ofG, then the parabolic subgroups containingP0corresponds to the subsets of Υ ( [14] 5.12 - 5.14). ( [93]§3.6, 5.9) contains a summary on parabolic subgroups; (see [14], [37], [3], [40], [78]) for some proofs; (see [54] VII§7; [107] I§2.2) for proofs in case of Lie groups.

    The combinatorics of parabolic subgroups are important for the theory of Eisenstein series,induced representations and trace formula. The theory of parahoric subgroups are local field analogue of that of parabolic subgroups.

    8.3. Decompositions

    LetFbe a non-archimedean locally compact field, O its ring of integers, p its prime ideal andκits residue field withqelements.

    Let G be a connected reductive group defined overF. Fix a minimal parabolic subgroup P of G. Let A be a maximal split torus contained in P, M the centralizer of A. Let Φ be the roots of G with respect to A and Φ+the positive roots determined by P.

    Put

    Kis a maximal bounded subgroup ofG. The groupGhasIwasawa decomposition

    and hasCartan decomposition

    where(See [24] 4.4.3; [31] p.392; [32] Lemm 1.4.5; [66]§2.6).

    These decompositions are important for theory of spherical functions and induced representations of p-adic Lie groups (see for example [7], [21], [31], [32], [33], [66], [67], [68], [71]).

    §9. Hecke algebra

    To study the representations of a reductive group over local field (or of its Hecke algebra)we need information on the structure of the group, in particular, of its compact subgroups.Theory of building provides this information; thus we see buildings and Hecke algebras together sometimes - see examples in [61]. In this section we present different versions of Hecke algebras.

    9.1. Hecke algebra as a matrix algebra

    Hecke algebra was first introduced by Hecke [45] as an algebra of endomorphisms on finite dimensional spaces of modular forms (see for example [38]). Here we give a matrix formulation according to Shimura [90] and Tamagawa [98].

    Forwe have a finite disjoint coset decomposition

    ( see [91], prop 3.1, lem 3.10).

    Letdenote the Z-module of all formal sumswithcj ∈Z andαj ∈?. We define multiplication by:α,β ∈?,

    Here

    andis the number of (i,j) such that Γαiβj=Γξ. With this multiplicationH(Γ,?) is an associative ring with identity which we call the Hecke ring of (Γ,?).

    Proposition 9.1.The following identities hold in H(Γ,?).

    (1)

    (2) For a prime p, T(1,p)2=T(1,p2)+pT(p,p)( [91] Thm 3.24).

    9.2. Hecke algebra of p adic groups

    We give a reformulation of the above Hecke algebra for p adic groups following Cartier [30];see also [79], [57], [2]. This is important for [51].

    LetFbe an non-archimedean local field. LetGbe the group ofF-rational points of a connected reductive group overF. LetKbe a compact open subgroup ofG. Letdenote the complex vector space consisting of complex valued functionsfonGsatisfying the following conditions:

    (1)for anyg ∈Gand

    (2)fis zero outside of a union of a finite number ofKgK.

    Fix a Haar measureμonG.H(G,K) is an associative C-algebra using the following multiplication

    Choose a double coset decomposition

    Choosexi,yjto give disjoint unions

    Letμ(K)uαbe the characteristic function ofKgαK. Then the family{uα}is a basis of the vector spaceH(G,K) and

    whereis the number of (i,j) such thatbelong toK.

    PutH(G)=∪KH(G,K) whereKruns through a neighbourhood basis of 1 consisting of compact open subgroups ofG. CallH(G) the Hecke algebra ofG.

    If we have a group homomorphismπ:G→GL(V)whereVis a C-vector space,we say(π,V)is a representation ofG. For two representationssay a linear mapis aG-homomorphism iffor allg ∈G.

    ForH ?GputIfwithKgoing over all the compact open subgroups ofGthen we sayπis a smooth representation. Forthere exists a linear mapπ(f):V →Vsuch that

    holds for anyv ∈Vandv?in the dual space ofV. This means thatVis now a-module.From this it follows that the category of smooth representations ofGis the same as the category of non-degenerate-modules. This is at least one reason why we are interested in Hecke algebras.

    9.3. Iwahori subgroup and buildings

    LetFbe a local field,the ring of integers ofF,κthe residue field withqelements andqis a power of a primep. Let G be a split connected reductive algebraic group overF. WriteG=G(L). Denote by C the connected component of the center of G. Choose a maximalF-split torus T of G.

