• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Interannual Variation of Transboundary Contributions from Chinese Emissions of PM2.5 to South Korea

    2021-04-20 00:41:34XiaoHANandMeigenZHANG
    Advances in Atmospheric Sciences 2021年5期

    Xiao HAN and Meigen ZHANG*,3

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

    3Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment,Chinese Academy of Sciences, Xiamen 361021, China

    ABSTRACT In recent years, several studies pointed out that anthropogenic emission sources in China which significantly contribute to the PM2.5 mass burden was an important cause of particulate pollution in South Korea. However, most studies generally focused upon a single pollution event. It is rare to see comprehensive research that captures those features prone to interannual variations concerning the transboundary pollutant contribution in South Korea using a unified method. In this paper, we establish the emission inventories covering East Asia in 2010, 2015, and 2017, and then conduct the source apportionment by applying a coupled regional air quality model called the Integrated Source Apportionment Module(ISAM). Comparison of simulated and observed PM2.5 mass concentration at 165 CNEMC (China National Environmental Monitoring Center) sites suggests that the PM2.5 concentrations are well represented by the modeling system. The model is used to quantitatively investigate the contribution from emission sources in China to PM2.5 concentrations over South Korea and those features found to be prone to interannual variations are then discussed. The results show that the average annual contribution of PM2.5 has dropped significantly from 28.0% in 2010 to 15.7% in 2017, which strongly suggests that China has achieved remarkable results in the treatment of atmospheric particulates.

    Key words: CMAQ, PM2.5, transboundary contribution, air quality

    1. Introduction

    In recent years, there has been much controversy as to whether the transport of particulate matter from China has had a serious impact on the air quality of neighboring countries. Due to economic development and dense population, the mass loading of aerosols in eastern China has often been at high levels and has led to frequent haze events (Guo et al., 2014; Zhu et al., 2016). Intuitively, these aerosols are also likely to make transboundary contributions to nearby, downstream areas. Taking South Korea as an example, some earlier studies used backward trajectories among other methods to analyze the source of PMin the Seoul metropolitan area, suggesting that the emission in industrial areas of China were important sources of sulfate, nitrate, and secondary organic carbon (Kim et al., 2007; Heo et al., 2009). Since 2010, many researchers have used the receptor model and numerical simulations to trace the source, and quantitatively estimated the contribution from emission sources in Beijing, Tianjin, Hebei, Shandong, and the Yangtze River Delta during different periods. The proportion of the particulate matter attributed to Chinese emissions in South Korea fluctuated from 10% to 80% (Lee et al., 2017; Choi et al., 2019; Yim et al., 2019). This significant variation is subject to further uncertainty considering that there were large deviations among the related studies which used diverse methods and analyzed different time periods.

    On the other hand, several atmospheric environmental control projects have been implemented in succession by the Chinese government to strictly control atmospheric pollution since 2013. According to the "Report on the State of the Environment in China", the average PMmass burden of 74 leading cities (Fang et al., 2016) in China has dropped from 72 μg min 2013 to 39 μg min 2018. Specifically, the PMmass concentration decreased by 43.4% and 34.4% in two key regions: Beijing-Tianjin-Hebei and the Yangtze River Delta, respectively. These results indicate that the treatment of air pollution has resulted in significant reductions, and the transboundary impact of Chinese pollutant emissions on the air quality of neighboring countries should also show concurrent reductions over the past 10 years. However, it is rare to see related research which estimates the interannual variations of pollutants based on emission sources that exhibit annual changes.

