• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Global Solar-induced Chlorophyll Fluorescence (SIF) Data Product from TanSat Measurements

    2021-04-20 04:01:24LuYAODongxuYANGYiLIUJingWANGLiangyunLIUShanshanDU2ZhaonanCAINaimengLUDarenLYUMaohuaWANGZengshanYINandYuquanZHENG
    Advances in Atmospheric Sciences 2021年3期

    Lu YAO, Dongxu YANG, Yi LIU, Jing WANG*, Liangyun LIU, Shanshan DU2,, Zhaonan CAI,Naimeng LU, Daren LYU, Maohua WANG, Zengshan YIN, and Yuquan ZHENG

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

    4Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences, Beijing 100094, China

    5National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

    6Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China

    7Shanghai Engineering Center for Microsatellites, Shanghai 201210, China

    (Received 30 July 2020; revised 19 November 2020; accepted 2 December 2020)

    ABSTRACT The Chinese Carbon Dioxide Observation Satellite Mission (TanSat) is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence (SIF) signals with its advanced technical characteristics. Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) platform, we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm. This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps. A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD (singular value decomposition) SIF product is also performed for follow-up algorithm optimization. The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons. The future SIF data product applications and requirements for SIF space observation are discussed.

    Key words: TanSat, solar-induced chlorophyll fluorescence, retrieval algorithm, remote sensing

    1. Global SIF observations from space

    The carbon cycle between the atmosphere and the terrestrial ecosystem plays an important role in climate change. Reliable and accurate assessment of the gross primary production (GPP) of vegetation is critical in determining the surface carbon flux and understanding climate feedback. Solar-induced chlorophyll fluorescence (SIF) is widely recognized as the ideal proxy for plant GPP because it represents an electromagnetic emission that is directly linked to photosynthetic activity (Frankenberg et al., 2011a; Guanter et al., 2012, 2014; Zhang et al., 2014; Yang et al., 2015b; Sun et al., 2017; Frankenberg and Berry, 2018; MacBean et al., 2018). Studies have shown a strong linear correlation between SIF and GPP on large spatial scales (Guanter et al., 2012; Frankenberg and Berry, 2018). Since the first successful attempt at measuring SIF from the Medium Resolution Imaging Spectrometer (MERIS) onboard the ENVIronmental SATellite (ENVISAT) (Guanter et al., 2007), the measurement of SIF signals from space has drastically improved global spatial coverage. Hyperspectral instruments that measure the O-A band onboard the new generation of greenhouse gas satellites, such as the Greenhouse Gases Observing Satellite (GOSAT) from Japan (Frankenberg et al., 2011a; Joiner et al., 2011) and the Orbiting Carbon Observatory 2 (OCO-2) from the U.S., provide new global SIF observations that approached from the in-filling effect of solar Fraunhofer lines. Medium spectral resolution instruments for monitoring atmospheric trace gases, such as the Global Ozone Monitoring Experiment-2 (GOME-2), are also capable of detecting SIF signals from space (Joiner et al., 2013; K?hler et al., 2015). Furthermore, the European satellite mission TROPOspheric Monitoring Instrument (TROPOMI) started an imaging observation of SIF in October 2017 (K?hler et al., 2018; Sun et al., 2018). The Chinese global carbon dioxide monitoring satellite (TanSat) was launched successfully in December 2016 (Chen et al., 2012; Ran and Li, 2019) and became the third greenhouse gas satellite for COmonitoring (Liu et al., 2018; Yang et al., 2018). TanSat moves in a sun-synchronous orbit crossing the equator at about 1330 LST (LST=UTC+8) with a 16-day repeat cycle (Liu et al., 2018). The TanSat mission was supported by the Ministry of Science and Technology of China, the Chinese Academy of Sciences, and the China Meteorological Administration. The Atmospheric Carbon-dioxide Grating Spectroradiometer (ACGS), the main instrument of TanSat, measures the O-A band with a spectral resolution of 0.039-0.042 nm and covers a spectral range of 758-778 nm(Wang et al., 2014; Li et al., 2017; Zhang et al., 2017). The measurement outside the strong Oabsorption lines in this band was used to approach SIF in this study. There are nine footprints across the track of TanSat on the ground in a frame, and the nadir footprint is about the size of 2 km × 2 km.