    The Bruhat-Tits buildingXofGwe constructed in section 5.3 will also be called a semi-simple building. The apartment determined by the torusTisA=X?(T/C)?ZR.

    LetX?(G) be the group ofF-rational characters of G. In [25]§4.2.16 the extended Bruhat-Tits building is defined to beX1=X×HomR(X?(G)?R,R) andpr:X1→Xis the projection.

    For each facetFofXthere exists a smooth-group scheme GFsuch that

    (See [101]§3.4.1; [27]; [64], chap II,III,IV; also 7.)

    whereRudenotes the unipotent radical ( [8] IV,§11.). ThenIFis the pro-ppSylow subgroup ofPF. By aparahoric subgroupofGwe mean a groupPFfor a facetFofX.

    The origin of the apartmentAis taken to be a hyperspecial vertexx0. As the residue field is finite,K:={g ∈G:g·x0=x0}is a maximal compact subgroup ofG. Take a chamberCinAsuch thatx0is a vertex ofC. Writecallan Iwahori subgroup ofG,Ia pro-p Iwahori subgroup ofG. ThenIis a maximal pro-p subgroup ofK.

    For an account on parahoric subgroups see [42], [70], [44]. There are two kinds of parahoric subgroups in use : connected and non-connected - (see [104]§1.24).

    9.4. Iwahori-Hecke algebra

    [1]For any commutative ringRwith identity. LetR[IG/I]denote the set of functionsf:G→Rwith the properties that the support offis compact and for allg ∈Gandthe following holds

    With respect to the convolution product:

    R[IG/I] is aR-algebra; call this apro-p Iwahori-Hecke algebraofG.

    [2] Take the compact induction of the trivial representation ofItoput

    By means of Frobenius reciprocity ( [103] Prop I.5.7 (ii)) we get

    where charIis the characteristic function ofI. Ashence we an algebra isomorphism

    ( [105]; [70]§2; [106]).

    [3] LetT0denote the maximal compact subgroup ofT,T1be the unique pro-p Sylow subgroup ofT0. Define

    [4]is a freeR-module generated byand its ring structure is determined by the following relations:

    ( [105] theorem 1; [70]§4.8; [5].)

    [5] We replaceIbyin the above discussion and we obtain

    CalltheIwahori-Hecke algebraofG.is a freeR-module generated by{τw:w ∈W};and its ring structure is determined by the following relations:

    braid relation: ifthenτvτw=τvw.

    quadratic relation:such thatσsbelongs to a chosen set of generators ofWaff.

    ( [65] 2.1, 3.2 [70]§4.8.) This algebra was introduced by Iwahori (1926 - 2011) in [50].

    9.5. Hecke algebra and Coxeter group

    Given a Coxeter graph Π with a vertex setI, Coxeter matrixMand Coxeter groupWgenerated byS={wi:i∈I}.

    We introduce variablesqi,i∈Iand impose the conditions:wi, wjare conjugate inW, thenqi=qj. LetAdenote the algebra generated byover the integers ring Z. Write(i) for the length ofwi ∈W.

    We introduce an associativeAalgebraH(W,S) with identity generated byti,i∈Isubject to the following conditions:

    braid relation: fori,j ∈I, ifthen settitj=tij.

    quadratic relation: fori∈I, setCall(W,S) theHecke algebra of the Coxeter system(W,S).

    If we set allqiequal toq, then(W,S) is a Z[q±1]-algebra. IfWis an affine Weyl group then(W,S) is called an affine Hecke algebra.

    §10. Sheaves on buildings

    There are two situations in which the word sheaf are used - one, when we take the building as a simplicial complex, in this case it is also called a coefficient system (see [81]§1; [88]§II.2);two, when the building is taken as a topological space (see [88] IV.1).

    10.1. Coefficient systems

    Say a locally compact topological groupGis a local profinite group if any open neighbourhood of identity contains an open subgroup ( [29]§1.1.).

    LetRbe a commuative Noetherian ring,Ga profinite group. A smoothR-linear representation ofGon aR-moduleVis anG-actionπ:G×V →Vsuch that:

    (1) For anyg ∈G,g:V →VisR-linear.

    (2) For anyv ∈V, the stabilizer{g ∈G:g·v=v}is an open subgroup ofG.

    Letdenote the category of smoothR-linear representations ofG.