    2. Methodology

    This study applied the regional air quality modeling system RAMS-CMAQ coupled with ISAM (integrated source appointment module) to simulate the major PMcomponents and their precursors emitted from the sources in China. Compared with other methods, such as receptor modeling, the chemical transport model is more suitable for capturing the transport contribution of secondary aerosols that result from nonlinear processes, including chemical mechanisms, wet scavenging, and gas-aerosol interactions, which are treated comprehensively. Within the model system, CMAQ (version 5.0.2;https://www.airqualitymodeling.org/index.php/CMAQ_version_5.0.2_(April_2014_release)_Technical_Documentation)was responsible for simulating the evolution of atmospheric pollutants. ISAM is a new-generation numerical source appointment module. Compared with the previous version (TSSA), the computational requirements and reliable representation were balanced and optimized. Additionally, aside from other major aerosol species (sulfate, nitrate, ammonium, black carbon, and organic carbon), ISAM added the mechanism to track multiple crustal species (Kwok et al., 2013). The modeling system has been employed to research the spatial-temporal distribution of aerosol in East Asia and has proven to perform reliably (Han et al., 2011, 2013; Li et al., 2019).

    The emission source inventories covering East Asia corresponding to the simulation year were established. First, the MIX inventory (Li et al., 2017), which provides the major anthropogenic emission data covering the entire Asian continent,is regarded to be a reliable emission inventory and has been widely used by modeling studies. Thus, the MIX (based on 2010 data) combined with other emission data, including lightning, spraying, soil fertilization, global natural VOCs, forest and grassland wildfires, and straw burning from REAS (Regional Emission Inventory in Asia; Version 2.1), MEGAN(Model of Emissions of Gases and Aerosols from Nature; Version 2.1), and GFED (Global Fire Emissions Database; Version 3.0), respectively, was applied to establish the emission inventory in 2010. Second, the latest version of MEIC inventory (http://www.meicmodel.org/dataset-mix.html; based on 2015), which provides the anthropogenic emission data in China, was used to establish the emission inventory in 2015. Meanwhile, the GFED was also updated in version 4.1.However, the comprehensive emissions data in East Asia based on recent years have not been released until now. The research team of MIX summarized the interannual variation of pollutant emission from 2010 to 2017 in China and released the statistical results with detailed information about species and sections (Zheng et al., 2018). Then, the 2017 emission inventory was obtained by adjusting the data based on 2015 according to the statistical parameters in Zheng et al. (2018).As reported by Zheng et al. (2018), the anthropogenic emission budget of major aerosol precursors and primary PMcomponents underwent significant changes from 2010 to 2017 in China. The emissions of SO, PM, BC, and OC showed a declining trend year after year. The emission of SOin particular, decreased by 61.8% over this period, from 27.8 Tg in 2010 to 10.5 Tg in 2017. Furthermore, the declines of primary PM, BC, and OC were 35.6%, 23.5%, and 34.4%, respectively. Only NMVOCs (nonmethane volatile organic compounds) emissions rose, by 10.5%.

    3. Results and discussion

    The model domain (shown in Fig. 1) is 6654 km × 5440 km with 64 kmfixed grid cells and uses a rotated polar stereographic map projection. To evaluate the simulation results, the hourly observation data of PMmass concentration from 2015 released by the China National Environmental Monitoring Center were collected, and we selected data from 35 stations in North China, 50 stations in Northeast China, and 80 stations in East China for comparison with the modeled PM.The location of each site is shown in Fig. 1, and all sites are located in the region around South Korea. Figures 2a–c presents the scatterplot of the observed and modeled monthly means of PMmass concentrations in 2015 over North China, Northeast China, and Eastern China, respectively. It can be seen that the points generally gather around the 1:1 solid line in Fig. 2b, but the model results were slightly greater than the observed values in Figs. 2a and 2c. Figures 2d–f presents the correlation coefficients of monthly means between the observational and simulated values in January, April, July, and October for each station. The correlation coefficients are broadly distributed in the 0.5–0.75 range, and were greater in January, April, and October, but were relatively lower in July. One possible explanation for the July discrepancy centers around good diffusion conditions since convection is strong during summer, so it is difficult to capture the significant fluctuations of the PMmass burden for model simulations. In general, the average values and variation trend of PMmass concentration in 2015 can be well reproduced by the modeling system.