    2. SIF approaching from TanSat measurement

    The first TanSat global SIF map and data product originated from a data-driven algorithm based on singular value decomposition (SVD) techniques and has been introduced in a previous study (Du et al., 2018). In the data-driven algorithm, the measured spectrum is expressed as a linear combination of the SIF signal and several singular vectors that are trained with non-vegetated samples. This approach calculates the radiance contribution of SIF emission with a linear least-squares fitting, which is efficient in global retrievals and has been applied in GOSAT, OCO-2, and TROPOMI SIF retrievals (Guanter et al., 2012; Frankenberg et al., 2014; K?hler et al., 2018). The systematic error is removed during the training process.However, unexpected errors might arise due to the imperfect training dataset and varied measurement errors. The physicalbased retrieval method is well-known as a highly accurate approach because it simulates the radiative transfer in the atmosphere between the surface and satellite. Differential Optical Absorption Spectroscopy (DOAS) techniques have also been used in OCO-2 official SIF product retrieval (Frankenberg, 2014).

    In this study, we introduce a new TanSat SIF product that is approached by a DOAS based retrieval algorithm developed from the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) (Yang et al., 2015a). The IAPCAS has been developed and applied in TanSat XCOretrieval (Liu et al., 2018; Yang et al., 2018) and provides a well-developed forward model that contains both atmosphere and surface models (Liu et al.,2013). The study indicated that atmospheric scattering had only a limited impact on the SIF signal at the top of the atmospheric (TOA) (Frankenberg et al., 2011b); hence, only the extinction of light along the path was considered, and the Beer-Lambert Law was applied in the forward model instead of the full radiative transfer model. The forward model

    f

    can be written as

    in which

    I

    is the normalized, disk-integrated solar transmission spectrum,

    I

    is a unit vector,

    F

    is the relative SIF signal corresponding to the continuum level radiance in the 757-nm micro-window (758.4-759.2 nm), and the convolution operator < > converts the spectrum of high-resolution to instrument resolution using the instrument line shape. The retrieved parameter

    a

    consists of three polynomial coefficients (

    a

    ,

    i

    =0,1,2) which serves to model the continuum level radiance in the wavelength λ. The far-wings effect of the Olines has a minimal impact upon the continuum level radiance but is still considered in the retrieval to optimize the fit. In summary, the state vector list includes the relative SIF signal, the Ocolumn absorption factor, wavelength grid shift, and the coefficients of a second-order polynomial that approximates the continuum level radiance. A non a priori constrained Gaussian-Newton method is used in the inversion process, where the measurement noise was also considered. The SIF at TOA is calculated by multiplying the retrieved relative SIF with the continuum level radiance in the micro-window. The measurements over desert, snow, and bare soil are considered to have no SIF emission and are used in bias correction to reduce measurement systematic error. We use a daily varied bias correction for each footprint, and the bias is also calculated with the measurement continuum level radiance. In our data product, we provide both the bias-corrected and the raw retrieved SIF.

    The SIF data product for future analysis should undergo the cloud-filter and have good fitting quality. The continuum coverage, the range of the solar zenith angle, and the root mean square (RMS) of the spectrum fitting residual is used in the post-screening process for quality control.

    Before applied to TanSat measurements, the IAPCAS/SIF retrieval algorithm was used to obtain the SIF results from OCO-2 observations to test the algorithm. The results show good agreement between the OCO-2 IAPCAS/SIF retrieval and the OCO-2 official product (OCO2_Level 2_Lite_SIF.8r) with the coefficient of determination (

    R

    ) of 0.86, a root mean square error (RMSE) of 0.19 W mμmsr.