    LetLbe a local field, G be a connected reductive group splitting overL. PutG=G(L).

    LetXbe the Bruhat-Tits building ofG. Acoefficient systemofR-modules onXiswhere we are given for any facetFofXaR-modulefor any facetssuch thatwe are givenR-linear mapssatisfying the following -

    By a homomorphismof coefficient systems we meanwhereFruns over all facets ofX, and ifthen we have commutative diagram

    Let Coeff(X) denote the category of coefficient systems ofR-modules onX.

    Forg ∈G, defineGiven a homomorphismput(g?f)F=fgF,and get

    AG-equivariant coefficient system issatisfies

    Let CoeffG(X) denote the category ofG-equivariant coefficient systems ofR-modules onX.

    Takeis the inclusion map. Hence

    Forg ∈Glet

    Thus we get a functor

    For more information on coefficient systems and representations see [88], [48].

    10.2. Sheaves

    We give a construction of a sheaf on the buildingX.

    We begin with the definition of the groups

    For any concave functionf,letUfbe the subgroup ofGgenerated by allUα,f(α)forα∈Φredand allforα,2α∈Φ (cf. [24] 6.4.9).

    Take ? to be a facetFofA, we then have the concave functionfF. Next we defineby

    The concave functionis defined by

    For any integere≥0, we use the concave functionhF+eto define

    (see [88] p.21.)

    Proposition 10.1.

    1.is profinite.

    2. Thefor e≥0(and F fixed) form a fundamental system of compact open neigh-bourhoods of1in G.

    3.for any two facets in X such that

    4.here x runs over all the vertices inand the product can take anyordering of the factors.

    5. Assume x to be a special vertex. Then for any point z in the intervalwe have

    We shall now build a sheaf onXout of a smooth representationVofG.

    For any open subgroupU ?Gwe writeVUfor the maximal quotient ofVon which theU-action is trivial;VUis theU-coinvariants ofV. WritevmodUfor the image ofv ∈VinVU.

    Fix an integere≥0. The projection mapinduces an isomorphism

    For any two facetsinXsuch thatthe projection maps form commutative diagram

    We use the representationVto construct a sheafon the buildingX. For any open subset??Xletbe the complex vector space of all mapssuch that:

    (i)for anyz ∈?.

    (ii) there is an open coveringfor anyz ∈?iandi∈I.

    Then (i) for anyz ∈Xthe stalk

    The cohomology with compact support ofis computed in [88].

    For more information on coefficient systems and representations see [88], [72], [104].

    §11. Conclusions

    To summarize we can say the Bruhat-Tits theory consists of 3 parts. Part 1 consists of(a) the theory of reductive groups over local fields, their tori, root subgroups and parabolic subgroups, (b) Néron models for tori and root subgroups. Part 2 consists of (a) the construction of the affine buildingXof a reductive groupGover a local field together with aG-action, (b)to study the algebraic topology of the buildingX. Part 3 is to give applications of this theory.

    Though we hope this presentation helps,this is still a very demanding chapter for an average graduate student in China. To understand this chapter you need some knowledge on local fields(see for example [89], [74], [39]) and linear algebraic groups (see for example [94], [93], [92], [18];Grothendieck et. al. SGA3 and[36],[8],[14],[15],[16],[17],[13],[95],[96],[85],[87],[100],[102]).There is no one book that gives complete proofs of what we need and it is unfortunate that no one in China will find it rewarding to write such a book.

    Many of the textbooks on buildings(for example[20],[80],[108],[109])are mainly interested in the combinatorial structure of buildings without much reference to the detailed structures of reductive groups. Thus our priorities here are different. In applications references are often made to the original papers [21], [22], [23], [24], [25], [26], [27], [28], [101]. These are not easy papers for students - part of the reason is that the authors often make very general assumptions and the students are at a loss as to how to interpret them in specific situations. However for anyone who is serious about this theory, without the benefit of an expert nearby, there is no alternative to learning french and reading the originals until a textbook covering all the materials appears.

