• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高催化活性M-BHT(M=Co,Cu)電催化還原CO2為CH4的密度泛函理論研究

    2021-04-17 10:04:46姚會影遲力峰
    關(guān)鍵詞:蘇州大學(xué)材料科學(xué)北京師范大學(xué)

    楊 濤,姚會影,李 青,郝 偉,遲力峰,朱 嘉

    (1.蘇州大學(xué)功能納米與軟物質(zhì)研究院,江蘇省碳基功能材料與器件高技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,蘇州215123;2.北京師范大學(xué)化學(xué)學(xué)院,北京100875;3.南洋理工大學(xué)材料科學(xué)與工程學(xué)院,新加坡639798)

    1 Introduction

    The electrochemical reduction of carbon dioxide(CO2)into chemicals of economic value(hydrocarbon or alcohols)holds a sustainable and promising way to produce renewable energy sources[1—4]. The best solutions for energy transition from“fossil fuel economy”to a sustainable“CO2economy”are reducing CO2to CH4or alcohol compounds[5]. However,the free electrocatalysts for reducing CO2to these target products are in the exploration and need more development and improvement,particularly theoretical outlooking[6—15]. The most limitation mainly caused by the electronic structure properties of catalysts may affect the product’s selectivity.The apparent evidence is given by the large overpotential needed for CO2reduction to these products[5].Hence,it is critically necessary and essential to explore and predict the catalytic activities and selectivity of the catalysts for CO2reduction reaction(CRR)from the atomic level. So far,various two-dimensional(2D)materials,including metals,metal oxides,chalcogenides,and even metal-free catalysts,have been extensively demonstrated both theoretically and experimentally to have significant potential for CRR[1,13,16—21]. As the most efficient Cu-based material for CRR electrocatalysts,2D Cu-C3N4has excellent catalytic activity[the Gibbs free energy change(ΔGL)of the rate-limiting step for CH4formation is 0.75 eV]for CRR[13]. The critical requirements are the development of highly active electrocatalysts,by increasing the number of the active sites[22]. Recently,metal-BHT(metal=Cu,Co;BHT=benzenehexathiol)[23,24]as a new type ofπ?conjugated 2D materials have been synthesized,which has abundant exposed surface atoms and unique electronic properties. For example,Co-BHT is a ferromagnetic half-metal. Moreover,the theoretical studies indicated that Co-BHT shows the spin-filtering effect and strong attractivity to CO[25]. CO is the critical intermediate for CO2reduction to CH4. CO’s adsorption on the catalyst surface indicates it can be further hydrogenated to other reaction intermediates[13,26]. This property suggests that Co-BHT is candidate efficient catalysts for CO2reduction to CH4.

    In this work,we select the monolayer Co-BHT and Cu-BHT as electrocatalysts to investigate the reduction mechanism of CO2to CH4from the atomic level and compare their catalytic performance. The reaction mechanisms for CO2reduction into CH4catalyzed by Co-BHT and Cu-BHT were determined by the Gibbs free energy calculations. Thed-band center and ΔGLcalculations suggest that Co-BHT is a more promising candidate for CH4production than Cu-BHT.

    2 Computational Method

    The spin-polarized electronic structure calculations were carried out by the Viennaab initiosimulation package(VASP)[27,28]. The projector augmented wave(PAW)[29]method was adopted to describe the ionelectron interaction,and the electron exchange-correction was represented by the Perdew-Burke-Ernzerhof(PBE)functional[30]. Regarding the plane-basis set,a kinetic energy cutoff of 500 eV with Gaussian-level smearing of 0.05 eV was used in all calculations. Thek-space samplings were set as 5×5×1 for the Cu-BHT unit cell and 2×2×1 for the Co-BHT model. The convergence thresholds for structural geometry optimization and for electronic structure iteration were set as 0.1 eV/nm and 10?5eV,respectively. According to the previous studies,the Grimme’s method(DFT-D3)[31—35]can obtain more accurate adsorption results for CRR intermediates. So,the DFT-D3 was applied to all calculations to include the van der Waals correction.