    Fig. 1. The model domain used in this study and the locations of observation data in North China, Northeast China, and Eastern China.

    Fig. 2. Scatterplots of the modeled and observed monthly means (units: μg m?3) of PM2.5 mass concentrations (a–c) and the correlation coefficients (d–f). The solid lines are 1:1 and the dashed lines are 2:1 or 1:2 in (a–c). The x-axis represents the different stations in (d–f).

    Fig. 3. The monthly averaged surface wind field in January, April, July, and October of 2015.

    Based on the emission inventories in 2010, 2015, and 2017, the mass concentration of pollutants in East Asia was simulated by RAMS-CMAQ. It should be noted that in order to eliminate the interannual variations of meteorological factors, all experiments were conducted by applying the same meteorological field corresponding to the mean values observed during the respective months of 2015. Figure 3 presents the monthly average surface wind field in January, April, July, and October of 2015. It can be seen that the meteorological conditions were conducive to pollutant transport from East China to South Korea due to the strong northwesterly wind field forced by the interaction between the Siberian (Continental) High and Okhotsk (Maritime) Low that are climatologically common in January. In July, however, the dominant wind direction was southerly, the wind speed was relatively low, and the strong solar radiation is known to lead to strong and widespread convection and a subsequent increase of dry deposition of aerosols. Thus, the transport impact from China should be weak during summer. On the other hand, compared with the weak average wind speeds in April, the anticyclonic circulations which develop in autumn imply that much of the pollution emitted from central and eastern China could be transported to the eastern, downwind areas in October. Figure 4 shows the horizontal distribution of the annual average PMmass concentration in 2015. The interannual differences of PMmass concentrations calculated from 2010, 2015, and 2017 data (2015 minus 2010, and 2017 minus 2015) are also shown in Fig. 4. First, it can be seen that high values, which can exceed 75 μg m,were mainly concentrated in North China, Central China, and the Sichuan Basin. Furthermore, the mass burden reached 35–75 μg min the densely populated areas of central and eastern China, and below 35 μg min other regions. The above distribution features were essentially consistent with that of the emission inventory. Also, the PMmass concentration broadly decreased by 15–30 μg mfrom 2010 to 2015, and 10–20 μg mfrom 2015 to 2017 in Central and Eastern China,respectively.

    Figure 5 shows the percentage of the average annual contribution which was attributed to anthropogenic emissions by China, to the total PMmass burden in 2010, 2015, and 2017 over the model domain. Generally, it can be seen that the major anthropogenic contributions appeared in localized areas of China. The value could exceed 90% over most of these regions, except the Xinjiang Uygur Autonomous Region and the Tibet Autonomous Region in China, and was limited to 20%–30% of the total PMmass burden in South Korea in 2010. Over time, the local contribution trended lower in the Xinjiang Uygur Autonomous Region, Central China, and Northeast China consistent with the accompanying decrease of anthropogenic emissions, but generally maintained a value above 70% in most regions. Also, the contribution of Chinese anthropogenic emissions of PMin South Korea dropped to less than 30% in 2015 and less than 20% in 2017. According to the simulation results, the annual, regionally averaged contribution was 28.0% in 2010, 20.4% in 2015, and 15.7% in 2017, respectively.

    In general, the mass burden of PMparticles in China has decreased significantly, and the contribution from local anthropogenic emissions has also been declining due to the strict emission control measures. The transport contribution of Chinese anthropogenic emission to the PMmass burden in South Korea has also dropped significantly from 28.0% in 2010 to 15.7% in 2017. As reported by related research (https://data.worldbank.org/indicator/EN.ATM.PM25.MC.M3?locations=KR), the annual averaged PMmass concentration in South Korea was 29.80 μg min 2010 and decreased to 25.04 μg min 2017. The results of this study indicate that the annually-averaged mass concentration of PMin South Korea attributed to Chinese anthropogenic emission was 8.34 μg min 2010, and fell to 3.93 μg min 2017. This relatively low value further strongly suggests that China has achieved remarkable results regarding the control of atmospheric particulate pollution. It is worthy to note, however, that the transboundary contribution of pollutants could be affected by other factors such as altered meteorological field variables and local pollution levels. In future research, we will analyze the seasonal variations and other factors that may contribute to the PMmass burden.