    在线观看午夜福利视频| 老汉色∧v一级毛片| 成年女人看的毛片在线观看| 欧美在线黄色| 一个人免费在线观看电影| 无人区码免费观看不卡| 日日摸夜夜添夜夜添小说| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 亚洲精品久久国产高清桃花| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 在线看三级毛片| 中文字幕久久专区| 亚洲 国产 在线| 色综合亚洲欧美另类图片| 亚洲av熟女| 亚洲欧美激情综合另类| 搡老熟女国产l中国老女人| 不卡一级毛片| 国产成人福利小说| 热99re8久久精品国产| 窝窝影院91人妻| 成年女人看的毛片在线观看| 有码 亚洲区| 久久午夜亚洲精品久久| 日日夜夜操网爽| 欧美日韩黄片免| 宅男免费午夜| 美女cb高潮喷水在线观看| 黄色丝袜av网址大全| 国产乱人伦免费视频| 国产真人三级小视频在线观看| 免费观看人在逋| aaaaa片日本免费| 中文字幕高清在线视频| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 操出白浆在线播放| 精品国内亚洲2022精品成人| 成人av一区二区三区在线看| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 亚洲午夜理论影院| 国产野战对白在线观看| 香蕉丝袜av| 在线看三级毛片| 国产亚洲精品av在线| 亚洲av成人不卡在线观看播放网| 亚洲狠狠婷婷综合久久图片| 婷婷丁香在线五月| 熟女电影av网| 床上黄色一级片| 国产欧美日韩一区二区精品| 欧美一级a爱片免费观看看| 国产午夜福利久久久久久| 黄片小视频在线播放| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女视频黄频| 亚洲五月婷婷丁香| 久久久久久久亚洲中文字幕 | 国产视频一区二区在线看| 18禁黄网站禁片免费观看直播| 国产精品免费一区二区三区在线| 久久精品国产综合久久久| 日本三级黄在线观看| 国内久久婷婷六月综合欲色啪| 看片在线看免费视频| 无限看片的www在线观看| 亚洲国产高清在线一区二区三| www日本黄色视频网| 成年女人永久免费观看视频| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| a级毛片a级免费在线| 国产欧美日韩精品亚洲av| 国产一区二区在线av高清观看| 中文字幕熟女人妻在线| 99国产综合亚洲精品| 在线观看美女被高潮喷水网站 | 在线观看av片永久免费下载| 12—13女人毛片做爰片一| 亚洲自拍偷在线| 色综合亚洲欧美另类图片| 色综合站精品国产| 一区二区三区免费毛片| 亚洲成人久久爱视频| 成人欧美大片| 亚洲精品日韩av片在线观看 | 午夜视频国产福利| av国产免费在线观看| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区| 欧美成人性av电影在线观看| 久久人妻av系列| 国内精品美女久久久久久| 亚洲精品粉嫩美女一区| 亚洲一区高清亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 丰满人妻一区二区三区视频av | 波野结衣二区三区在线 | 法律面前人人平等表现在哪些方面| 老司机在亚洲福利影院| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看.| 免费电影在线观看免费观看| x7x7x7水蜜桃| 黄色日韩在线| 国产成年人精品一区二区| 成人性生交大片免费视频hd| 欧美日韩国产亚洲二区| 精品乱码久久久久久99久播| 青草久久国产| 国产亚洲精品av在线| 亚洲精品成人久久久久久| 中亚洲国语对白在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黑人欧美特级aaaaaa片| 97碰自拍视频| 69av精品久久久久久| 精品人妻一区二区三区麻豆 | 叶爱在线成人免费视频播放| 国产高清videossex| 两个人的视频大全免费| 亚洲av电影在线进入| 亚洲精品456在线播放app | 国内精品一区二区在线观看| 88av欧美| 久久久久性生活片| 99视频精品全部免费 在线| 亚洲内射少妇av| 久久久久性生活片| 九九在线视频观看精品| 最近视频中文字幕2019在线8| 亚洲精品456在线播放app | 激情在线观看视频在线高清| 麻豆国产97在线/欧美| 老司机午夜十八禁免费视频| 三级男女做爰猛烈吃奶摸视频| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 在线十欧美十亚洲十日本专区| 