• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Global Solar-induced Chlorophyll Fluorescence (SIF) Data Product from TanSat Measurements

    2021-04-20 04:01:24LuYAODongxuYANGYiLIUJingWANGLiangyunLIUShanshanDU2ZhaonanCAINaimengLUDarenLYUMaohuaWANGZengshanYINandYuquanZHENG
    Advances in Atmospheric Sciences 2021年3期

    Lu YAO, Dongxu YANG, Yi LIU, Jing WANG*, Liangyun LIU, Shanshan DU2,, Zhaonan CAI,Naimeng LU, Daren LYU, Maohua WANG, Zengshan YIN, and Yuquan ZHENG

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

    4Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences, Beijing 100094, China

    5National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

    6Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China

    7Shanghai Engineering Center for Microsatellites, Shanghai 201210, China

    (Received 30 July 2020; revised 19 November 2020; accepted 2 December 2020)

    ABSTRACT The Chinese Carbon Dioxide Observation Satellite Mission (TanSat) is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence (SIF) signals with its advanced technical characteristics. Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) platform, we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm. This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps. A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD (singular value decomposition) SIF product is also performed for follow-up algorithm optimization. The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons. The future SIF data product applications and requirements for SIF space observation are discussed.

    Key words: TanSat, solar-induced chlorophyll fluorescence, retrieval algorithm, remote sensing

    1. Global SIF observations from space

    The carbon cycle between the atmosphere and the terrestrial ecosystem plays an important role in climate change. Reliable and accurate assessment of the gross primary production (GPP) of vegetation is critical in determining the surface carbon flux and understanding climate feedback. Solar-induced chlorophyll fluorescence (SIF) is widely recognized as the ideal proxy for plant GPP because it represents an electromagnetic emission that is directly linked to photosynthetic activity (Frankenberg et al., 2011a; Guanter et al., 2012, 2014; Zhang et al., 2014; Yang et al., 2015b; Sun et al., 2017; Frankenberg and Berry, 2018; MacBean et al., 2018). Studies have shown a strong linear correlation between SIF and GPP on large spatial scales (Guanter et al., 2012; Frankenberg and Berry, 2018). Since the first successful attempt at measuring SIF from the Medium Resolution Imaging Spectrometer (MERIS) onboard the ENVIronmental SATellite (ENVISAT) (Guanter et al., 2007), the measurement of SIF signals from space has drastically improved global spatial coverage. Hyperspectral instruments that measure the O-A band onboard the new generation of greenhouse gas satellites, such as the Greenhouse Gases Observing Satellite (GOSAT) from Japan (Frankenberg et al., 2011a; Joiner et al., 2011) and the Orbiting Carbon Observatory 2 (OCO-2) from the U.S., provide new global SIF observations that approached from the in-filling effect of solar Fraunhofer lines. Medium spectral resolution instruments for monitoring atmospheric trace gases, such as the Global Ozone Monitoring Experiment-2 (GOME-2), are also capable of detecting SIF signals from space (Joiner et al., 2013; K?hler et al., 2015). Furthermore, the European satellite mission TROPOspheric Monitoring Instrument (TROPOMI) started an imaging observation of SIF in October 2017 (K?hler et al., 2018; Sun et al., 2018). The Chinese global carbon dioxide monitoring satellite (TanSat) was launched successfully in December 2016 (Chen et al., 2012; Ran and Li, 2019) and became the third greenhouse gas satellite for COmonitoring (Liu et al., 2018; Yang et al., 2018). TanSat moves in a sun-synchronous orbit crossing the equator at about 1330 LST (LST=UTC+8) with a 16-day repeat cycle (Liu et al., 2018). The TanSat mission was supported by the Ministry of Science and Technology of China, the Chinese Academy of Sciences, and the China Meteorological Administration. The Atmospheric Carbon-dioxide Grating Spectroradiometer (ACGS), the main instrument of TanSat, measures the O-A band with a spectral resolution of 0.039-0.042 nm and covers a spectral range of 758-778 nm(Wang et al., 2014; Li et al., 2017; Zhang et al., 2017). The measurement outside the strong Oabsorption lines in this band was used to approach SIF in this study. There are nine footprints across the track of TanSat on the ground in a frame, and the nadir footprint is about the size of 2 km × 2 km.