    The Gibbs free energy(G)of each species was defined as

    whereEtotal(eV),EZPE(eV),CP(J·K?1·mol?1),S(J·K?1·mol?1)andT(K)are total electronic energy,zeropoint energy,heat capacity,entropy,and system temperature(298.15 K),respectively. Free energy of the adsorbates was calculated by treating all 3N(Nis the number of atoms of the adsorbate)degrees of freedom of the adsorbates as vibrational without consi-dering contributions from the substrate,in which all vibrations were treated in the harmonic oscillator approximation. TheEZPE,CP,andSwere calculated from these vibrations based on standard methods[36]. The parameters of the molecules were taken from the NIST database[37]. According to previous studies,the adsorbate solvation effects were similar:hydroxyl adsorbates(*OH)and hydroxyl functional groups(*R-OH)were stabilized by 0.50 and 0.25 eV,respectively,and intermediates containing adsorbed CO such as*CO and*CHO were stabilized by 0.10 eV[26]. Gas-phase energetics of species containing a CO backbone were compensated to match experimental values;the total energy corrections for CO2and CO were 0.16 and ?0.27 eV,respectively[38]. The Gibbs free energy change of the elementary reaction step(such as*CO+H++e?→*CHO)was calculated as below[26]:

    According to the computational hydrogen electrode(CHE)[39]model,theG(H++ e?) is equal to half of the free energy of gaseous hydrogen[1/2G(H2)]at the electrode potential of 0 V(vs. RHE)and all temperature. ΔGU=?neU,wheren(1)is the number of transferred electrons,eis the elementary positive charge,andU(V)is the bias applied on the electrode. ΔGpH(ΔGpH=kBT× ln10 × pH)is the correction of the pH,wherekBis the Boltzmann constant. pH is zero for the acidic condition.

    The adsorption energy(Eads)[40]is used to evaluate the binding strength between the adsorbates and the substrate,which is defined as below:

    whereEX*(eV),EX(eV)andE*(eV)represent the total energy of the adsorption system,the adsorbate,and the substrate,respectively. According to this definition,the negativeEadsindicates that the adsorption is exothermic process.

    Thed-band center(εd)was calculated by the following equation based on projected density of states(PDOS)calculation results as below[41—46]:

    wheren(ε)represents the density of states occupied when the electron energy equal toε(eV).

    3 Results and Discussion

    Cu-BHT and Co-BHT have hexagonal unit cell,as shown in Fig.1. By means of DFT optimization,the 2D lattice parameters of Cu-BHT are obtained to bea=b=0.875 nm,agreeing well with the experimental observations(a=b=0.845 nm)[24]. The 2D lattice parameters of Co-BHT area=b=1.470 nm,which are also in agreement with previous theoretical calculations(a=b=1.471 nm)[25].

    Fig.1 Structures of Cu?BHT(A)and Co?BHT(B)

    The total density of states(DOS)and partial density of states(PDOS)of Cu-BHT and Co-BHT are shown in Fig.2. For Cu-BHT,the PDOS shows that the total DOS near Fermi level is contributed by S atoms,C atoms and d-orbital density of states of the Cu atoms. For Co-BHT,the density of states projected onto C,S,and metal atomic orbitals show thatd-orbital density of states of the Co atoms contribute mainly to the total DOS for both spin-up and spin-down channels,while small amounts of the total DOS are from S atoms and C atoms. Thed-band center gives an indication of the catalyst activity,and it is an important indicator for predicting the catalytic activity of metal and half-metal catalysts[43—47]. The closerd-band center to the Fermi level usually leads to better catalytic activity of the catalyst[13,47]. Thed-band centers of Co-BHT for spin-up and spin-down channels are ?1.62 and ?0.65 eV,respectively,which are closer to the Fermi level than those of Cu-BHT(?2.38,?2.38 eV),indicating that Co-BHT may have stronger interactions with the CO2reduction intermediates.

    Scheme 1 Possible reaction paths for CO2 reduction to CH4 by electrochemical catalysis on the catalyst surfaces

    According to previous studies[13,26,47~49],there are four possible reaction paths for CO2reduction to CH4,as shown in Scheme 1. Among these four paths,the first step starts with hydrogenation of the physisorption CO2to form*COOH. The second step is*COOH→*CO,which involves the OH desorption and further hydrogenation to form H2O and left*CO on the catalyst surface. The major difference between path Ⅰand paths Ⅱ—Ⅳis that*CO is hydrogenated to*COH or*CHO intermediate. For path Ⅱand path Ⅲ,the major branching point is whether*CHO is reduced to a CHOH or*CH2O intermediate by the formation of an O—H bond or a C—H bond,respectively. For path Ⅲand path Ⅳ,the major branching point depends on whether*OCH3or*CH2OH is formed. Moreover,the major difference between path Ⅲand other paths is that the formation of CH4occurs during the sixth proton/electron pairs transferring process in path III,while lefts adsorption*O intermediate on the catalyst surface,which would be further reduced to*OH. Additionally,the last step of path III is the formation of H2O,while,for the rest paths,the last step is the formation of CH4.

