• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data

    2021-04-15 04:36:52Yu-FangMao,Xi-GuoYuan,Yu-PengCun
    Zoological Research 2021年2期

    DEAR EDITOR,

    Somatic mutations are a large category of genetic variations,which play an essential role in tumorigenesis.Detection of somatic single nucleotide variants (SNVs) could facilitate downstream analysis of tumorigenesis.Many computational methods have been developed to detect SNVs, but most require normal matched samples to differentiate somatic SNVs from the normal state, which can be difficult to obtain.Therefore, developing new approaches for detecting somatic SNVs without matched samples are crucial.In this work, we detected somatic mutations from individual tumor samples based on a novel machine learning approach, svmSomatic,using next-generation sequencing (NGS) data.In addition, as somatic SNV detection can be impacted by multiple mutations,with germline mutations and co-occurrence of copy number variations (CNVs) common in organisms, we used the novel approach to distinguish somatic and germline mutations based on the NGS data from individual tumor samples.In summary,svmSomatic: (1) considers the influence of CNV cooccurrence in detecting somatic mutations; and (2) trains a support vector machine algorithm to distinguish between somatic and germline mutations, without requiring normal matched samples.We further tested and compared svmSomatic with other common methods.Results showed that svmSomatic performance, as measured by F1-score, was significantly better than that of others using both simulation and real NGS data.

    In recent years, many developed tools have achieved good results in somatic mutation detection.These approaches can be classified into two categories: i.e., those using paired tumor-normal samples to distinguish somatic mutations from uncommon germline polymorphisms, e.g., VarDict (Lai et al.,2015), Muse (Fan et al., 2016), and FaSD-somatic (Wang et al., 2014), and those using tumor samples without normal matched samples, e.g., SomVarIUS (Smith et al., 2016),SNVer (Wei et al., 2011), and ISOWN (Kalatskaya et al.,2017).The first detection category has the advantage of excluding germline mutations with allele frequencies ≥1% in global populations (Sherry et al., 2001).However, rare germline mutations specific to an individual can affect the detection of somatic mutations.Furthermore, obtaining matched normal samples in clinical practice can be difficult.The second detection category can save on sequencing costs and is favored in clinical practice.However, some novel single nucleotide variants (SNVs) found in individuals will severely influence somatic mutation detection accuracy, resulting in higher false positives (Liu et al., 2016).In general, existing methods achieve relatively good detection results, but these tools only consider one type of variation in the genome.

    With the above considerations, we propose a new machine learning-based method, named svmSomatic, to distinguish somatic and germline mutations without normal matched samples using next-generation sequencing (NGS) cancer genome data.The svmSomatic approach incorporates copy number variation (CNV) analysis in somatic mutation detection, extracts a set of somatic-relevant features at each site, and trains the support vector machine (SVM) classifier.We applied svmSomatic using real and simulation sequencing data.Results showed that this method is superior to others with consideration of the influence of CNVs.

    The svmSomatic procedure workflow is shown in Figure 1A.The process starts with input of a tumor sample without normal matched samples and a human reference genome,followed by short-read alignment.As svmSomatic is focused on distinguishing somatic SNVs from germline SNVs and considers the influence of CNVs, we used existing methods to first detect SNVs and CNVs.Therefore, svmSomatic follows afour-step process for task learning.In the first step, five somatic SNV-related features are extracted: i.e., read depth,allele frequency (AF), mapping quality, mismatched reads,and copy number of each site.In the second step, the SVM is employed to complete classification (Hastie & Tibshirani,1998).In the third step, the SMV classifier is trained with the labeled samples.In the final step, the trained SVM classifier is used to distinguish between germline and somatic mutations.

    Figure 1 Overview of svmSomatic method and performance comparison among five methods

    The detection of CNVs and SNVs is the first step before running the svmSomatic algorithm.Currently, many existing methods can detect CNVs and SNVs.We chose our previously proposed method STIC (Yuan et al, 2020b) for the detection of SNVs and the classic method FREEC (Boeva et al., 2012) for the detection of CNVs.Both methods can work on single tumor samples without normal matched samples and exhibit reasonable performance, even when tumor purity(fraction of tumor cells in tumor tissue mixture) is relatively low.We also conducted a simulation experiment to demonstrate the performance of the two methods, with results presented in Supplementary Text 1.It should be noted that this preprocess step is relatively independent from the implementation of the svmSomatic algorithm and users can choose other methods for the detection of CNVs and SNVs according to their requirements.