    2. SIF approaching from TanSat measurement

    The first TanSat global SIF map and data product originated from a data-driven algorithm based on singular value decomposition (SVD) techniques and has been introduced in a previous study (Du et al., 2018). In the data-driven algorithm, the measured spectrum is expressed as a linear combination of the SIF signal and several singular vectors that are trained with non-vegetated samples. This approach calculates the radiance contribution of SIF emission with a linear least-squares fitting, which is efficient in global retrievals and has been applied in GOSAT, OCO-2, and TROPOMI SIF retrievals (Guanter et al., 2012; Frankenberg et al., 2014; K?hler et al., 2018). The systematic error is removed during the training process.However, unexpected errors might arise due to the imperfect training dataset and varied measurement errors. The physicalbased retrieval method is well-known as a highly accurate approach because it simulates the radiative transfer in the atmosphere between the surface and satellite. Differential Optical Absorption Spectroscopy (DOAS) techniques have also been used in OCO-2 official SIF product retrieval (Frankenberg, 2014).

    In this study, we introduce a new TanSat SIF product that is approached by a DOAS based retrieval algorithm developed from the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) (Yang et al., 2015a). The IAPCAS has been developed and applied in TanSat XCOretrieval (Liu et al., 2018; Yang et al., 2018) and provides a well-developed forward model that contains both atmosphere and surface models (Liu et al.,2013). The study indicated that atmospheric scattering had only a limited impact on the SIF signal at the top of the atmospheric (TOA) (Frankenberg et al., 2011b); hence, only the extinction of light along the path was considered, and the Beer-Lambert Law was applied in the forward model instead of the full radiative transfer model. The forward model

    f

    can be written as

    in which

    I

    is the normalized, disk-integrated solar transmission spectrum,

    I

    is a unit vector,

    F

    is the relative SIF signal corresponding to the continuum level radiance in the 757-nm micro-window (758.4-759.2 nm), and the convolution operator < > converts the spectrum of high-resolution to instrument resolution using the instrument line shape. The retrieved parameter

    a

    consists of three polynomial coefficients (

    a

    ,

    i

    =0,1,2) which serves to model the continuum level radiance in the wavelength λ. The far-wings effect of the Olines has a minimal impact upon the continuum level radiance but is still considered in the retrieval to optimize the fit. In summary, the state vector list includes the relative SIF signal, the Ocolumn absorption factor, wavelength grid shift, and the coefficients of a second-order polynomial that approximates the continuum level radiance. A non a priori constrained Gaussian-Newton method is used in the inversion process, where the measurement noise was also considered. The SIF at TOA is calculated by multiplying the retrieved relative SIF with the continuum level radiance in the micro-window. The measurements over desert, snow, and bare soil are considered to have no SIF emission and are used in bias correction to reduce measurement systematic error. We use a daily varied bias correction for each footprint, and the bias is also calculated with the measurement continuum level radiance. In our data product, we provide both the bias-corrected and the raw retrieved SIF.

    The SIF data product for future analysis should undergo the cloud-filter and have good fitting quality. The continuum coverage, the range of the solar zenith angle, and the root mean square (RMS) of the spectrum fitting residual is used in the post-screening process for quality control.

    Before applied to TanSat measurements, the IAPCAS/SIF retrieval algorithm was used to obtain the SIF results from OCO-2 observations to test the algorithm. The results show good agreement between the OCO-2 IAPCAS/SIF retrieval and the OCO-2 official product (OCO2_Level 2_Lite_SIF.8r) with the coefficient of determination (

    R

    ) of 0.86, a root mean square error (RMSE) of 0.19 W mμmsr.