    Based on these reaction paths,we first investigated the adsorption performance of all reaction intermediates on Cu-BHT and Co-BHT by density functional theory(DFT)calculations. All possible adsorption sites of these reaction intermediates were considered to determine the most stable sites(Table S1 and Table S2,see the Supporting Information of this paper). The values of the adsorption energy(Eads)of CO2,*COOH,*CO,*CHO and CH4on M-BHT(M=Cu,Co)are summarized in Table 1.

    Table 1 Calculated Eads of CO2, *COOH, *CO, *CHO and CH4 on Cu-BHT and Co-BHT

    For Cu-BHT,Cu,S and C sites are considered as the adsorption sites[see Fig.1(A)]. The results show that the CO2,*COOH,*CHO,*CH2O,*OCH3,*O,*OH,*CH2OH and CH4prefer to absorb on the S sites,while the*CO and*C prefer to adsorb on the Cu sites,and other reaction intermediates prefer to adsorb on the C sites. In general,the adsorption is physisorption when the absolute value ofEadsis less than 0.31 eV(30 kJ/mol)[50],and the adsorption is strong chemisorption when the absolute value ofEadsis large than 1 eV[51,52].As shown in Table 1,theEadsof CO2and CH4are ?0.19 and ?0.15 eV,respectively,indicating that the adsorption is physisorption and CO2and CH4can be desorbed from the catalysts. However,theEadsof*CO is?0.41 eV,which indicates that the adsorption is weak chemisorption so that CO can be further hydrogenated.For Co-BHT,the most stable adsorption sites of possible reaction intermediates were obtained by DFT calculations. The calculation results show that the CO2,*COOH,*CHO,*OH,*CH2O,*CH2OH and CH4prefer to adsorb on metal atom sites(Co sites),which are different from the adsorption sites on Cu-BHT(prefer to adsorb on non-metal atom site:S site). TheEadscalculations show that both CO2and CH4are physically adsorbed on Co-BHT,which is the same as that on Cu-BHT(see Table 1). Furthermore,theEadsof*CO is?1.42 eV,indicating that the adsorption of CO on Co-BHT is strong chemisorption,which means that CO can be hydrogenated.

    The Gibbs free energy profile of the four reaction paths for CO2reduction to CH4on Cu-BHT is displayed in Fig.3(A). The first and the second proton/electron pairs transferring steps for the four reaction paths are CO2→*COOH and*COOH→*CO with Gibbs free energy changes by 0.76 and ?0.17 eV,respectively. The third step is the production of*COH(path Ⅰ)or*CHO(paths Ⅱ—Ⅳ)by hydrogenating*CO. The Gibbs free energy change of*CO→*COH is 0.50 eV,which is larger than that of*CO→*CHO(0.17 eV). Therefore,the reaction of path Ⅰis more difficult thermodynamically than that of the rest reaction paths. The*CHOH intermediate is the key reaction intermediate in path Ⅱ. The ΔGof*CHO→*CHOH is 0.21 eV,while ΔGfor the formation of*CH2O in path Ⅲand Ⅳis 0.04 eV. The result indicates that the*CHO intermediate will be hydrogenated to*CH2O rather than*CHOH. Hence,path Ⅱis not the prior reaction path compared with paths Ⅲand Ⅳ. The major difference between path Ⅲand path Ⅳis the hydrogenation of*CH2O to*OCH3versusto*CH2OH(path Ⅳ). The elementary reaction step of*CH2O→*OCH3in path Ⅲis increased in free energy by 0.17 eV,whereas the ΔGof*CH2O→*CH2OH(in path Ⅳ)is ?0.70 eV. Thus,the CO2follows path Ⅳreduction to CH4on Cu-BHT. Additionally,the ΔGof*CH2OH→*CH2reaction is 0.60 eV,which is lower than that of the first elementary reaction step(0.76 eV). Therefore,the path Ⅳpossesses the lowest energy reaction pathway of CO2reduction to CH4on Cu-BHT,and the rate-limiting step is CO2→*COOH with Gibbs free energy change of 0.76 eV[see Fig.3(A)].