    Genomic data were extracted using BWA (Li & Durbin,2009) and SAM tools (Li et al., 2009).Four features were extracted from the Pileup file, including read depth, number of mismatched reads, AF, and average mapping quality.Finally,according to the FREEC results, copy number information was added to each SNV site as the fifth feature.These five features are associated with SNVs (Yuan et al., 2020b).Read depth denotes the number of reads aligned on some sites and provides important information for the deduction of copy number and number of variant alleles.AF can distinguish germline and somatic mutations.Due to the influence of tumor purity and copy number, the number of mismatched reads will vary, and the AF value will deviate from the ideal.Average mapping quality also considers sequencing errors.These five features show good separability and reliability, allowing the classifier to easily distinguish between somatic and germline mutations.Table 1 shows the features and their corresponding definitions.

    Distinction between somatic and germline mutations is primarily achieved through AF.Studies have shown that for heterozygous and homozygous genotypes, the AF of germline SNVs is 0.5 and 1, respectively (Xu, 2018).However, when germline AF is involved in somatic copy number change events, it may deviate from 0.5 or 1.Similarly, AF with somatic mutations can fluctuate due to CNV, normal tissue mixing, and subcloning (Cun et al., 2018; Xi et al., 2020).Therefore, it is necessary to add copy number as a feature to the classifier.

    Here, the SVM was selected as the algorithm classifier as itshows outstanding performance in classification problems.The design of the SVM classifier considers the distance between different categories to determine the optimal classification boundary by maximizing the distance between classes (Guyon et al., 1993; Lappalainen et al., 2015).We used the SVM as a binary classifier.Further details can be found in Supplementary Text 2.

    Table 1 Description of five extracted features

    Crucially, the SVM classifier must be trained before performing classification.We trained the SVM classifier using simulation datasets.In brief, 10-fold cross-validation was used to assess algorithm performance and chose the best classification strategy.We generated 100 000 SNVs,containing 50 000 somatic mutations and 50 000 germline mutations.The training dataset contain 45 000 randomly selected somatic mutations and 45 000 randomly selected germline mutations.The training dataset contained only two data types, labeled 1 and 0, representing germline and somatic mutations, respectively.The best parameter combination was chosen using 10-fold cross-validation based on the highest F1-score.Further details can be found in Supplementary Text 3.

    The new approach consists of two parameters, i.e., C and γ.The best method to determine the optimal parameter values in space was C={ 1.0,10.0,100.0,1000.0} and γ={0.001,0.01,0.1,1.0,10.0}, with the parameter combination C=1 000.0 and γ=0.1.However, due to hyperparameter distribution characteristics (Liu et al., 2006), the best combination was not unique.Here, we only present an optimal combination.

    To evaluate performance, we applied the newly proposed method using the simulation datasets.As the simulation data showed a clear pattern, we calculated sensitivity and precision of the simulation experiment results and then used the F1-scores for comprehensive evaluation (Yuan et al., 2012,2017).In addition, we compared the new approach to four classic methods (i.e., STIC (Yuan et al, 2020b), FaSD-somatic(Wang et al., 2014), SNVSniffer (Liu et al., 2016), and VarScan2 (Koboldt et al., 2012)) using their default parameters for reasonable and fair comparison.

    SInC (Pattnaik et al., 2014) was used to generate sequencing reads of chromosome 21.A total of 100 000 somatic SNVs and 100 000 germline SNVs were simulated.Half of the SNVs were heterozygous and the other half homozygous.We also simulated 226 CNVs in chromosome 21 ranging in length from 10 000 to 100 000.The simulated CNV types included gain and loss with copy numbers of 0, 1,3, 4, 5, and 6.To simulate different tumor purity levels, a pair of tumor-normal matched genomes was prepared.The tumor genome contained 200 000 SNVs and the normal genome contained only germline SNVs.FASTQ files from mixed samples with tumor purity ranging from 0.2 to 0.8 were generated.The sequencing coverage depths were 10X, 20X,30X, 40X, and 50X.To reduce the influence of noise from instruments and equipment, 10 simulation experiments for each coverage were carried out.The results presented are the average of the 10 replicates.Comparisons of the svmSomatic approach and four other methods were performed with the above data.Results are shown in Figure 1B, with coverage of 30X, and Supplementary Text 4.The recall and precision results of the five methods are presented in Supplementary Text 5.

    As shown in Figure 1B, the prediction of somatic SNVs improved with the increase in tumor purity; when tumor purity remained constant, prediction of somatic SNVs increased with the increase in coverage.In contrast, for STIC, the overall performance fluctuated with the increase in tumor purity.Somatic SNV prediction by STIC was dependent on AF, and thus was impacted by the increase in copy number.SNVSniffer and VarScan2 achieved satisfactory results at various coverages.However, FaSD-somatic was greatly affected by coverage, and only achieved good results when coverage was high.Overall, the performance of svmSomatic showed advantage over the other methods.