    The limited ground-based SIF measurements and the spatial-scale differences between the SIF from canopy observations and those derived from space make it difficult to validate the retrieved SIF of a single sounding, while the SIF uncertainty for each grid-cell could be calculated for further applications. The grid-cell SIF uncertainty is reduced by the multisoundings within the grid and is much lower than the precision of a single measurement that is dominated by instrumental noise (Sun et al., 2018). In Fig. 1, the seasonal TanSat SIF product for 757 nm (March 2017-February 2018) retrieved from the IAPCAS/SIF algorithm is shown. From the global SIF maps, it is clear that the IAPCAS/SIF dataset shows the SIF signal of the large vegetation areas, e.g., Southeast China, South Asia, Europe, the rainforests in Africa, and the Amazon, and the eastern US. The seasonal variation in deciduous forests and grassland was consistent with the vegetative growing state,throughout the year, which has also been observed by the GOSAT and OCO-2 SIF products (Frankenberg et al., 2014;Frankenberg and Berry, 2018; Sun et al., 2018; Somkuti et al., 2020). This new TanSat SIF product derived from the IAPCAS/SIF algorithm is archived on International Reanalysis Cooperation on Carbon Satellites Data (IRCSD) and will be accessible to the public when this paper is published (www.chinageoss.org/tansat), as well as the OCO-2 SIF data product with the IAPCAS/SIF algorithm.

    Fig. 1. Seasonal global SIF map and the differences between the IAPCAS/SIF and SVD data-driven SIF products. All subplots are shown based on 2° × 2° grid data, and all soundings in each grid were used to obtain the average SIF value for each grid. The rows of subplots indicate spring (MAM), summer (JJA), fall (SON), and winter (DJF) in the Northern Hemisphere from top to bottom. The seasonally averaged SIF distributions of TanSat from March 2017 to February 2018 are shown in the left column (a-d). The subplots (e-h) are the SIF differences between the two SIF products for each season.The seasonally averaged TanSat SIF from the two algorithms is also shown in a scatterplot in the right column (i-l) with statistics in each subplot. The scatter plots show that the two products agree well at the seasonal temporal scale, with the RMSE of less than 0.22 W m-2 μm-1 sr-1 and the R2 larger than 0.73 for all seasons. The fitting function and the grid number for the statistic are also indicated in subplots.

    The SIF products from IAPCAS/SIF and SVD data-driven retrieval show obvious bias in the global maps (Figs. 1e-h).SIF retrieved with IAPCAS/SIF algorithm has a large global negative bias in spring (MAM) and summer (JJA), but this bias is much smaller in the fall (SON) and winter (DJF). This bias could be caused by the differences in retrieval methods,especially the methods that are used to select the non-SIF emission measurements. In the data-driven algorithm, a training dataset of no SIF emission measurements has been selected to represent the background signal. The MODIS nadir BRDFadjusted reflectance product MCD43C4 (0.05 degree, http://doi.org/10.5067/MODIS/MCD43C4.006) is used in this selection (Du et al., 2018). In the IAPCAS/SIF algorithm, the MODIS land cover type product MCD12C1 (0.05 degree,https://doi.org/10.5067/MODIS/MCD12C1.006) has been used in the no SIF emission measurements selection and the no SIF emission measurement solely works in the bias correction process. The main purpose of the selection is to find a reference that represents the measurement without any SIF signal. This is justified because the SIF signal is very weak and the instrument issue (e.g. radiometric calibration and stray light) could introduce a spurious SIF-like signal. Therefore, the two algorithms make two different no SIF emission datasets to provide references, which finally causes bias. The data-driven retrieval reference to the measurement lets the retrieval procedure reduce the instrument impact in the training process, but the IAPCAS/SIF reference to a theoretical model can only correct the instrument issues in the bias correction process. Therefore the IAPCAS/SIF is indeed more sensitive to the measurement (spectrum) quality than data-driven retrieval. The scatterplots demonstrate the grid-cell inter-comparison between the two SIF products (Figs. 1i-l), and they maintain a strong linear relationship over all four seasons with the RMSE less than 0.22 W mμmsr. The worst linear correlation between the two products appears in spring with an

    R

    of 0.73 while the

    R

    for other seasons is about 0.84.