    Fig.3 Free energy diagrams of CO2 reduction to CH4 on Cu?BHT(A)and Co?BHT(B)

    For Co-BHT,the calculated Gibbs free energy diagram of the possible reaction pathways for CRR is summarized in Fig.3(B). The results show that the steps of CO2→*COOH and*COOH→*CO have ΔGvalue of 0.29 and ?0.71 eV,respectively. As shown in Fig.3(B),the ΔGfor the formation of the key intermediate*COH in path Ⅰis 1.15 eV,which is larger than that of the reaction*CO→*CHO(0.66 eV),indicating that path Ⅰis not the lowest energy reaction pathway for CO2reduction to CH4on Co-BHT. Moreover,the ΔGfor*CHO hydrogenation to*CH2O(in paths Ⅲand Ⅳ)is 0.56 eV,which is larger than that of reduction of*CHO to*CHOH(0.01 eV). Therefore,path Ⅱis the lowest energy pathway for CO2reduction to CH4on Co-BHT.

    To compare the catalytic mechanism and the performance of Cu-BHT and Co-BHT for CO2reduction to CH4,the calculated free energy diagram of CRR is summerized in Fig.4 and Fig.S1(see the Supporting Information of this paper). The rate-limiting steps of CH4formation,CO2→*COOH with ΔGLof 0.76 eV on Cu-BHT,and*CO→*CHO with ΔGLof 0.66 eV on Co-BHT,indicate that the CO2reduction to CH4catalyzed by Co-BHT is more favorable. Note that ΔGLfor CO2reduction to CH4on Cu(211)[26]and Cu-C3N4[13]are 0.74 and 0.75 eV,respectively. Thus,our calculations show that both Cu-BHT and Co-BHT are promising electrocatalyst candidates for CO2reduction to CH4.

    Fig.4 Free energy diagram of the lowest energy pathway of CO2 reduction to CH4 on Cu?BHT and Co?BHT

    4 Conclusions

    In summary,we investigated the electrocatalytic activities of Cu-BHT and Co-BHT for the reduction of CO2to CH4based on DFT calculations. The reduction of CO2to CH4on Co-BHT and Cu-BHT follows different reaction pathways and rate-limiting steps. The lowest energy reaction pathway for CO2reduction into CH4catalyzed by Co-BHT is CO2→*COOH→*CO→*CHO→*CHOH→*CH→*CH2→*CH3→CH4,with the rate-limiting step of*CO→*CHO. The reaction pathway on Cu-BHT is CO2→*COOH→*CO→*CHO→*CH2O→*CH2OH→*CH2→*CH3→CH4. The DFT calculations show that the Co-BHT has higher catalytic activity than Cu-BHT for CRR because it possesses small ΔGL(0.66 eV)for CO2reduction to CH4than that of Cu-BHT(0.76 eV). Thed-band center calculations show that Co-BHT may has better catalytic activity than Cu-BHT for CRR,which is consistent with the onset potential calculations.

    Acknowledgments

    The most calculations were supported by HPC from Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University. Especially acknowledge the discussion and suggestions of M-BHT with Dr. HUANG Xing and Prof. XU Wei.

    The Supporting Information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200729.

    This paper is supported by the National Natural Science Foundation of China(Nos.21790053,51821002,21773016).