    Fig. 4. The annual mean values of PM2.5 mass concentration in 2015 are shown in (a). Also shown are the variations of PM2.5 mass concentration: 2015 minus 2010 (b) and 2017 minus 2015 (c).

    Fig. 5. Annual mean values of contribution (%) of PM2.5 from the emission sources in China in 2010(a), 2015 (b), and 2017 (c).

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 41830109 and 42077203), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19040204).

    日本欧美视频一区| 久久人妻熟女aⅴ| 黄色欧美视频在线观看| 飞空精品影院首页| 亚洲av免费高清在线观看| 久久久久久久精品精品| 97超视频在线观看视频| 国产黄色免费在线视频| 天天操日日干夜夜撸| 欧美+日韩+精品| 老女人水多毛片| 欧美 日韩 精品 国产| 欧美日韩av久久| 亚洲精品国产av成人精品| 欧美日韩视频高清一区二区三区二| 日韩av免费高清视频| 日韩不卡一区二区三区视频在线| 成人毛片a级毛片在线播放| 免费高清在线观看日韩| 久久国产精品大桥未久av| 看免费成人av毛片| 国产一区二区三区综合在线观看 | 高清毛片免费看| 国产日韩欧美亚洲二区| 久久久久久人妻| 狂野欧美白嫩少妇大欣赏| 亚洲高清免费不卡视频| 亚洲精品久久午夜乱码| 午夜久久久在线观看| 亚洲国产欧美在线一区| 亚洲精品乱久久久久久| 爱豆传媒免费全集在线观看| 成人黄色视频免费在线看| 男女啪啪激烈高潮av片| 最近中文字幕2019免费版| 亚洲精品美女久久av网站| av在线app专区| 久久精品国产亚洲av天美| 999精品在线视频| 亚洲精品日本国产第一区| 春色校园在线视频观看| 日韩免费高清中文字幕av| 国产免费一区二区三区四区乱码| 啦啦啦视频在线资源免费观看| xxxhd国产人妻xxx| 黄色怎么调成土黄色| av天堂久久9| 啦啦啦在线观看免费高清www| 亚洲美女视频黄频| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美精品济南到 | 精品人妻熟女av久视频| 亚洲色图综合在线观看| 久久影院123| 久久ye,这里只有精品| 一级a做视频免费观看| www.色视频.com| 免费播放大片免费观看视频在线观看| 如日韩欧美国产精品一区二区三区 | 国产探花极品一区二区| 久久久久久久亚洲中文字幕| 久久久久久久国产电影| 超碰97精品在线观看| 久久久精品区二区三区| 一边摸一边做爽爽视频免费| 久久精品夜色国产| 欧美xxxx性猛交bbbb| 国产黄色视频一区二区在线观看| 日韩欧美精品免费久久| 99热网站在线观看| 国产精品无大码| 国产在线视频一区二区| 亚洲精品美女久久av网站| 亚洲性久久影院| 男女无遮挡免费网站观看| 午夜影院在线不卡| 久久久久久久大尺度免费视频| a级毛色黄片| 欧美日韩av久久| 韩国av在线不卡| 日韩一区二区三区影片| a级毛色黄片| 18禁观看日本| 精品亚洲乱码少妇综合久久| 成年美女黄网站色视频大全免费 | 国产精品一区二区在线不卡| 黄片播放在线免费| 国产综合精华液| 国产高清有码在线观看视频| 日韩成人av中文字幕在线观看| 国产黄片视频在线免费观看| 在线观看美女被高潮喷水网站| 国产黄片视频在线免费观看| 久久韩国三级中文字幕| 99九九在线精品视频| 国产在视频线精品| 久久精品亚洲精品国产色婷小说| 国产亚洲精品一区二区www | 黑人操中国人逼视频| 热99国产精品久久久久久7| 岛国在线观看网站| 亚洲欧美日韩另类电影网站| 亚洲五月色婷婷综合| 麻豆乱淫一区二区| 国产精品久久久久久精品古装| 好男人电影高清在线观看| 精品亚洲成国产av| 在线观看人妻少妇| 在线观看免费视频网站a站| 亚洲第一青青草原| 大香蕉久久网| 亚洲性夜色夜夜综合| 亚洲精品国产精品久久久不卡| 国产一区二区三区综合在线观看| 蜜桃在线观看..