    The svmSomatic method was also applied to real data.As several of the methods (FaSD-somatic (Wang et al., 2014),VarScan2 (Koboldt et al., 2012), and SNVSniffer (Liu et al.,2016)) require matched samples for comparison, we collected paired tumor-normal samples (EGAR00001008630 and EGAR00001008681) for this experiment.Figure 1C shows the results of svmSomatic and other methods for chromosome 21.The blacked numbers in the table represents the number of somatic SNVs detected.SvmSomatic predicted the largest number of somatic SNVs, followed by STIC (Yuan et al,2020b), FaSD-somatic (Wang et al., 2014), SNVSniffer (Liu et al., 2016), and VarScan2 (Koboldt et al., 2012).For sample data, the F1-score could not be calculated.Thus, to evaluate method performance using real data, overlap among the five methods was analyzed using the overlapping density score(ODS), which developed by Yuan (Yuan et al, 2020a) as expressed in Equation (1).

    whereNsis the mean number of overlaps of one method with other methods andNpis the mean number of overlaps divided by the total predictions by the method.Here, we assumed that the overlaps between different methods were true positives.Thus,Nscould be defined as sensitivity andNpcould be defined as precision.The product ofNsandNpis similar to the area under an ROC curve (AUC), but the greater the value,the higher the performance.ODS(FaSD-somatic)=137.7,ODS(VarScan2)=101.8, ODS(SNVSniffer2)=45.2, ODS(STIC)=887.5, ODS(svmSomatic)=899.3, svmSomatic had the highest ODS value, followed by STIC, FaSD-somatic, VarScan2, and SNVSniffer.These results indicate that svmSomatic has a higherNs, higher mean number of overlaps with other methods, and higher sensitivity.Overall, svmSomatic showed slightly better results compared to the simulation data when applied to real data.

    In this paper, we developed a new open-source method(svmSomatic) to distinguish somatic SNVs from germline SNVs in tumor-only NGS data.SvmSomatic considers the influence of copy number variation when distinguishing SNVs.Furthermore, it is a single-sample-based method that does notrequire normal matched samples.The approach can be applied for individual chromosomes as well as whole exome and genome data.The detection of somatic SNVs should facilitate downstream research on tumors, including gene annotation and targeted drug therapy.SvmSomatic is written in Python language and implemented on the Linux system.The source code and manual documents are freely available at https://github.com/BDanalysis/svmSomatic.

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRIBUTIONS

    Y.F.M.and X.G.Y.participated in the design of algorithms and experiments.Y.F.M.and Y.P.C.participated in analysis of the performance of the proposed method.Y.P.C.and X.G.Y.directed and conceived the study and helped edited the manuscript.All authors read and approved the final version of the manuscript.