    The limited ground-based SIF measurements and the spatial-scale differences between the SIF from canopy observations and those derived from space make it difficult to validate the retrieved SIF of a single sounding, while the SIF uncertainty for each grid-cell could be calculated for further applications. The grid-cell SIF uncertainty is reduced by the multisoundings within the grid and is much lower than the precision of a single measurement that is dominated by instrumental noise (Sun et al., 2018). In Fig. 1, the seasonal TanSat SIF product for 757 nm (March 2017-February 2018) retrieved from the IAPCAS/SIF algorithm is shown. From the global SIF maps, it is clear that the IAPCAS/SIF dataset shows the SIF signal of the large vegetation areas, e.g., Southeast China, South Asia, Europe, the rainforests in Africa, and the Amazon, and the eastern US. The seasonal variation in deciduous forests and grassland was consistent with the vegetative growing state,throughout the year, which has also been observed by the GOSAT and OCO-2 SIF products (Frankenberg et al., 2014;Frankenberg and Berry, 2018; Sun et al., 2018; Somkuti et al., 2020). This new TanSat SIF product derived from the IAPCAS/SIF algorithm is archived on International Reanalysis Cooperation on Carbon Satellites Data (IRCSD) and will be accessible to the public when this paper is published (www.chinageoss.org/tansat), as well as the OCO-2 SIF data product with the IAPCAS/SIF algorithm.

    Fig. 1. Seasonal global SIF map and the differences between the IAPCAS/SIF and SVD data-driven SIF products. All subplots are shown based on 2° × 2° grid data, and all soundings in each grid were used to obtain the average SIF value for each grid. The rows of subplots indicate spring (MAM), summer (JJA), fall (SON), and winter (DJF) in the Northern Hemisphere from top to bottom. The seasonally averaged SIF distributions of TanSat from March 2017 to February 2018 are shown in the left column (a-d). The subplots (e-h) are the SIF differences between the two SIF products for each season.The seasonally averaged TanSat SIF from the two algorithms is also shown in a scatterplot in the right column (i-l) with statistics in each subplot. The scatter plots show that the two products agree well at the seasonal temporal scale, with the RMSE of less than 0.22 W m-2 μm-1 sr-1 and the R2 larger than 0.73 for all seasons. The fitting function and the grid number for the statistic are also indicated in subplots.

    The SIF products from IAPCAS/SIF and SVD data-driven retrieval show obvious bias in the global maps (Figs. 1e-h).SIF retrieved with IAPCAS/SIF algorithm has a large global negative bias in spring (MAM) and summer (JJA), but this bias is much smaller in the fall (SON) and winter (DJF). This bias could be caused by the differences in retrieval methods,especially the methods that are used to select the non-SIF emission measurements. In the data-driven algorithm, a training dataset of no SIF emission measurements has been selected to represent the background signal. The MODIS nadir BRDFadjusted reflectance product MCD43C4 (0.05 degree, http://doi.org/10.5067/MODIS/MCD43C4.006) is used in this selection (Du et al., 2018). In the IAPCAS/SIF algorithm, the MODIS land cover type product MCD12C1 (0.05 degree,https://doi.org/10.5067/MODIS/MCD12C1.006) has been used in the no SIF emission measurements selection and the no SIF emission measurement solely works in the bias correction process. The main purpose of the selection is to find a reference that represents the measurement without any SIF signal. This is justified because the SIF signal is very weak and the instrument issue (e.g. radiometric calibration and stray light) could introduce a spurious SIF-like signal. Therefore, the two algorithms make two different no SIF emission datasets to provide references, which finally causes bias. The data-driven retrieval reference to the measurement lets the retrieval procedure reduce the instrument impact in the training process, but the IAPCAS/SIF reference to a theoretical model can only correct the instrument issues in the bias correction process. Therefore the IAPCAS/SIF is indeed more sensitive to the measurement (spectrum) quality than data-driven retrieval. The scatterplots demonstrate the grid-cell inter-comparison between the two SIF products (Figs. 1i-l), and they maintain a strong linear relationship over all four seasons with the RMSE less than 0.22 W mμmsr. The worst linear correlation between the two products appears in spring with an

    R

    of 0.73 while the

    R

    for other seasons is about 0.84.