黄色女人牲交| 国产成人av教育| 日本熟妇午夜| 五月玫瑰六月丁香| 在线看三级毛片| 精品福利观看| 国产精品三级大全| 欧美国产日韩亚洲一区| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 国产精华一区二区三区| 日韩国内少妇激情av| 久久久成人免费电影| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看| 免费av毛片视频| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| av在线天堂中文字幕| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 国产在视频线在精品| 无限看片的www在线观看| 我的老师免费观看完整版| 亚洲自拍偷在线| 97超视频在线观看视频| 免费大片18禁| 国产真实乱freesex| 成人18禁在线播放| 亚洲欧美日韩东京热| 国产精品久久久久久亚洲av鲁大| 深夜精品福利| 欧美黑人巨大hd| 一级黄片播放器| 精品国内亚洲2022精品成人| 国产精品99久久99久久久不卡| 村上凉子中文字幕在线| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 日韩大尺度精品在线看网址| 国产99白浆流出| 国产一区二区在线观看日韩 | www日本黄色视频网| 国产高清有码在线观看视频| 国产精品久久久久久亚洲av鲁大| 亚洲 国产 在线| 啦啦啦免费观看视频1| 一夜夜www| 校园春色视频在线观看| 国产乱人伦免费视频| 国产成人系列免费观看| 我要搜黄色片| 少妇的丰满在线观看| 日本成人三级电影网站| 亚洲激情在线av| 青草久久国产| 欧美日本视频| 欧美在线黄色| 99国产精品一区二区蜜桃av| 黄色片一级片一级黄色片| 天堂影院成人在线观看| 国内精品美女久久久久久| 90打野战视频偷拍视频| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 丁香欧美五月| 一区二区三区免费毛片| 中文在线观看免费www的网站| 亚洲中文字幕日韩| 男女床上黄色一级片免费看| 免费人成视频x8x8入口观看| 免费看日本二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久综合精品五月天人人| 精品一区二区三区视频在线 | 国内少妇人妻偷人精品xxx网站| 亚洲,欧美精品.| 1024手机看黄色片| 一级毛片高清免费大全| 午夜福利18| 老汉色av国产亚洲站长工具| 欧美黄色淫秽网站| 国产探花极品一区二区| 亚洲自拍偷在线| 欧美日韩乱码在线| 午夜激情福利司机影院| 搡老熟女国产l中国老女人| 久久亚洲精品不卡| 日韩高清综合在线| 精品久久久久久久久久久久久| 国产老妇女一区| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 18禁黄网站禁片午夜丰满| 少妇人妻一区二区三区视频| АⅤ资源中文在线天堂| 亚洲成人久久爱视频| 丁香六月欧美| 此物有八面人人有两片| 国产精品日韩av在线免费观看| 在线免费观看不下载黄p国产 | 99精品欧美一区二区三区四区| 午夜福利视频1000在线观看| 国产日本99.免费观看| 欧美日韩亚洲国产一区二区在线观看| 一级毛片女人18水好多| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| eeuss影院久久| 偷拍熟女少妇极品色| tocl精华| xxx96com| 婷婷精品国产亚洲av| 亚洲美女黄片视频| 亚洲,欧美精品.| 综合色av麻豆| 成人性生交大片免费视频hd| 久久人妻av系列| 免费在线观看影片大全网站| 日韩欧美三级三区| 亚洲人与动物交配视频| 特级一级黄色大片| 国产伦精品一区二区三区视频9 | 亚洲天堂国产精品一区在线| 在线十欧美十亚洲十日本专区| 国产精品久久电影中文字幕| 成人欧美大片| av中文乱码字幕在线| 久久6这里有精品| 色尼玛亚洲综合影院| 我的老师免费观看完整版| 免费高清视频大片| 老司机午夜福利在线观看视频| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 99久久成人亚洲精品观看| 国产99白浆流出| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产97在线/欧美| 免费在线观看成人毛片| av天堂中文字幕网| 舔av片在线| 黑人欧美特级aaaaaa片| 丁香欧美五月| 在线观看日韩欧美| 激情在线观看视频在线高清| 91麻豆精品激情在线观看国产| 