    3. Outlook

    Many satellite missions that have the capability to measure SIF, including GOSAT (-2), OCO-2 (-3), TanSat, and TROPOMI, have been launched in recent years. The global coverage of SIF measurements will be significantly improved as long as all satellite missions provide data products with similar quality. The data product quality, evaluated according to both accuracy and precision, is one of the key issues we need to investigate before applying the product to the carbon cycle and climate research, further noting that this depends on measurement processing, e.g., instrument performance and retrieval algorithm development. In addition, the satellite measured instantaneous SIF signal was directly linked to vegetation photosynthesis, which means that multiple factors, e.g., incoming sunlight, growing status of vegetation, and observation geometry, have a series of potential impacts on the detected SIF signal. The method for using this instantaneous measurement in model or data assimilation studies needs to be investigated. The application of SIF data in "top-down" carbon flux inversion can significantly improve the uncertainty of the estimated carbon sinks (vegetation) in the land-atmosphere carbon exchange process and consequently provide an opportunity to advance the understanding of anthropogenic emissions of greenhouse gases. Future missions, including the European Space Agency (ESA) FLuorescence EXplorer (FLEX), which will be launched in 2024 (Drusch et al., 2017), and TanSat-2, which is currently in the pre-design phase, will provide more advantageous SIF measurements that will contribute to research on the climate and the global carbon cycle.

    . This study was supported by the National Key R&D Program of China (No. 2016YFA0600203), the Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2019-1 & ZDRW-ZS-2019-2), and the Youth Program of the National Natural Science Foundation of China (41905029). The TanSat L1B data service was provided by the International Reanalysis Cooperation on Carbon Satellite Data (IRCSD) (131211KYSB20180002) and the Cooperation on the Analysis of Carbon Satellite Data(CASA). The authors thank the OCO-2 team for providing the Level-2 SIF data products.: Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-020-0204-6.