    3. Outlook

    Many satellite missions that have the capability to measure SIF, including GOSAT (-2), OCO-2 (-3), TanSat, and TROPOMI, have been launched in recent years. The global coverage of SIF measurements will be significantly improved as long as all satellite missions provide data products with similar quality. The data product quality, evaluated according to both accuracy and precision, is one of the key issues we need to investigate before applying the product to the carbon cycle and climate research, further noting that this depends on measurement processing, e.g., instrument performance and retrieval algorithm development. In addition, the satellite measured instantaneous SIF signal was directly linked to vegetation photosynthesis, which means that multiple factors, e.g., incoming sunlight, growing status of vegetation, and observation geometry, have a series of potential impacts on the detected SIF signal. The method for using this instantaneous measurement in model or data assimilation studies needs to be investigated. The application of SIF data in "top-down" carbon flux inversion can significantly improve the uncertainty of the estimated carbon sinks (vegetation) in the land-atmosphere carbon exchange process and consequently provide an opportunity to advance the understanding of anthropogenic emissions of greenhouse gases. Future missions, including the European Space Agency (ESA) FLuorescence EXplorer (FLEX), which will be launched in 2024 (Drusch et al., 2017), and TanSat-2, which is currently in the pre-design phase, will provide more advantageous SIF measurements that will contribute to research on the climate and the global carbon cycle.

    . This study was supported by the National Key R&D Program of China (No. 2016YFA0600203), the Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2019-1 & ZDRW-ZS-2019-2), and the Youth Program of the National Natural Science Foundation of China (41905029). The TanSat L1B data service was provided by the International Reanalysis Cooperation on Carbon Satellite Data (IRCSD) (131211KYSB20180002) and the Cooperation on the Analysis of Carbon Satellite Data(CASA). The authors thank the OCO-2 team for providing the Level-2 SIF data products.: Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-020-0204-6.