    猜你喜歡
    蘇州大學(xué)材料科學(xué)北京師范大學(xué)
    中海油化工與新材料科學(xué)研究院
    國家藝術(shù)基金“基礎(chǔ)美術(shù)教育百年文獻(xiàn)展”首站在蘇州大學(xué)開幕
    蘇州大學(xué)藏《吳中葉氏族譜》考述
    尋根(2022年2期)2022-04-17 11:01:38
    材料科學(xué)與工程學(xué)科
    北京師范大學(xué)長春附屬學(xué)校
    北京師范大學(xué)數(shù)學(xué)系教授葛建全
    Shifting of the Agent of Disciplinary Power in J. M.Coetzee’s Foe
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    Moliere’s Sublimation of the Three Unities
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 天堂影院成人在线观看| 99久久无色码亚洲精品果冻| 亚洲综合色惰| 欧美日韩黄片免| 日日摸夜夜添夜夜添小说| 成人性生交大片免费视频hd| 亚洲av日韩精品久久久久久密| 亚洲成人精品中文字幕电影| 亚洲av五月六月丁香网| 久久人妻av系列| 少妇人妻精品综合一区二区 | 久久久成人免费电影| 女同久久另类99精品国产91| 免费在线观看日本一区| 无人区码免费观看不卡| 哪里可以看免费的av片| 国产三级中文精品| 91在线观看av| av专区在线播放| 免费人成视频x8x8入口观看| av在线观看视频网站免费| 白带黄色成豆腐渣| 久久久精品大字幕| 干丝袜人妻中文字幕| 麻豆成人午夜福利视频| 干丝袜人妻中文字幕| 禁无遮挡网站| 日本爱情动作片www.在线观看 | 国产极品精品免费视频能看的| 在线国产一区二区在线| 成人综合一区亚洲| 亚洲人成伊人成综合网2020| 午夜福利视频1000在线观看| eeuss影院久久| 欧美三级亚洲精品| 伦理电影大哥的女人| 中文字幕人妻熟人妻熟丝袜美| 两人在一起打扑克的视频| 久久6这里有精品| 中文字幕高清在线视频| aaaaa片日本免费| 桃红色精品国产亚洲av| 色哟哟·www| 久久中文看片网| av中文乱码字幕在线| 内射极品少妇av片p| 免费av观看视频| 人妻少妇偷人精品九色| 69av精品久久久久久| 欧美一区二区国产精品久久精品| 欧美bdsm另类| 22中文网久久字幕| 国产黄片美女视频| 国产成人a区在线观看| 久久草成人影院| 午夜激情欧美在线| 久久久国产成人免费| 免费观看人在逋| 少妇猛男粗大的猛烈进出视频 | 国产精品98久久久久久宅男小说| 国产在线男女| 亚洲图色成人| 99热6这里只有精品| 欧美一区二区国产精品久久精品| 1000部很黄的大片| 日韩国内少妇激情av| 久99久视频精品免费| 国产真实乱freesex| 国产精品嫩草影院av在线观看 | 最新在线观看一区二区三区| 女人被狂操c到高潮| 在线免费十八禁| 69av精品久久久久久| 国产精品三级大全| 国产精品一及| 欧美日本亚洲视频在线播放| 日本色播在线视频| 欧美又色又爽又黄视频| 特级一级黄色大片| 级片在线观看| 国产精品永久免费网站| 欧美高清性xxxxhd video| 最近最新免费中文字幕在线| 久久久久久久精品吃奶| 在线观看午夜福利视频| 人妻少妇偷人精品九色| 成年女人毛片免费观看观看9| 国产精品伦人一区二区| 一本久久中文字幕| 啦啦啦啦在线视频资源| 成人美女网站在线观看视频| 中文资源天堂在线| 日韩国内少妇激情av| 亚洲专区国产一区二区| 黄色一级大片看看| 亚洲中文字幕日韩| 日韩欧美 国产精品| 亚洲 国产 在线| 日本与韩国留学比较| 一a级毛片在线观看| 亚洲人成网站在线播放欧美日韩| 在线国产一区二区在线| 精品久久久久久久久久久久久| 成人二区视频| 直男gayav资源| 亚洲av中文字字幕乱码综合| 亚洲精品久久国产高清桃花| 中亚洲国语对白在线视频| 午夜亚洲福利在线播放| 免费人成视频x8x8入口观看| 69人妻影院| 少妇的逼好多水| 日日撸夜夜添| 一a级毛片在线观看| 自拍偷自拍亚洲精品老妇| 不卡一级毛片| 国产精品国产高清国产av| 在线播放无遮挡| 一本精品99久久精品77| 特大巨黑吊av在线直播| 中文在线观看免费www的网站| 精品午夜福利视频在线观看一区| bbb黄色大片| 在现免费观看毛片| 国产精品久久久久久av不卡| av视频在线观看入口| 国产精品精品国产色婷婷| 哪里可以看免费的av片| 香蕉av资源在线| 成年版毛片免费区| 亚洲无线观看免费| 亚洲三级黄色毛片| 亚洲美女搞黄在线观看 | 99在线人妻在线中文字幕| 免费电影在线观看免费观看| 国产精品福利在线免费观看| 一区二区三区高清视频在线| 日韩中文字幕欧美一区二区| 