| 捣出白浆h1v1| 中文字幕人妻丝袜制服| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕另类日韩欧美亚洲嫩草| 男女免费视频国产| 免费看十八禁软件| 日本av免费视频播放| 极品人妻少妇av视频| 人妻久久中文字幕网| 国产片内射在线| 日日夜夜操网爽| 一本久久精品| 777久久人妻少妇嫩草av网站| 成人特级黄色片久久久久久久 | 国产片内射在线| 亚洲欧洲日产国产| 青青草视频在线视频观看| 91精品国产国语对白视频| 一本久久精品| 9热在线视频观看99| 久久久精品区二区三区| av天堂在线播放| 天天影视国产精品| 男女床上黄色一级片免费看| 女性生殖器流出的白浆| 中文字幕另类日韩欧美亚洲嫩草| 高清黄色对白视频在线免费看| av超薄肉色丝袜交足视频| 免费观看a级毛片全部| 久久久久久亚洲精品国产蜜桃av| 精品久久蜜臀av无| 欧美中文综合在线视频| 国产精品电影一区二区三区 | 91大片在线观看| 99精品在免费线老司机午夜| 美女福利国产在线| 天天躁日日躁夜夜躁夜夜| www日本在线高清视频| 999久久久精品免费观看国产| 老熟女久久久| 日韩视频在线欧美| 80岁老熟妇乱子伦牲交| 精品乱码久久久久久99久播| 亚洲人成77777在线视频| 国产免费福利视频在线观看| 国产成人影院久久av| 久久精品91无色码中文字幕| 成年人黄色毛片网站| 精品一区二区三区四区五区乱码| 成人国产av品久久久| 欧美人与性动交α欧美软件| a级毛片黄视频| 在线观看www视频免费| 纯流量卡能插随身wifi吗| 午夜免费成人在线视频| 精品亚洲成国产av| 18禁国产床啪视频网站| 日韩视频一区二区在线观看| 久久99一区二区三区| 一级,二级,三级黄色视频| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 亚洲欧洲日产国产| 黄色a级毛片大全视频| 久久精品熟女亚洲av麻豆精品| 免费在线观看完整版高清| 老司机影院毛片| 51午夜福利影视在线观看| 欧美精品人与动牲交sv欧美| 波多野结衣一区麻豆| 欧美成人免费av一区二区三区 | 中文字幕人妻丝袜制服| 亚洲av国产av综合av卡| e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 天天躁日日躁夜夜躁夜夜| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 色在线成人网| 久久中文看片网| 中文字幕人妻丝袜制服| 69av精品久久久久久 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品偷伦视频观看了| 国产区一区二久久| 国产精品一区二区在线不卡| 欧美人与性动交α欧美软件| 午夜视频精品福利| 精品人妻在线不人妻| 亚洲精品国产精品久久久不卡| 亚洲人成电影观看| 成人三级做爰电影| 精品第一国产精品| 岛国在线观看网站| 午夜视频精品福利| 十八禁网站免费在线| 天天操日日干夜夜撸| 精品一区二区三区四区五区乱码| 久久99热这里只频精品6学生| 午夜激情av网站| 亚洲国产欧美日韩在线播放| 国产在线观看jvid| 女性生殖器流出的白浆| 午夜福利在线观看吧| 三级毛片av免费| 黑人欧美特级aaaaaa片| 免费日韩欧美在线观看| 日韩免费av在线播放| 亚洲,欧美精品.