    av福利片在线观看| 97热精品久久久久久| 97超级碰碰碰精品色视频在线观看| 91麻豆av在线| 很黄的视频免费| 色哟哟哟哟哟哟| 久久久久久久久久成人| 婷婷亚洲欧美| 欧美最新免费一区二区三区| av.在线天堂| 精品人妻偷拍中文字幕| 国产精品福利在线免费观看| 国产精品福利在线免费观看| 在线观看一区二区三区| 丰满的人妻完整版| 亚洲精品日韩av片在线观看| 国内揄拍国产精品人妻在线| 精品乱码久久久久久99久播| 哪里可以看免费的av片| 免费看美女性在线毛片视频| 欧美黑人巨大hd| 亚洲欧美日韩高清专用| 三级毛片av免费| 亚洲avbb在线观看| 老女人水多毛片| 亚洲在线观看片| 亚洲性久久影院| 国产高清不卡午夜福利| 深夜精品福利| 久久精品国产亚洲av天美| 国产高清三级在线| 国产色爽女视频免费观看| 日本与韩国留学比较| 精品人妻1区二区| 丰满的人妻完整版| 99在线人妻在线中文字幕| 一个人免费在线观看电影| 午夜福利在线观看吧| 极品教师在线免费播放| 亚洲内射少妇av| 久久中文看片网| 亚洲av一区综合| 性插视频无遮挡在线免费观看| 俺也久久电影网| 韩国av在线不卡| 国产 一区 欧美 日韩| 观看免费一级毛片| 亚洲最大成人av| or卡值多少钱| 69av精品久久久久久| 国产欧美日韩一区二区精品| 亚洲男人的天堂狠狠| 国产探花在线观看一区二区| 久久精品国产鲁丝片午夜精品 | 亚洲图色成人| 老师上课跳d突然被开到最大视频| 亚洲欧美日韩高清在线视频| 人妻丰满熟妇av一区二区三区| 亚洲精华国产精华液的使用体验 | 久久久久久久精品吃奶| 免费搜索国产男女视频| 69人妻影院| 毛片一级片免费看久久久久 | 韩国av一区二区三区四区| 国产一级毛片七仙女欲春2| 黄色女人牲交| 91久久精品国产一区二区成人| 一级黄片播放器| 天堂网av新在线| 尾随美女入室| 我的老师免费观看完整版| 国产精品久久久久久精品电影| 国产一区二区激情短视频| 日韩欧美在线乱码| 国产毛片a区久久久久| 久久欧美精品欧美久久欧美| 床上黄色一级片| 亚洲精华国产精华精| 麻豆精品久久久久久蜜桃| 啦啦啦韩国在线观看视频| 日日摸夜夜添夜夜添av毛片 | 观看美女的网站| 无人区码免费观看不卡| 久久草成人影院| 又黄又爽又刺激的免费视频.| 熟妇人妻久久中文字幕3abv| 亚洲最大成人中文| 嫩草影视91久久| 亚洲精品成人久久久久久| 国产精品人妻久久久影院| 女人十人毛片免费观看3o分钟| 很黄的视频免费| 欧洲精品卡2卡3卡4卡5卡区| 老女人水多毛片| 搞女人的毛片| 色综合色国产| 国产一区二区三区视频了| 久久99热这里只有精品18| 国产高清有码在线观看视频| 1024手机看黄色片| 中文字幕免费在线视频6| 亚洲三级黄色毛片| 看免费成人av毛片| av在线蜜桃| 日韩欧美 国产精品| 一区福利在线观看| 国产精品国产三级国产av玫瑰| 亚洲熟妇中文字幕五十中出| 长腿黑丝高跟| 免费搜索国产男女视频| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播| 国产在线男女| 国产老妇女一区| 成人特级黄色片久久久久久久| 成人国产一区最新在线观看| 精品人妻偷拍中文字幕| 亚洲 国产 在线| 日本五十路高清| 亚洲 国产 在线| 国内少妇人妻偷人精品xxx网站| 日韩人妻高清精品专区| 亚洲自拍偷在线| 五月伊人婷婷丁香| 欧美bdsm另类| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品成人久久久久久| 亚洲成人中文字幕在线播放| 黄片wwwwww| 国产不卡一卡二| 亚洲成人精品中文字幕电影| 亚洲美女黄片视频| 少妇人妻一区二区三区视频| 草草在线视频免费看| 丰满的人妻完整版| 国产成年人精品一区二区| 在线免费观看的www视频| 国产男人的电影天堂91| 亚洲精品粉嫩美女一区| 我要看日韩黄色一级片| 九九热线精品视视频播放| 国产高清有码在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 欧美成人性av电影在线观看| 我要搜黄色片| 一级毛片久久久久久久久女| 国产黄色小视频在线观看| 免费人成视频x8x8入口观看| 男插女下体视频免费在线播放| 午夜爱爱视频在线播放| 亚洲久久久久久中文字幕| 欧美最黄视频在线播放免费| 婷婷亚洲欧美| 午夜免费成人在线视频| 日本与韩国留学比较| 国产欧美日韩精品亚洲av| 91在线精品国自产拍蜜月| 毛片一级片免费看久久久久 | 乱系列少妇在线播放| 成人亚洲精品av一区二区| 老司机深夜福利视频在线观看| 成人三级黄色视频| 免费高清视频大片| 