一个人看的www免费观看视频| 熟妇人妻久久中文字幕3abv| 国产高清不卡午夜福利| 老熟妇乱子伦视频在线观看| av在线亚洲专区| 国产精品亚洲美女久久久| 免费av观看视频| 天堂av国产一区二区熟女人妻| 联通29元200g的流量卡| 精品一区二区三区av网在线观看| 老师上课跳d突然被开到最大视频| 日本一本二区三区精品| 联通29元200g的流量卡| 亚洲av成人精品一区久久| 天堂影院成人在线观看| 免费一级毛片在线播放高清视频| 免费人成在线观看视频色| 婷婷亚洲欧美| 村上凉子中文字幕在线| 九色成人免费人妻av| 一级毛片久久久久久久久女| 岛国在线免费视频观看| 免费观看人在逋| 校园人妻丝袜中文字幕| 亚洲欧美日韩卡通动漫| 午夜爱爱视频在线播放| 国产单亲对白刺激| x7x7x7水蜜桃| 又爽又黄无遮挡网站| 久久精品国产99精品国产亚洲性色| 欧美xxxx性猛交bbbb| 97超级碰碰碰精品色视频在线观看| 韩国av在线不卡| 免费看日本二区| av黄色大香蕉| 亚洲午夜理论影院| 少妇熟女aⅴ在线视频| 不卡视频在线观看欧美| 欧美精品啪啪一区二区三区| 在线a可以看的网站| 国产老妇女一区| 中文亚洲av片在线观看爽| 中文字幕久久专区| 国产精品99久久久久久久久| 一个人看的www免费观看视频| 免费在线观看影片大全网站| 成人三级黄色视频| 国国产精品蜜臀av免费| 两个人视频免费观看高清| 国产亚洲av嫩草精品影院| 别揉我奶头~嗯~啊~动态视频| 好男人在线观看高清免费视频| 春色校园在线视频观看| 久99久视频精品免费| 成人性生交大片免费视频hd| 可以在线观看的亚洲视频| 精品一区二区三区视频在线| 久99久视频精品免费| 久久精品国产亚洲网站| 亚洲国产精品久久男人天堂| 国产综合懂色| 中文字幕高清在线视频| 欧美绝顶高潮抽搐喷水| 国产高清不卡午夜福利| 国产一区二区三区视频了| 欧美精品啪啪一区二区三区| 97超级碰碰碰精品色视频在线观看| 一级av片app| 免费在线观看日本一区| 中文字幕高清在线视频| 91狼人影院| 久久精品国产亚洲av涩爱 | 久久久久久久久久黄片| 国产一区二区亚洲精品在线观看| 久久精品综合一区二区三区| 国产精品女同一区二区软件 | .国产精品久久| 亚洲成人精品中文字幕电影| 久久人人爽人人爽人人片va| 亚洲国产欧美人成| 日韩欧美精品免费久久| 国产亚洲欧美98| 久久久精品大字幕| 尾随美女入室| 亚洲成av人片在线播放无| 日本熟妇午夜| 欧美日韩综合久久久久久 | 国产免费av片在线观看野外av| 97超视频在线观看视频| 99在线人妻在线中文字幕| 国产精品爽爽va在线观看网站| 国产精品精品国产色婷婷| 欧美成人a在线观看| 给我免费播放毛片高清在线观看| 亚洲国产色片| 99热这里只有精品一区| 国产久久久一区二区三区| 99热这里只有是精品50| 欧美一级a爱片免费观看看| 99热精品在线国产| 日韩欧美在线乱码| 国产白丝娇喘喷水9色精品| 国产一级毛片七仙女欲春2| 国产男靠女视频免费网站| 久久亚洲精品不卡| 精品久久久久久久久av| 啪啪无遮挡十八禁网站| 人妻少妇偷人精品九色| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 赤兔流量卡办理| 国产精品一区二区三区四区免费观看 | 亚洲av五月六月丁香网| 久久香蕉精品热| 亚洲成人精品中文字幕电影| 精品乱码久久久久久99久播| 俄罗斯特黄特色一大片| 成人无遮挡网站| 国产69精品久久久久777片| 黄色丝袜av网址大全| a级一级毛片免费在线观看| 国产精品乱码一区二三区的特点| 国产白丝娇喘喷水9色精品| 人妻夜夜爽99麻豆av| 日本色播在线视频| 床上黄色一级片| 欧美zozozo另类| 可以在线观看的亚洲视频| 蜜桃久久精品国产亚洲av| 真人做人爱边吃奶动态| 在线观看66精品国产| 国产真实伦视频高清在线观看 | 亚洲精品456在线播放app | 搡女人真爽免费视频火全软件 | 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 一本一本综合久久| 人妻久久中文字幕网| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 日本 av在线| 日韩强制内射视频| 亚洲人与动物交配视频| av在线老鸭窝| 两性午夜刺激爽爽歪歪视频在线观看| 国产女主播在线喷水免费视频网站 | 一区福利在线观看| 狂野欧美激情性xxxx在线观看| 春色校园在线视频观看| 高清在线国产一区| 欧美不卡视频在线免费观看| 深夜a级毛片| 噜噜噜噜噜久久久久久91| 一本久久中文字幕| 欧美极品一区二区三区四区| 日日夜夜操网爽| 欧美三级亚洲精品| 色在线成人网| 亚洲国产欧美人成| 久久久色成人| 成人一区二区视频在线观看| 小说图片视频综合网站| 黄片wwwwww| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 