    狂野欧美白嫩少妇大欣赏| 免费观看性生交大片5| 久久久久网色| 又爽又黄无遮挡网站| 久久久精品免费免费高清| 九草在线视频观看| 亚洲成人中文字幕在线播放| 少妇裸体淫交视频免费看高清| 国产 精品1| 国产高清三级在线| 高清午夜精品一区二区三区| 日韩大片免费观看网站| 女人十人毛片免费观看3o分钟| 简卡轻食公司| 大又大粗又爽又黄少妇毛片口| h日本视频在线播放| 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 如何舔出高潮| 日本熟妇午夜| 深夜a级毛片| 成人漫画全彩无遮挡| 久久久久国产精品人妻一区二区| 赤兔流量卡办理| 日韩欧美 国产精品| 97超视频在线观看视频| 下体分泌物呈黄色| 国产又色又爽无遮挡免| 亚洲av中文av极速乱| 亚洲av福利一区| 一区二区三区免费毛片| 尤物成人国产欧美一区二区三区| 十八禁网站网址无遮挡 | 国产毛片在线视频| 汤姆久久久久久久影院中文字幕| 国产视频首页在线观看| 日本黄色片子视频| 精品少妇黑人巨大在线播放| 哪个播放器可以免费观看大片| 丰满乱子伦码专区| 日本黄色片子视频| 国产伦理片在线播放av一区| 成人黄色视频免费在线看| 国产综合精华液| 国产乱来视频区| 另类亚洲欧美激情| 免费看a级黄色片| 91久久精品国产一区二区三区| 在现免费观看毛片| 看黄色毛片网站| 男女边摸边吃奶| 精品久久国产蜜桃| a级毛色黄片| 免费av观看视频| 成人毛片a级毛片在线播放| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 成人一区二区视频在线观看| 亚洲精品乱码久久久久久按摩| 高清av免费在线| 亚洲四区av| 国产一区有黄有色的免费视频| 免费看光身美女| av国产免费在线观看| 少妇裸体淫交视频免费看高清| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验| 亚洲自拍偷在线| 69人妻影院| 日韩一区二区三区影片| 人妻一区二区av| 免费看a级黄色片| 视频中文字幕在线观看| 亚洲不卡免费看| 不卡视频在线观看欧美| 亚洲综合色惰| 最近2019中文字幕mv第一页| 国产毛片在线视频| 美女主播在线视频| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 永久网站在线| 噜噜噜噜噜久久久久久91| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 久久影院123| 国产视频内射| 亚洲成色77777| 精品久久久久久电影网| 五月天丁香电影| 97在线人人人人妻| 在线亚洲精品国产二区图片欧美 | 少妇的逼好多水| 中文乱码字字幕精品一区二区三区| 午夜精品一区二区三区免费看| 午夜福利在线观看免费完整高清在| 亚洲自偷自拍三级| 一级黄片播放器| av在线亚洲专区| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 18禁动态无遮挡网站| 国产精品99久久久久久久久| 亚洲一区二区三区欧美精品 | 91精品一卡2卡3卡4卡| 亚洲第一区二区三区不卡| 在线观看一区二区三区| 婷婷色综合www| 国产亚洲av片在线观看秒播厂| 天堂中文最新版在线下载 | 最近2019中文字幕mv第一页| av在线亚洲专区| 日韩欧美精品v在线| 亚洲,一卡二卡三卡| 熟妇人妻不卡中文字幕| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 晚上一个人看的免费电影| 大香蕉久久网| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 免费看光身美女| 日韩制服骚丝袜av| 99久国产av精品国产电影| 久久久精品免费免费高清| 日本与韩国留学比较| 免费观看性生交大片5| 99久久人妻综合| 精品熟女少妇av免费看| 少妇裸体淫交视频免费看高清| 精品99又大又爽又粗少妇毛片| 最近中文字幕2019免费版| 五月玫瑰六月丁香| 女人被狂操c到高潮| 久久久久国产网址| 国产成人精品婷婷| 亚洲av不卡在线观看| 熟女电影av网| 夫妻午夜视频| 成人鲁丝片一二三区免费| 黄色配什么色好看| 国产国拍精品亚洲av在线观看| 免费黄色在线免费观看| 波野结衣二区三区在线| 国产亚洲午夜精品一区二区久久 | 成人国产麻豆网| 性色avwww在线观看| 成人欧美大片| 日本与韩国留学比较| 国产精品久久久久久av不卡| 国产探花在线观看一区二区| 少妇丰满av| 亚洲va在线va天堂va国产| 日韩视频在线欧美| 国内揄拍国产精品人妻在线| 国产亚洲av嫩草精品影院| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 