| 国产亚洲精品久久久久5区| 日韩有码中文字幕| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 成年人午夜在线观看视频| 亚洲全国av大片| 国产欧美亚洲国产| 国产精品偷伦视频观看了| 国产精品 欧美亚洲| 老熟妇乱子伦视频在线观看| 精品亚洲成a人片在线观看| 十八禁网站免费在线| 一级片免费观看大全| 狂野欧美激情性xxxx| 亚洲午夜理论影院| 日韩免费av在线播放| 欧美黑人欧美精品刺激| 欧美精品一区二区大全| aaaaa片日本免费| 看免费av毛片| 亚洲成人免费电影在线观看| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清videossex| 女性被躁到高潮视频| 国产成人系列免费观看| 人人妻人人澡人人爽人人夜夜| 波多野结衣一区麻豆| av天堂久久9| 变态另类成人亚洲欧美熟女 | 亚洲国产看品久久| 久久国产精品大桥未久av| tocl精华| 亚洲精品国产色婷婷电影| 岛国在线观看网站| 亚洲成人免费av在线播放| 极品教师在线免费播放| 人人妻人人澡人人看| 国产日韩一区二区三区精品不卡| 老司机在亚洲福利影院| 免费少妇av软件| 精品国产一区二区三区久久久樱花| 欧美乱妇无乱码| 成人18禁高潮啪啪吃奶动态图| 亚洲午夜精品一区,二区,三区| 欧美在线黄色| 色94色欧美一区二区| 欧美成狂野欧美在线观看| 国产成人av激情在线播放| 国产精品亚洲一级av第二区| 国产日韩欧美亚洲二区| 国产在线视频一区二区| 午夜精品久久久久久毛片777| 色尼玛亚洲综合影院| 亚洲自偷自拍图片 自拍| 丝瓜视频免费看黄片| 99精品欧美一区二区三区四区| 嫁个100分男人电影在线观看| 大片电影免费在线观看免费| 老司机深夜福利视频在线观看| 狠狠精品人妻久久久久久综合| 亚洲熟妇熟女久久| 久久九九热精品免费| 精品一区二区三区av网在线观看 | 色精品久久人妻99蜜桃| 日韩有码中文字幕| 日日爽夜夜爽网站| 麻豆成人av在线观看| av欧美777| av网站免费在线观看视频| 亚洲第一欧美日韩一区二区三区 | 国产高清视频在线播放一区| 一本一本久久a久久精品综合妖精| 一边摸一边抽搐一进一小说 | 精品午夜福利视频在线观看一区 | 欧美日韩黄片免| 91麻豆精品激情在线观看国产 | 老司机亚洲免费影院| 999久久久国产精品视频| 天堂动漫精品| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 国产无遮挡羞羞视频在线观看| 黄片小视频在线播放| 亚洲av欧美aⅴ国产| 成人18禁在线播放| 国产精品久久久久久精品电影小说| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 亚洲第一欧美日韩一区二区三区 | 老熟女久久久| 国产精品一区二区在线观看99| 一区二区av电影网| 日日夜夜操网爽| av天堂在线播放| 久久人妻熟女aⅴ| 国产男女内射视频| 午夜激情av网站| 男女床上黄色一级片免费看| 成人手机av| 看免费av毛片| 免费在线观看影片大全网站| 考比视频在线观看| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 欧美在线黄色| 欧美精品一区二区免费开放| 国产高清国产精品国产三级| 激情视频va一区二区三区| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 高清av免费在线| 欧美成人午夜精品| 亚洲熟妇熟女久久| 国产极品粉嫩免费观看在线| 色播在线永久视频| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| av又黄又爽大尺度在线免费看| av不卡在线播放| 国产av一区二区精品久久| 亚洲精品自拍成人| 亚洲国产欧美在线一区| 97人妻天天添夜夜摸| 18禁国产床啪视频网站| 久久九九热精品免费| 精品卡一卡二卡四卡免费| 悠悠久久av| 国产午夜精品久久久久久| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线黄色| 高清毛片免费观看视频网站 | 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 日韩中文字幕视频在线看片| 