在线a可以看的网站| 少妇人妻一区二区三区视频| 国产av一区在线观看免费| 日本三级黄在线观看| 国产亚洲精品综合一区在线观看| 日本五十路高清| 黄色视频,在线免费观看| 国产精品久久久久久久久免| 久久久久久久久中文| 亚洲精品在线观看二区| 日本a在线网址| 观看免费一级毛片| 亚洲中文字幕日韩| 99久久精品热视频| 色播亚洲综合网| 精品人妻一区二区三区麻豆 | 男人和女人高潮做爰伦理| 日韩欧美国产在线观看| 伊人久久精品亚洲午夜| 精品久久久久久,| 97热精品久久久久久| 淫妇啪啪啪对白视频| 亚洲国产精品合色在线| 国产一区二区三区av在线 | 国产av一区在线观看免费| 成人高潮视频无遮挡免费网站| 日本色播在线视频| a级毛片免费高清观看在线播放| 在线免费十八禁| 中文字幕久久专区| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 1024手机看黄色片| 精品国内亚洲2022精品成人| 在线天堂最新版资源| 高清日韩中文字幕在线| 日韩欧美精品免费久久| 成年女人毛片免费观看观看9| 天堂av国产一区二区熟女人妻| 欧美最新免费一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利视频1000在线观看| 尤物成人国产欧美一区二区三区| 精品福利观看| 午夜a级毛片| 色播亚洲综合网| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 有码 亚洲区| 精品欧美国产一区二区三| 精品久久久噜噜| 91久久精品电影网| 九九热线精品视视频播放| 国产麻豆成人av免费视频| 欧美绝顶高潮抽搐喷水| 久久亚洲精品不卡| 免费搜索国产男女视频| 久久久久久久久久久丰满 | 亚洲精品日韩av片在线观看| 亚洲av一区综合| 91麻豆av在线| 国产精品亚洲一级av第二区| 久久精品综合一区二区三区| 精品久久久久久成人av| 人妻夜夜爽99麻豆av| 亚洲av日韩精品久久久久久密| 校园春色视频在线观看| 国产毛片a区久久久久| 搡女人真爽免费视频火全软件 | 国产乱人伦免费视频| 亚洲精品日韩av片在线观看| 成人午夜高清在线视频| 国产av一区在线观看免费| 久久久久久九九精品二区国产| 我要搜黄色片| 国产在视频线在精品| 日韩欧美 国产精品| 日本免费a在线| 十八禁国产超污无遮挡网站| 波多野结衣高清无吗| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 久久久久久久亚洲中文字幕| 日本黄大片高清| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 国产免费一级a男人的天堂| 亚洲最大成人av| 亚洲av电影不卡..在线观看| 女同久久另类99精品国产91| 精品久久久久久久久av| 国产日本99.免费观看| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 久久精品国产亚洲av涩爱 | 亚洲人与动物交配视频| 国产探花极品一区二区| 12—13女人毛片做爰片一| 久久人人爽人人爽人人片va| 欧美色欧美亚洲另类二区| 国产精品1区2区在线观看.| 男女边吃奶边做爰视频| 免费看日本二区| av.在线天堂| 琪琪午夜伦伦电影理论片6080| 成年女人毛片免费观看观看9| av福利片在线观看| 久久久久久国产a免费观看| 午夜福利成人在线免费观看| 一区二区三区激情视频| 亚洲综合色惰| 无人区码免费观看不卡| 亚洲av五月六月丁香网| 国产蜜桃级精品一区二区三区| 真人一进一出gif抽搐免费| 亚洲成av人片在线播放无| 国产精品免费一区二区三区在线| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 日日撸夜夜添| 午夜激情欧美在线| 成人国产综合亚洲| 国产精品免费一区二区三区在线| 99热这里只有是精品在线观看| av.在线天堂| av视频在线观看入口| 99热精品在线国产| 一区福利在线观看| 国产精品美女特级片免费视频播放器| 97热精品久久久久久| 国产亚洲精品av在线| 深夜精品福利| 精品久久久久久成人av| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| 午夜视频国产福利| 色吧在线观看| 亚洲av免费高清在线观看| 欧美+日韩+精品| 国产精品免费一区二区三区在线| 成人av在线播放网站| 内射极品少妇av片p| 日日撸夜夜添| 最新在线观看一区二区三区| 人妻制服诱惑在线中文字幕| 国产精品国产三级国产av玫瑰| 99热这里只有是精品在线观看| 国产精品野战在线观看| 国产精品综合久久久久久久免费| 一进一出抽搐gif免费好疼| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 