成人无遮挡网站| 成人一区二区视频在线观看| av免费观看日本| 欧美xxxx黑人xx丫x性爽| 国产免费又黄又爽又色| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| 国产成人精品福利久久| 五月玫瑰六月丁香| 中文字幕亚洲精品专区| 亚洲国产高清在线一区二区三| 国产精品三级大全| av线在线观看网站| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久| 国产伦在线观看视频一区| 亚洲欧洲国产日韩| 亚洲欧美日韩另类电影网站 | 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版| 啦啦啦中文免费视频观看日本| 极品教师在线视频| 22中文网久久字幕| 一区二区三区精品91| 欧美国产精品一级二级三级 | 久久久色成人| 看黄色毛片网站| 亚洲欧洲国产日韩| 天堂俺去俺来也www色官网| 白带黄色成豆腐渣| 大片电影免费在线观看免费| 国产欧美日韩一区二区三区在线 | 丝袜脚勾引网站| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 尾随美女入室| 日韩中字成人| 美女cb高潮喷水在线观看| 日韩欧美一区视频在线观看 | 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三| 国产精品精品国产色婷婷| 欧美日韩亚洲高清精品| 三级国产精品欧美在线观看| 久久人人爽av亚洲精品天堂 | 99热这里只有是精品50| 久久久午夜欧美精品| 欧美成人a在线观看| 精品一区二区三卡| 国产一区二区在线观看日韩| 亚洲成人久久爱视频| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 禁无遮挡网站| 免费av观看视频| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 精品少妇黑人巨大在线播放| 国产av不卡久久| 国产精品久久久久久精品古装| 黄色日韩在线| 又粗又硬又长又爽又黄的视频| 丝袜脚勾引网站| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 青春草国产在线视频| 一个人看的www免费观看视频| 亚洲自偷自拍三级| 午夜精品国产一区二区电影 | 七月丁香在线播放| 99热国产这里只有精品6| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 一级毛片 在线播放| 热99国产精品久久久久久7| 国产精品人妻久久久久久| 欧美日本视频| 欧美日韩精品成人综合77777| 99久久精品国产国产毛片| 午夜视频国产福利| 国产精品无大码| 禁无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 水蜜桃什么品种好| 大陆偷拍与自拍| a级毛片免费高清观看在线播放| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 我要看日韩黄色一级片| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| 亚洲色图综合在线观看| 日韩成人伦理影院| 99热国产这里只有精品6| 成年人午夜在线观看视频| 国产伦在线观看视频一区| 午夜激情久久久久久久| 亚洲天堂国产精品一区在线| 少妇被粗大猛烈的视频| 超碰97精品在线观看| 国产成人精品久久久久久| 色播亚洲综合网| 免费看不卡的av| 亚洲精品乱久久久久久| 涩涩av久久男人的天堂| 免费播放大片免费观看视频在线观看| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 亚洲四区av| 成人亚洲精品一区在线观看 | 69av精品久久久久久| 欧美变态另类bdsm刘玥| 高清av免费在线| 精品人妻一区二区三区麻豆| 日本午夜av视频| 日韩 亚洲 欧美在线| 国产老妇女一区| 黄色怎么调成土黄色| 免费人成在线观看视频色| 亚洲欧洲国产日韩| 成人亚洲精品av一区二区| 亚洲av国产av综合av卡| 精品人妻熟女av久视频| 日本黄大片高清| 久久韩国三级中文字幕| 国产成人一区二区在线| 国产亚洲最大av| 日本一本二区三区精品| 亚洲av男天堂| 嘟嘟电影网在线观看| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 熟女电影av网| 少妇猛男粗大的猛烈进出视频 | 在线观看免费高清a一片| 欧美日本视频| 国产精品三级大全| 久久这里有精品视频免费| 