色老头精品视频在线观看| kizo精华| 男人操女人黄网站| 99久久99久久久精品蜜桃| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 窝窝影院91人妻| 乱人伦中国视频| 在线看a的网站| 久久久久久久久免费视频了| 动漫黄色视频在线观看| 人妻一区二区av| 老司机午夜十八禁免费视频| 777久久人妻少妇嫩草av网站| 亚洲精品一二三| 精品国产一区二区久久| 欧美性长视频在线观看| 老熟女久久久| 一进一出好大好爽视频| kizo精华| 天堂动漫精品| 亚洲男人天堂网一区| 久久精品国产亚洲av香蕉五月 | 99精品在免费线老司机午夜| 久久国产亚洲av麻豆专区| 精品人妻1区二区| 国产精品 国内视频| 欧美另类亚洲清纯唯美| 国产成人精品久久二区二区免费| 亚洲欧美色中文字幕在线| 露出奶头的视频| aaaaa片日本免费| 精品福利观看| 亚洲视频免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 在线 av 中文字幕| 精品乱码久久久久久99久播| 日本wwww免费看| 欧美性长视频在线观看| 蜜桃在线观看..| 国产麻豆69| 精品福利观看| 岛国毛片在线播放| 一级片'在线观看视频| 亚洲中文字幕日韩| 天天添夜夜摸| 国产激情久久老熟女| 国产一区二区三区视频了| 日韩欧美免费精品| 国产精品1区2区在线观看. | 欧美日韩av久久| 国产一区二区三区综合在线观看| 老司机午夜十八禁免费视频| 免费日韩欧美在线观看| 久久久久精品人妻al黑| 成人国语在线视频| 欧美成人午夜精品| 欧美日韩亚洲综合一区二区三区_| 夫妻午夜视频| 中文字幕制服av| 最近最新中文字幕大全免费视频| 国产精品一区二区免费欧美| videos熟女内射| 亚洲七黄色美女视频| 免费av中文字幕在线| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 国产成人免费无遮挡视频| 精品国产一区二区三区四区第35| 成人黄色视频免费在线看| 99国产精品一区二区三区| 高清视频免费观看一区二区| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲熟女毛片儿| 欧美激情高清一区二区三区| 天堂8中文在线网| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看| 在线观看免费高清a一片| 午夜福利乱码中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 色婷婷久久久亚洲欧美| 午夜福利一区二区在线看| 久久这里只有精品19| 国产精品欧美亚洲77777| a在线观看视频网站| 怎么达到女性高潮| 免费看a级黄色片| cao死你这个sao货| 色视频在线一区二区三区| 国产精品麻豆人妻色哟哟久久| 久久性视频一级片| 91九色精品人成在线观看| 免费在线观看完整版高清| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 丝袜美腿诱惑在线| 青青草视频在线视频观看| 少妇粗大呻吟视频| 亚洲一码二码三码区别大吗| 99国产精品99久久久久| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 国产无遮挡羞羞视频在线观看| 亚洲av欧美aⅴ国产| 咕卡用的链子| 捣出白浆h1v1| 黑人猛操日本美女一级片| 老熟女久久久| 国产色视频综合| 色老头精品视频在线观看| 国产精品九九99| 国产人伦9x9x在线观看| 国产野战对白在线观看| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 纵有疾风起免费观看全集完整版| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产 | 亚洲美女黄片视频| 欧美日韩一级在线毛片| 亚洲五月色婷婷综合| 