女警被强在线播放| 欧美绝顶高潮抽搐喷水| 亚洲美女视频黄频| 亚洲精品久久国产高清桃花| 国产综合懂色| 成人特级黄色片久久久久久久| 少妇丰满av| 免费看十八禁软件| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 国产av在哪里看| 久久6这里有精品| 亚洲av成人精品一区久久| 成人av一区二区三区在线看| 露出奶头的视频| 亚洲人成电影免费在线| 欧美乱色亚洲激情| av国产免费在线观看| 中国美女看黄片| 淫妇啪啪啪对白视频| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 亚洲av成人av| 久99久视频精品免费| 亚洲成av人片在线播放无| 国产野战对白在线观看| 免费搜索国产男女视频| 免费观看精品视频网站| 国内少妇人妻偷人精品xxx网站| 三级国产精品欧美在线观看| 国产三级中文精品| 天天添夜夜摸| 18禁裸乳无遮挡免费网站照片| 麻豆国产97在线/欧美| 精品无人区乱码1区二区| 国产午夜精品论理片| 欧美bdsm另类| a在线观看视频网站| 99精品在免费线老司机午夜| 99国产极品粉嫩在线观看| 亚洲av熟女| 久久久久精品国产欧美久久久| 午夜福利高清视频| 叶爱在线成人免费视频播放| 亚洲男人的天堂狠狠| 身体一侧抽搐| a级毛片a级免费在线| 欧美中文综合在线视频| 午夜两性在线视频| 亚洲av电影在线进入| 国产高清三级在线| 97人妻精品一区二区三区麻豆| 99在线视频只有这里精品首页| 内射极品少妇av片p| 国产91精品成人一区二区三区| 无人区码免费观看不卡| 小说图片视频综合网站| 日本免费a在线| 亚洲人成网站高清观看| 美女大奶头视频| 成人av在线播放网站| 小说图片视频综合网站| 最近视频中文字幕2019在线8| 亚洲人成网站在线播| 一进一出抽搐gif免费好疼| 亚洲欧美一区二区三区黑人| www.熟女人妻精品国产| 成人国产一区最新在线观看| 免费看十八禁软件| 久久精品亚洲精品国产色婷小说| 国产成人福利小说| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 国产成人欧美在线观看| 神马国产精品三级电影在线观看| 国产精华一区二区三区| 精品福利观看| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 一a级毛片在线观看| 夜夜夜夜夜久久久久| ponron亚洲| 性色avwww在线观看| 国产毛片a区久久久久| 18禁在线播放成人免费| 国产高清三级在线| 色综合亚洲欧美另类图片| 国产精品久久久久久久久免 | 国产综合懂色| 欧美在线黄色| 操出白浆在线播放| 成年女人看的毛片在线观看| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 高清日韩中文字幕在线| 女警被强在线播放| 精品不卡国产一区二区三区| 51午夜福利影视在线观看| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产成人av教育| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 亚洲第一电影网av| 在线观看av片永久免费下载| 欧美zozozo另类| 欧美最黄视频在线播放免费| 成人国产一区最新在线观看| 深爱激情五月婷婷| 亚洲av不卡在线观看| 亚洲电影在线观看av| 男女之事视频高清在线观看| 高清在线国产一区| 女人高潮潮喷娇喘18禁视频| 午夜福利视频1000在线观看| 国产精品99久久久久久久久| www.色视频.com| 欧美中文日本在线观看视频| 欧美区成人在线视频| 听说在线观看完整版免费高清| 国产精品一区二区免费欧美| 少妇人妻一区二区三区视频| tocl精华| 欧美激情久久久久久爽电影| 亚洲精品美女久久久久99蜜臀| 性欧美人与动物交配| 悠悠久久av| 亚洲精品影视一区二区三区av| 小蜜桃在线观看免费完整版高清| 国产精品久久久人人做人人爽| 久久精品国产99精品国产亚洲性色| 日韩人妻高清精品专区| 一本久久中文字幕| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 在线观看免费视频日本深夜| 熟女人妻精品中文字幕| 在线视频色国产色| 日韩欧美国产在线观看| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 亚洲国产高清在线一区二区三| 99精品久久久久人妻精品| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 色吧在线观看| 午夜日韩欧美国产| 亚洲国产精品成人综合色| 午夜两性在线视频| 