黄色视频,在线免费观看| 免费看美女性在线毛片视频| 狠狠狠狠99中文字幕| 久久国内精品自在自线图片| 男人和女人高潮做爰伦理| 亚洲一区高清亚洲精品| 精品99又大又爽又粗少妇毛片 | 深夜a级毛片| 草草在线视频免费看| 男女边吃奶边做爰视频| 亚洲av一区综合| 免费观看的影片在线观看| 午夜激情欧美在线| 人妻久久中文字幕网| 日本一本二区三区精品| 色播亚洲综合网| 天堂√8在线中文| 美女xxoo啪啪120秒动态图| 欧美xxxx黑人xx丫x性爽| 国产中年淑女户外野战色| 亚洲人成网站在线播| 久久久久久久亚洲中文字幕| 人人妻人人看人人澡| 搡老熟女国产l中国老女人| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 男女下面进入的视频免费午夜| 亚洲国产欧洲综合997久久,| 日本a在线网址| 美女 人体艺术 gogo| 啦啦啦韩国在线观看视频| 熟女电影av网| 国产高潮美女av| 国产午夜精品久久久久久一区二区三区 | 极品教师在线免费播放| 免费看美女性在线毛片视频| av女优亚洲男人天堂| 亚洲在线自拍视频| 国产黄片美女视频| 国产乱人视频| 亚洲av中文av极速乱 | 18禁在线播放成人免费| 亚洲国产精品成人综合色| 俺也久久电影网| 最新在线观看一区二区三区| 免费人成在线观看视频色| 少妇熟女aⅴ在线视频| 熟女电影av网| 亚洲成人久久性| 国产精品一及| 女生性感内裤真人,穿戴方法视频| 日本免费a在线| a在线观看视频网站| 51国产日韩欧美| 亚洲男人的天堂狠狠| 精品久久久久久久久久免费视频| 18+在线观看网站| 网址你懂的国产日韩在线| 午夜福利在线观看免费完整高清在 | 人人妻人人澡欧美一区二区| 99久久精品热视频| 国产一区二区在线av高清观看| 校园人妻丝袜中文字幕| 久久九九热精品免费| 校园春色视频在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩东京热| 日韩一本色道免费dvd| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清| 久久国内精品自在自线图片| 99久久成人亚洲精品观看| 一个人看视频在线观看www免费| 精品一区二区三区人妻视频| 久久久成人免费电影| 国产一区二区激情短视频| 国产精华一区二区三区| 人妻久久中文字幕网| 看片在线看免费视频| 国产熟女欧美一区二区| av中文乱码字幕在线| 日韩欧美三级三区| 夜夜爽天天搞| 亚洲精品乱码久久久v下载方式| 国产亚洲精品av在线| 两个人的视频大全免费| 欧美bdsm另类| 欧美在线一区亚洲| 国产精品嫩草影院av在线观看 | 国语自产精品视频在线第100页| 日本五十路高清| 十八禁网站免费在线| 春色校园在线视频观看| 久久久精品大字幕| 不卡一级毛片| 女生性感内裤真人,穿戴方法视频| 日韩亚洲欧美综合| 国产av麻豆久久久久久久| 亚洲精品亚洲一区二区| 69人妻影院| 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验 | 国产v大片淫在线免费观看| 国语自产精品视频在线第100页| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| 动漫黄色视频在线观看| 久久久久久久久久黄片| 成人性生交大片免费视频hd| 免费av观看视频| 国产精品久久久久久亚洲av鲁大| 最近中文字幕高清免费大全6 | 日韩,欧美,国产一区二区三区 | 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 久久亚洲真实| 欧美不卡视频在线免费观看| 久久6这里有精品| netflix在线观看网站| 亚洲熟妇中文字幕五十中出| 淫妇啪啪啪对白视频| 久久精品夜夜夜夜夜久久蜜豆| 成人二区视频| 91在线观看av| 99久久精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 看免费成人av毛片| 在线观看一区二区三区| 一区二区三区免费毛片| 午夜免费男女啪啪视频观看 | 99视频精品全部免费 在线| 我要看日韩黄色一级片| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 精品久久久久久,| 日日干狠狠操夜夜爽| 最近最新中文字幕大全电影3| 久久精品91蜜桃| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成a人片在线一区二区| 国产黄片美女视频| 