老司机福利观看| 精品一区二区三区人妻视频| 久久久久久大精品| 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 精品免费久久久久久久清纯| 亚洲人成网站高清观看| 亚洲国产精品sss在线观看| 日本欧美国产在线视频| 国产亚洲精品av在线| 国产精品国产三级国产av玫瑰| 亚洲欧美激情综合另类| 在线观看免费视频日本深夜| 极品教师在线免费播放| 观看免费一级毛片| 97人妻精品一区二区三区麻豆| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 高清日韩中文字幕在线| 免费看日本二区| 久久久久久九九精品二区国产| 欧美成人a在线观看| 波多野结衣巨乳人妻| 国产蜜桃级精品一区二区三区| 亚洲人成伊人成综合网2020| 在线天堂最新版资源| 国产精品女同一区二区软件 | 国产毛片a区久久久久| 亚洲精品粉嫩美女一区| 尤物成人国产欧美一区二区三区| avwww免费| 久久99热6这里只有精品| 久久热精品热| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 亚洲avbb在线观看| 国产三级中文精品| 国产精华一区二区三区| 欧美精品啪啪一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产在视频线在精品| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 久久精品91蜜桃| 中亚洲国语对白在线视频| 欧美+日韩+精品| 综合色av麻豆| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 成人av一区二区三区在线看| 在线观看午夜福利视频| 欧美激情国产日韩精品一区| 琪琪午夜伦伦电影理论片6080| 亚洲三级黄色毛片| 男女做爰动态图高潮gif福利片| 婷婷丁香在线五月| 人人妻人人澡欧美一区二区| 亚洲国产色片| 我的老师免费观看完整版| 午夜福利视频1000在线观看| h日本视频在线播放| 天美传媒精品一区二区| 麻豆一二三区av精品| 97超视频在线观看视频| 直男gayav资源| 男人舔女人下体高潮全视频| 中文字幕免费在线视频6| 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久 | 麻豆国产av国片精品| 国产熟女欧美一区二区| 欧美黑人巨大hd| 日本熟妇午夜| 日本爱情动作片www.在线观看 | 在线观看舔阴道视频| 亚洲av日韩精品久久久久久密| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 欧美丝袜亚洲另类 | a在线观看视频网站| 黄色一级大片看看| 免费观看人在逋| 中国美白少妇内射xxxbb| 我要搜黄色片| 国产亚洲精品av在线| 欧美性猛交黑人性爽| 黄色欧美视频在线观看| 免费av毛片视频| 色av中文字幕| 国产不卡一卡二| 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 性欧美人与动物交配| 国产午夜精品久久久久久一区二区三区 | 精品福利观看| 日韩av在线大香蕉| 国产探花极品一区二区| 天美传媒精品一区二区| 亚洲性久久影院| 中文字幕熟女人妻在线| 丝袜美腿在线中文| 日韩欧美在线乱码| 亚洲无线在线观看| 在线国产一区二区在线| 久久久精品欧美日韩精品| 国产免费男女视频| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 美女xxoo啪啪120秒动态图| 中文资源天堂在线| 国产精品女同一区二区软件 | 国产精品一及| 国产精品永久免费网站| 搡女人真爽免费视频火全软件 | 黄色视频,在线免费观看| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 99精品在免费线老司机午夜| 久久久久久久久久黄片| 观看免费一级毛片| 国产精品国产三级国产av玫瑰| av黄色大香蕉| 少妇丰满av| 校园春色视频在线观看| 久久精品国产自在天天线| 欧美成人免费av一区二区三区| 亚洲成人中文字幕在线播放| 婷婷丁香在线五月| 婷婷色综合大香蕉| 人妻久久中文字幕网| 黄片wwwwww| 蜜桃久久精品国产亚洲av| 日韩精品有码人妻一区| 亚洲久久久久久中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| www.色视频.com| 色尼玛亚洲综合影院| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| eeuss影院久久| 一级av片app| 国产精品,欧美在线| 国产精品野战在线观看| 一夜夜www| 动漫黄色视频在线观看|