国产中年淑女户外野战色| 搡老岳熟女国产| 国产高清videossex| 少妇的逼好多水| 韩国av一区二区三区四区| 国产高清有码在线观看视频| 亚洲国产高清在线一区二区三| 欧美日韩一级在线毛片| 色吧在线观看| 国产aⅴ精品一区二区三区波| 3wmmmm亚洲av在线观看| 国产精品久久电影中文字幕| 色噜噜av男人的天堂激情| 婷婷丁香在线五月| 亚洲国产精品999在线| x7x7x7水蜜桃| 嫩草影视91久久| 国产黄a三级三级三级人| 麻豆国产av国片精品| 草草在线视频免费看| 99久国产av精品| 啦啦啦免费观看视频1| av片东京热男人的天堂| 久久久久久九九精品二区国产| 一本一本综合久久| 悠悠久久av| 成人性生交大片免费视频hd| 精品国产超薄肉色丝袜足j| 午夜精品在线福利| 久久久久久人人人人人| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 51国产日韩欧美| 成人av一区二区三区在线看| 熟女人妻精品中文字幕| 亚洲一区二区三区色噜噜| 美女cb高潮喷水在线观看| 亚洲精品在线美女| 真人一进一出gif抽搐免费| ponron亚洲| 亚洲欧美激情综合另类| 在线视频色国产色| 精品日产1卡2卡| 国内揄拍国产精品人妻在线| 老司机福利观看| 国内揄拍国产精品人妻在线| 亚洲天堂国产精品一区在线| 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 亚洲精品色激情综合| 啦啦啦观看免费观看视频高清| 免费高清视频大片| 免费人成在线观看视频色| 亚洲内射少妇av| 日日夜夜操网爽| 变态另类丝袜制服| 日日夜夜操网爽| 99在线人妻在线中文字幕| 亚洲在线自拍视频| 深夜精品福利| xxx96com| 久久中文看片网| 桃色一区二区三区在线观看| 国产高清视频在线播放一区| 麻豆国产av国片精品| 国产午夜福利久久久久久| 国产成人影院久久av| 国产视频一区二区在线看| 国产高清有码在线观看视频| 一个人看视频在线观看www免费 | 国产成人aa在线观看| 国内少妇人妻偷人精品xxx网站| 国产精品久久视频播放| 欧美乱色亚洲激情| 听说在线观看完整版免费高清| 午夜视频国产福利| 国产国拍精品亚洲av在线观看 | 国产乱人伦免费视频| 69人妻影院| 搞女人的毛片| 国产黄色小视频在线观看| 少妇的逼水好多| АⅤ资源中文在线天堂| 一级毛片女人18水好多| 香蕉av资源在线| 国产在视频线在精品| 一区福利在线观看| 国产日本99.免费观看| 亚洲真实伦在线观看| 国产麻豆成人av免费视频| 久久久久久人人人人人| 免费观看的影片在线观看| 亚洲电影在线观看av| 最后的刺客免费高清国语| 又紧又爽又黄一区二区| 久久天躁狠狠躁夜夜2o2o| 内射极品少妇av片p| 精品免费久久久久久久清纯| 人人妻人人看人人澡| 久久久国产精品麻豆| 免费一级毛片在线播放高清视频| 少妇的逼好多水| 天堂网av新在线| 丰满人妻一区二区三区视频av | 亚洲av二区三区四区| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 国产精品久久视频播放| av在线蜜桃| 国产日本99.免费观看| 精品国产三级普通话版| 久久伊人香网站| 岛国视频午夜一区免费看| 99热精品在线国产| 国产三级黄色录像| 91在线观看av| 69人妻影院| 亚洲中文字幕日韩| 欧美乱妇无乱码| 国产精品影院久久| 精品午夜福利视频在线观看一区| 日韩欧美一区二区三区在线观看| 国产在线精品亚洲第一网站| 90打野战视频偷拍视频| www日本在线高清视频| 18美女黄网站色大片免费观看| 黄色成人免费大全| av女优亚洲男人天堂| 成人国产一区最新在线观看| 亚洲成人久久爱视频| 在线观看av片永久免费下载| 精品无人区乱码1区二区| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 欧美av亚洲av综合av国产av| 日本三级黄在线观看| 男女床上黄色一级片免费看| 丁香六月欧美| av在线天堂中文字幕| 色老头精品视频在线观看| 18禁裸乳无遮挡免费网站照片| 12—13女人毛片做爰片一| aaaaa片日本免费| 亚洲片人在线观看| 午夜精品一区二区三区免费看| 90打野战视频偷拍视频| 天天一区二区日本电影三级| 亚洲精品久久国产高清桃花| ponron亚洲| 欧美成人免费av一区二区三区| 色吧在线观看| 色综合婷婷激情| 色播亚洲综合网| 人妻夜夜爽99麻豆av| 亚洲一区高清亚洲精品| 99久久精品热视频| av专区在线播放| 亚洲av第一区精品v没综合| 国产亚洲精品久久久久久毛片| 亚洲成人久久爱视频| eeuss影院久久| 午夜精品一区二区三区免费看| 乱人视频在线观看|