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 国产免费一级a男人的天堂| a在线观看视频网站| 特级一级黄色大片| 我的女老师完整版在线观看| 夜夜夜夜夜久久久久| 国产精品亚洲一级av第二区| 日韩欧美三级三区| 精品人妻熟女av久视频| 真实男女啪啪啪动态图| xxxwww97欧美| 久久精品国产亚洲av涩爱 | 一区二区三区免费毛片| 中文字幕久久专区| 国产av在哪里看| 国产伦人伦偷精品视频| 国产 一区 欧美 日韩| 我的老师免费观看完整版| 在线观看午夜福利视频| 日本成人三级电影网站| 一本久久中文字幕| 999久久久精品免费观看国产| 亚洲精品影视一区二区三区av| 亚洲国产精品合色在线| 日本免费a在线| 亚洲av成人精品一区久久| 欧美不卡视频在线免费观看| 内射极品少妇av片p| 午夜a级毛片| 午夜老司机福利剧场| 国产精品久久电影中文字幕| 欧美最新免费一区二区三区| 天堂动漫精品| xxxwww97欧美| 精品不卡国产一区二区三区| 欧美性感艳星| 成人永久免费在线观看视频| 亚洲七黄色美女视频| 久久久久久久久久成人| 一区二区三区四区激情视频 | xxxwww97欧美| 国产真实伦视频高清在线观看 | 黄色女人牲交| 国产日本99.免费观看| 成人欧美大片| 最近最新中文字幕大全电影3| 成年女人看的毛片在线观看| 美女xxoo啪啪120秒动态图| 国产精品一区二区免费欧美| 日本与韩国留学比较| 97热精品久久久久久| 中文资源天堂在线| 日日撸夜夜添| 免费看日本二区| av.在线天堂| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 看十八女毛片水多多多| 国产高清激情床上av| 国产黄色小视频在线观看| xxxwww97欧美| 国产免费男女视频| 久久精品久久久久久噜噜老黄 | 香蕉av资源在线| 成年人黄色毛片网站| 黄色欧美视频在线观看| 欧美区成人在线视频| 欧美黑人欧美精品刺激| 麻豆成人午夜福利视频| 91狼人影院| 久久精品夜夜夜夜夜久久蜜豆| 日本欧美国产在线视频| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 亚洲国产精品成人综合色| 日本在线视频免费播放| 精品福利观看| 久久99热这里只有精品18| 成人无遮挡网站| 国产综合懂色| 精品一区二区三区视频在线观看免费| 国产精品一及| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 97碰自拍视频| 久久久精品欧美日韩精品| 啦啦啦啦在线视频资源| 国产精品99久久久久久久久| av国产免费在线观看| 色精品久久人妻99蜜桃| 真实男女啪啪啪动态图| 日本黄大片高清| 国产精品三级大全| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三| 久久久久久大精品| 日韩欧美在线二视频| 国产高清不卡午夜福利| 国产私拍福利视频在线观看| 日韩高清综合在线| 亚洲在线观看片| 成人国产一区最新在线观看| 一个人免费在线观看电影| 欧洲精品卡2卡3卡4卡5卡区| 精品不卡国产一区二区三区| 男女下面进入的视频免费午夜| 亚洲av成人av| 真人一进一出gif抽搐免费| 免费看日本二区| 不卡视频在线观看欧美| 一a级毛片在线观看| 欧美xxxx黑人xx丫x性爽| 又黄又爽又刺激的免费视频.| 老熟妇仑乱视频hdxx| 两个人视频免费观看高清| 又爽又黄a免费视频| 舔av片在线| 亚洲第一电影网av| 亚洲第一区二区三区不卡| 亚洲国产欧美人成| 国产精品伦人一区二区| av天堂中文字幕网| 九色成人免费人妻av| 男女那种视频在线观看| 成人三级黄色视频| 深爱激情五月婷婷| 少妇猛男粗大的猛烈进出视频 | av天堂中文字幕网| 国内毛片毛片毛片毛片毛片| 欧美性感艳星| 精品无人区乱码1区二区| 国语自产精品视频在线第100页| 国国产精品蜜臀av免费| 免费黄网站久久成人精品| 不卡一级毛片| 日本爱情动作片www.