亚洲精品乱久久久久久| tube8黄色片| 成人国产麻豆网| 一级av片app| 天天躁夜夜躁狠狠久久av| 大香蕉97超碰在线| 欧美日韩一区二区视频在线观看视频在线 | 国产精品精品国产色婷婷| 日韩电影二区| 亚洲精品乱久久久久久| 真实男女啪啪啪动态图| av免费在线看不卡| 又爽又黄a免费视频| 在线观看一区二区三区| 成年av动漫网址| 91aial.com中文字幕在线观看| 国产黄色视频一区二区在线观看| 国产有黄有色有爽视频| 禁无遮挡网站| 亚洲成人av在线免费| 免费观看无遮挡的男女| 亚洲最大成人中文| 国产高清有码在线观看视频| 九草在线视频观看| 色播亚洲综合网| 国产一区二区三区综合在线观看 | 麻豆乱淫一区二区| 日日啪夜夜撸| 简卡轻食公司| 我的老师免费观看完整版| 少妇猛男粗大的猛烈进出视频 | 亚洲最大成人手机在线| 日本黄大片高清| 美女cb高潮喷水在线观看| 成人亚洲欧美一区二区av| 国产成人免费无遮挡视频| 搞女人的毛片| 亚洲欧洲日产国产| 久久这里有精品视频免费| 国产成人精品婷婷| 美女被艹到高潮喷水动态| 日韩三级伦理在线观看| 国产色婷婷99| 自拍欧美九色日韩亚洲蝌蚪91 | 91精品国产九色| 国产亚洲5aaaaa淫片| 熟女人妻精品中文字幕| 亚洲av中文av极速乱| 下体分泌物呈黄色| 午夜福利高清视频| 亚洲人与动物交配视频| 日产精品乱码卡一卡2卡三| 黄色视频在线播放观看不卡| 男的添女的下面高潮视频| 国产淫片久久久久久久久| 国产av码专区亚洲av| 欧美成人一区二区免费高清观看| 全区人妻精品视频| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频| 97热精品久久久久久| 91精品一卡2卡3卡4卡| 久久精品综合一区二区三区| 亚洲av中文字字幕乱码综合| 久久ye,这里只有精品| 大又大粗又爽又黄少妇毛片口| 啦啦啦在线观看免费高清www| tube8黄色片| 国产精品一及| 丝瓜视频免费看黄片| 国产精品秋霞免费鲁丝片| 丝瓜视频免费看黄片| 国产精品av视频在线免费观看| 亚洲人成网站在线播| 少妇被粗大猛烈的视频| 国产91av在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 亚州av有码| 天堂网av新在线| 国产一区亚洲一区在线观看| 美女被艹到高潮喷水动态| 国产亚洲午夜精品一区二区久久 | 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频 | 日本色播在线视频| 亚洲美女搞黄在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人黄色视频免费在线看| 免费看日本二区| 精品久久久久久久久亚洲| 欧美成人精品欧美一级黄| 97人妻精品一区二区三区麻豆| 国产精品蜜桃在线观看| av国产免费在线观看| 国产精品久久久久久久久免| 男女下面进入的视频免费午夜| 欧美极品一区二区三区四区| 日日撸夜夜添| 观看免费一级毛片| 嫩草影院入口| 波野结衣二区三区在线| 大香蕉97超碰在线| 久久精品人妻少妇| 99热全是精品| 久久国产乱子免费精品| 亚洲美女搞黄在线观看| 18禁裸乳无遮挡动漫免费视频 | 听说在线观看完整版免费高清| 人人妻人人爽人人添夜夜欢视频 | 99热国产这里只有精品6| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 国产淫语在线视频| 一级二级三级毛片免费看| 日韩国内少妇激情av| 在线观看免费高清a一片| 色网站视频免费| 国产亚洲精品久久久com| 免费观看av网站的网址| 久久久久精品性色| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 国产精品一及| 联通29元200g的流量卡| 亚洲最大成人av| 人妻一区二区av| 久久6这里有精品| 久久久久久久久久人人人人人人| 五月天丁香电影| 日韩av在线免费看完整版不卡| 免费在线观看成人毛片| 婷婷色综合大香蕉| 伊人久久国产一区二区| 亚洲av福利一区| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 国产黄片美女视频| 亚洲精品日本国产第一区| 午夜日本视频在线| 国产欧美日韩一区二区三区在线 | 亚洲av中文字字幕乱码综合| 一级二级三级毛片免费看| 国产成人精品福利久久| 2021少妇久久久久久久久久久| 在线观看av片永久免费下载| 婷婷色av中文字幕| 亚洲av男天堂| 国产欧美日韩精品一区二区| 色视频在线一区二区三区| 人人妻人人澡人人爽人人夜夜| 大香蕉97超碰在线| 蜜臀久久99精品久久宅男| 免费看日本二区| 