男女免费视频国产| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区综合在线观看| 91麻豆av在线| 男女午夜视频在线观看| 99热国产这里只有精品6| 国产精品亚洲一级av第二区| 日本a在线网址| 热re99久久国产66热| 高清视频免费观看一区二区| 成人三级做爰电影| 999久久久国产精品视频| 男女边摸边吃奶| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 啦啦啦中文免费视频观看日本| 午夜福利欧美成人| 99久久国产精品久久久| 丝袜在线中文字幕| 亚洲五月婷婷丁香| 国产精品久久久久久精品电影小说| 亚洲,欧美精品.| 高清av免费在线| 一个人免费看片子| 99热国产这里只有精品6| 国产精品久久久久久精品古装| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| 91av网站免费观看| 午夜91福利影院| 啦啦啦 在线观看视频| 久久国产精品人妻蜜桃| 80岁老熟妇乱子伦牲交| 精品午夜福利视频在线观看一区 | 国产精品一区二区在线观看99| 看免费av毛片| 午夜福利乱码中文字幕| 美女主播在线视频| 午夜福利影视在线免费观看| 十八禁网站免费在线| 最近最新中文字幕大全电影3 | 日韩精品免费视频一区二区三区| 亚洲人成电影观看| 欧美激情久久久久久爽电影 | 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 天天操日日干夜夜撸| 欧美日韩精品网址| 男女下面插进去视频免费观看| 久久精品国产综合久久久| 岛国毛片在线播放| 啦啦啦在线免费观看视频4| 深夜精品福利| 黄片播放在线免费| 另类亚洲欧美激情| 久久亚洲精品不卡| 如日韩欧美国产精品一区二区三区| 一级a爱视频在线免费观看| 一级片免费观看大全| 国产精品1区2区在线观看. | 国产精品香港三级国产av潘金莲| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 亚洲国产av新网站| 精品人妻1区二区| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| 中文字幕人妻熟女乱码| 超碰97精品在线观看| 国产色视频综合| 一边摸一边做爽爽视频免费| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 1024视频免费在线观看| www日本在线高清视频| 天天操日日干夜夜撸| 国产精品98久久久久久宅男小说| 电影成人av| 手机成人av网站| 69av精品久久久久久 | 大陆偷拍与自拍| 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 欧美性长视频在线观看| 男女免费视频国产| 一边摸一边抽搐一进一出视频| 男女下面插进去视频免费观看| 激情在线观看视频在线高清 | 男女边摸边吃奶| 午夜两性在线视频| 中文欧美无线码| 999久久久精品免费观看国产| 男人操女人黄网站| 纯流量卡能插随身wifi吗| 国产欧美日韩综合在线一区二区| 亚洲 国产 在线| 视频区图区小说| 韩国精品一区二区三区| 老司机午夜十八禁免费视频| 国产日韩欧美亚洲二区| 少妇的丰满在线观看| 国产淫语在线视频| 亚洲欧洲精品一区二区精品久久久| 久久毛片免费看一区二区三区| www.熟女人妻精品国产| 热99久久久久精品小说推荐| 天堂8中文在线网| 国产三级黄色录像| 在线观看舔阴道视频| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 少妇裸体淫交视频免费看高清 | 不卡av一区二区三区| 欧美激情高清一区二区三区| 一边摸一边抽搐一进一出视频| 中亚洲国语对白在线视频| 建设人人有责人人尽责人人享有的| 成人黄色视频免费在线看| av线在线观看网站| 最新在线观看一区二区三区| 久久精品熟女亚洲av麻豆精品| av天堂久久9| 国产午夜精品久久久久久| 午夜91福利影院| 男女免费视频国产|