在线观看 | 成人二区视频| 人妻夜夜爽99麻豆av| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 亚州av有码| 亚洲avbb在线观看| 22中文网久久字幕| 性插视频无遮挡在线免费观看| 欧美高清成人免费视频www| 精品久久久久久久久亚洲 | 久久精品91蜜桃| 日本免费a在线| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 欧美日本视频| 久久这里只有精品中国| 午夜激情福利司机影院| 伦理电影大哥的女人| 毛片女人毛片| 久久亚洲真实| 国产精品不卡视频一区二区| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 成人无遮挡网站| 欧美+日韩+精品| 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产| 亚洲黑人精品在线| 国产精品野战在线观看| 国产精品,欧美在线| 蜜桃久久精品国产亚洲av| 国产精品一区二区性色av| 18禁在线播放成人免费| 国产精品一区二区免费欧美| 999久久久精品免费观看国产| 国产高清有码在线观看视频| 国产激情偷乱视频一区二区| 99久久精品热视频| 99久国产av精品| av在线蜜桃| 日韩高清综合在线| 亚洲av二区三区四区| 亚洲精品国产成人久久av| 蜜桃久久精品国产亚洲av| 波多野结衣高清无吗| 禁无遮挡网站| 亚洲av五月六月丁香网| 综合色av麻豆| 亚洲天堂国产精品一区在线| 一a级毛片在线观看| 日本黄色片子视频| 国产 一区精品| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久久人妻蜜臀av| 久久99热这里只有精品18| 中文字幕精品亚洲无线码一区| 色哟哟哟哟哟哟| 亚洲黑人精品在线| 国产亚洲精品综合一区在线观看| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 身体一侧抽搐| 嫁个100分男人电影在线观看| 一个人看的www免费观看视频| 色播亚洲综合网| 欧美激情国产日韩精品一区| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 国产主播在线观看一区二区| 国产亚洲欧美98| 又粗又爽又猛毛片免费看| 1024手机看黄色片| 又紧又爽又黄一区二区| 日韩av在线大香蕉| 亚洲,欧美,日韩| 国产精品爽爽va在线观看网站| 国产成人a区在线观看| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 女人被狂操c到高潮| 亚洲精品一区av在线观看| 欧美xxxx性猛交bbbb| 日韩欧美 国产精品| 亚洲最大成人手机在线| 日本成人三级电影网站| 少妇猛男粗大的猛烈进出视频 | 国产伦在线观看视频一区| 久久久久久国产a免费观看| 国产在线精品亚洲第一网站| 搡女人真爽免费视频火全软件 | 久久精品综合一区二区三区| 久久久久久久久久久丰满 | 黄色视频,在线免费观看| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 婷婷丁香在线五月| 如何舔出高潮| 精品一区二区三区人妻视频| 国产成人影院久久av| 国产乱人伦免费视频| 91在线精品国自产拍蜜月| 国产午夜精品论理片| 九九热线精品视视频播放| 免费观看精品视频网站| 免费不卡的大黄色大毛片视频在线观看 | 午夜免费男女啪啪视频观看 | 我的女老师完整版在线观看| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 两人在一起打扑克的视频| 成人国产一区最新在线观看| 99久久精品国产国产毛片| 麻豆成人av在线观看| 一个人观看的视频www高清免费观看| 亚洲av五月六月丁香网| 久久6这里有精品| 波野结衣二区三区在线| 俺也久久电影网| 国产视频一区二区在线看| 高清毛片免费观看视频网站| 欧美区成人在线视频| 久久午夜亚洲精品久久| 在线观看av片永久免费下载| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 美女 人体艺术 gogo| 精品人妻1区二区| 最新在线观看一区二区三区| 亚洲成人中文字幕在线播放| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲 | 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 久久久久国内视频| 看十八女毛片水多多多| www.www免费av| 99视频精品全部免费 在线| 毛片女人毛片| 老熟妇仑乱视频hdxx| x7x7x7水蜜桃| 日日啪夜夜撸| 99久国产av精品| 欧美日韩精品成人综合77777| 91麻豆av在线| 少妇丰满av| 蜜桃久久精品国产亚洲av| 国产主播在线观看一区二区| 在线播放国产精品三级| 亚洲av美国av| 精品国内亚洲2022精品成人| 麻豆国产97在线/欧美| 亚洲无线观看免费| 69人妻影院| 欧美最新免费一区二区三区| 亚洲精品久久国产高清桃花| 网址你懂的国产日韩在线| 中亚洲国语对白在线视频| 全区人妻精品视频| bbb黄色大片|