亚洲国产av新网站| 大又大粗又爽又黄少妇毛片口| 国产高清国产精品国产三级 | 视频区图区小说| videos熟女内射| 又粗又硬又长又爽又黄的视频| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产色片| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 99久久中文字幕三级久久日本| av专区在线播放| 在线观看美女被高潮喷水网站| 99久久九九国产精品国产免费| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 夫妻午夜视频| 黄色一级大片看看| 日韩亚洲欧美综合| 国产精品福利在线免费观看| 高清毛片免费看| 国产成人精品婷婷| 国产精品99久久久久久久久| 插阴视频在线观看视频| 精品人妻偷拍中文字幕| 中文字幕亚洲精品专区| 亚洲av福利一区| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 亚洲精品aⅴ在线观看| 麻豆精品久久久久久蜜桃| 一区二区av电影网| 日韩一区二区视频免费看| 18禁在线播放成人免费| 美女脱内裤让男人舔精品视频| 国产精品99久久99久久久不卡 | 老师上课跳d突然被开到最大视频| 欧美国产精品一级二级三级 | 亚洲精品一二三| 男男h啪啪无遮挡| 纵有疾风起免费观看全集完整版| 美女视频免费永久观看网站| 国产成年人精品一区二区| 中文资源天堂在线| 久久午夜福利片| 精品人妻偷拍中文字幕| 国产91av在线免费观看| 有码 亚洲区| 99re6热这里在线精品视频| 亚洲综合精品二区| 亚洲av中文av极速乱| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 在线播放无遮挡| 少妇猛男粗大的猛烈进出视频 | 91精品国产九色| 国产欧美另类精品又又久久亚洲欧美| 国产成人一区二区在线| 亚洲av不卡在线观看| 亚洲国产欧美在线一区| 国产伦在线观看视频一区| 一本久久精品| 国产精品成人在线| 国产高清三级在线| 视频中文字幕在线观看| 亚洲欧美精品自产自拍| 日本黄色片子视频| 亚州av有码| 在线精品无人区一区二区三 | 日韩视频在线欧美| av国产精品久久久久影院| 大话2 男鬼变身卡| 晚上一个人看的免费电影| 国产亚洲91精品色在线| 伊人久久精品亚洲午夜| 成年人午夜在线观看视频| av国产免费在线观看| 国产免费又黄又爽又色| 久久97久久精品| 99精国产麻豆久久婷婷| 国产在视频线精品| 永久免费av网站大全| 亚洲av不卡在线观看| 国产男人的电影天堂91| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂 | 国产精品一及| 国产伦在线观看视频一区| 美女cb高潮喷水在线观看| 欧美日韩在线观看h| 天堂网av新在线| 久久精品久久精品一区二区三区| 欧美三级亚洲精品| 国产v大片淫在线免费观看| 久久人人爽人人爽人人片va| 精品酒店卫生间| 禁无遮挡网站| 亚洲成人中文字幕在线播放| 一级毛片aaaaaa免费看小| 91精品伊人久久大香线蕉| 亚洲精品亚洲一区二区| videos熟女内射| 亚洲av一区综合| 午夜福利在线观看免费完整高清在| 91精品国产九色| 日韩三级伦理在线观看| 人妻制服诱惑在线中文字幕| 水蜜桃什么品种好| 少妇人妻久久综合中文| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 久久久久久九九精品二区国产| 极品教师在线视频| 国产一区二区亚洲精品在线观看| 波野结衣二区三区在线| 亚洲人与动物交配视频| av免费在线看不卡| 免费看光身美女| 水蜜桃什么品种好| 久久久久久伊人网av| 毛片女人毛片| 欧美bdsm另类| 成人午夜精彩视频在线观看| 国产 一区精品| av专区在线播放| 欧美日韩国产mv在线观看视频 | 舔av片在线| 欧美xxⅹ黑人| 99热这里只有精品一区| 男女国产视频网站| 国产老妇女一区| 免费看日本二区| 久久久久久国产a免费观看| 三级经典国产精品| 成年免费大片在线观看| 亚州av有码| 女人久久www免费人成看片| 99热6这里只有精品| 亚州av有码| 白带黄色成豆腐渣| 建设人人有责人人尽责人人享有的 | 国产精品偷伦视频观看了| 夜夜爽夜夜爽视频| 亚洲精品影视一区二区三区av| 国产精品国产三级专区第一集| 99热这里只有是精品50| 国产成人免费无遮挡视频| 蜜臀久久99精品久久宅男| 黄色欧美视频在线观看| 美女内射精品一级片tv| av播播在线观看一区| 青春草视频在线免费观看| 69av精品久久久久久| 久久99精品国语久久久| 联通29元200g的流量卡| 精品久久久精品久久久|