    精品国产亚洲在线| 高清在线国产一区| 亚洲熟妇熟女久久| 国产一级毛片七仙女欲春2 | 一边摸一边抽搐一进一小说| 国产精品爽爽va在线观看网站 | 一级黄色大片毛片| 免费一级毛片在线播放高清视频 | 午夜影院日韩av| 天天躁夜夜躁狠狠躁躁| 日本黄色视频三级网站网址| 激情在线观看视频在线高清| 色综合婷婷激情| 怎么达到女性高潮| 欧美久久黑人一区二区| 在线播放国产精品三级| 亚洲avbb在线观看| 国产精品秋霞免费鲁丝片| www.www免费av| 日本免费a在线| 国产精品日韩av在线免费观看 | 成人国语在线视频| 国产欧美日韩综合在线一区二区| 制服诱惑二区| 国产精品 国内视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美乱码精品一区二区三区| 亚洲色图综合在线观看| 在线播放国产精品三级| 国产aⅴ精品一区二区三区波| 国产成人啪精品午夜网站| 亚洲av电影不卡..在线观看| 国产97色在线日韩免费| 国产成人av教育| 亚洲五月婷婷丁香| a在线观看视频网站| 69av精品久久久久久| 满18在线观看网站| 欧美日韩乱码在线| 亚洲狠狠婷婷综合久久图片| videosex国产| 啦啦啦 在线观看视频| 岛国视频午夜一区免费看| 国产精品久久久人人做人人爽| 欧美av亚洲av综合av国产av| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区视频了| 一区二区三区激情视频| 一级黄色大片毛片| 亚洲成人免费电影在线观看| 又紧又爽又黄一区二区| 中文亚洲av片在线观看爽| 50天的宝宝边吃奶边哭怎么回事| xxx96com| 午夜福利成人在线免费观看| 中文亚洲av片在线观看爽| 成人亚洲精品av一区二区| 欧美丝袜亚洲另类 | 两性午夜刺激爽爽歪歪视频在线观看 | 级片在线观看| 婷婷丁香在线五月| 国产成人啪精品午夜网站| 欧洲精品卡2卡3卡4卡5卡区| 美女扒开内裤让男人捅视频| 欧美成人免费av一区二区三区| 99久久综合精品五月天人人| 精品久久蜜臀av无| 法律面前人人平等表现在哪些方面| 亚洲第一欧美日韩一区二区三区| 成年女人毛片免费观看观看9| 国产单亲对白刺激| 成年女人毛片免费观看观看9| 精品午夜福利视频在线观看一区| 亚洲人成伊人成综合网2020| 久久这里只有精品19| 国产麻豆69| 一级作爱视频免费观看| 一级,二级,三级黄色视频| 欧美乱妇无乱码| 精品一区二区三区四区五区乱码| 一区二区三区激情视频| 一本大道久久a久久精品| 精品一区二区三区av网在线观看| 狠狠狠狠99中文字幕| 老熟妇仑乱视频hdxx| 自线自在国产av| 女人高潮潮喷娇喘18禁视频| 亚洲伊人色综图| 国产男靠女视频免费网站| 纯流量卡能插随身wifi吗| 久久久久亚洲av毛片大全| 亚洲国产毛片av蜜桃av| 自线自在国产av| 国产精品久久久av美女十八| 亚洲国产精品合色在线| 午夜激情av网站| av免费在线观看网站| 高清在线国产一区| 熟女少妇亚洲综合色aaa.| 亚洲五月婷婷丁香| 波多野结衣一区麻豆| aaaaa片日本免费| 性少妇av在线| 欧美日韩亚洲国产一区二区在线观看| 成年女人毛片免费观看观看9| 午夜老司机福利片| 18禁黄网站禁片午夜丰满| 精品一区二区三区四区五区乱码| 国产成人欧美在线观看| 欧美成人免费av一区二区三区| 免费久久久久久久精品成人欧美视频| 欧美另类亚洲清纯唯美| 国产精品永久免费网站| 久久久久久久久免费视频了| 精品一区二区三区av网在线观看| 国产激情欧美一区二区| 淫妇啪啪啪对白视频| 波多野结衣巨乳人妻| 在线观看舔阴道视频| 国产精品乱码一区二三区的特点 | 亚洲专区中文字幕在线| 亚洲少妇的诱惑av| 一区二区日韩欧美中文字幕| 美女高潮喷水抽搐中文字幕| 美女高潮喷水抽搐中文字幕| 久久中文字幕人妻熟女| 一级片免费观看大全| 国产av又大| 97超级碰碰碰精品色视频在线观看| 欧美一级毛片孕妇| 亚洲欧洲精品一区二区精品久久久| 我的亚洲天堂| 色尼玛亚洲综合影院| 国产成人av激情在线播放| 91精品国产国语对白视频| 欧美日本视频| 日日夜夜操网爽| 国产亚洲精品一区二区www| 亚洲最大成人中文| 亚洲电影在线观看av| 成人国产一区最新在线观看| 日本五十路高清| 国产精品香港三级国产av潘金莲| 午夜福利,免费看| 亚洲中文av在线| 国产欧美日韩精品亚洲av| 99国产精品免费福利视频| 美女高潮到喷水免费观看| 久久中文看片网| 国产三级在线视频| 日韩成人在线观看一区二区三区| 日韩欧美一区视频在线观看| 亚洲成av片中文字幕在线观看| 国产成人精品在线电影| 国产精品av久久久久免费| 男女下面插进去视频免费观看| 嫁个100分男人电影在线观看| 国产欧美日韩综合在线一区二区| 久久久国产成人精品二区| 久久久久精品国产欧美久久久| 国产精品野战在线观看| 亚洲午夜理论影院| 精品福利观看| 神马国产精品三级电影在线观看 | 后天国语完整版免费观看| 女人精品久久久久毛片| 日韩欧美在线二视频| 黄色a级毛片大全视频| 亚洲一区二区三区不卡视频| 成人国产综合亚洲| 一区二区三区激情视频| 97碰自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久狼人影院| АⅤ资源中文在线天堂| 人成视频在线观看免费观看| 搡老妇女老女人老熟妇| 久久国产亚洲av麻豆专区| 亚洲国产精品999在线| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩黄片免| 精品久久久久久成人av| 最好的美女福利视频网| 日韩一卡2卡3卡4卡2021年| 日韩 欧美 亚洲 中文字幕| 欧美激情 高清一区二区三区| 国产精品日韩av在线免费观看 | 老司机福利观看| 淫妇啪啪啪对白视频| 国产精品亚洲美女久久久| 午夜两性在线视频| av天堂在线播放| 波多野结衣av一区二区av| 国产一区二区三区综合在线观看| 日韩av在线大香蕉| 99香蕉大伊视频| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 亚洲av五月六月丁香网| 一区二区三区高清视频在线| 美女大奶头视频| 日本精品一区二区三区蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品免费一区二区三区在线| 90打野战视频偷拍视频| 中亚洲国语对白在线视频| x7x7x7水蜜桃| 国产人伦9x9x在线观看| 又黄又粗又硬又大视频| 亚洲国产高清在线一区二区三 | 欧美国产精品va在线观看不卡| 少妇 在线观看| 天天躁狠狠躁夜夜躁狠狠躁| АⅤ资源中文在线天堂| av超薄肉色丝袜交足视频| 可以在线观看的亚洲视频| 欧美中文综合在线视频| 色综合婷婷激情| 999久久久精品免费观看国产| 国产xxxxx性猛交| 丝袜美腿诱惑在线| 午夜免费激情av| www国产在线视频色| 窝窝影院91人妻| 老司机在亚洲福利影院| 午夜福利18| 久久精品影院6| 久久亚洲真实| 久久久精品国产亚洲av高清涩受| 午夜久久久久精精品| 亚洲专区字幕在线| 一进一出抽搐gif免费好疼| 美女午夜性视频免费| videosex国产| 一区二区三区精品91| 国产亚洲欧美精品永久| 在线国产一区二区在线| 日本黄色视频三级网站网址| 亚洲自拍偷在线| 黑人操中国人逼视频| 欧美黄色片欧美黄色片| 国产一区二区三区在线臀色熟女| 又大又爽又粗| 人妻久久中文字幕网| 咕卡用的链子| 午夜视频精品福利| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 男人操女人黄网站| 国内久久婷婷六月综合欲色啪| 色播在线永久视频| 亚洲精品在线美女| 男女下面进入的视频免费午夜 | 国产成人精品久久二区二区免费| 欧美精品亚洲一区二区| 此物有八面人人有两片| 老汉色av国产亚洲站长工具| www.www免费av| 成熟少妇高潮喷水视频| 亚洲国产日韩欧美精品在线观看 | 在线观看免费日韩欧美大片| www.精华液| 老司机深夜福利视频在线观看| 黄色 视频免费看| 亚洲视频免费观看视频| 日韩av在线大香蕉| 国产97色在线日韩免费| 成人欧美大片| 精品一区二区三区视频在线观看免费| 在线观看免费视频网站a站| 免费看美女性在线毛片视频| 人人妻人人澡人人看| 日韩大尺度精品在线看网址 | 午夜亚洲福利在线播放| 午夜老司机福利片| 久久青草综合色| 国产精品亚洲美女久久久| 黄色毛片三级朝国网站| 国产成人精品在线电影| 久久精品国产亚洲av高清一级| 国产激情久久老熟女| 国产私拍福利视频在线观看| 亚洲国产毛片av蜜桃av| av有码第一页| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 美女国产高潮福利片在线看| 在线观看一区二区三区| av视频在线观看入口| 久久草成人影院| 国产熟女xx| 精品人妻1区二区| 国产黄a三级三级三级人| 久久午夜亚洲精品久久| 欧美久久黑人一区二区| 国产精品一区二区精品视频观看| 亚洲国产精品sss在线观看| 丝袜美腿诱惑在线| 日本vs欧美在线观看视频| 丝袜美足系列| 少妇粗大呻吟视频| 欧美黑人欧美精品刺激| 日韩av在线大香蕉| 精品欧美一区二区三区在线| 中文字幕高清在线视频| 国产欧美日韩一区二区三区在线| 老汉色av国产亚洲站长工具| 后天国语完整版免费观看| 九色国产91popny在线| 一级黄色大片毛片| 免费av毛片视频| 夜夜爽天天搞| 欧美日韩亚洲国产一区二区在线观看| 老司机深夜福利视频在线观看| 免费少妇av软件| 国产精品av久久久久免费| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 99久久久亚洲精品蜜臀av| 91精品三级在线观看| 一级作爱视频免费观看| 午夜免费鲁丝| 亚洲欧美日韩另类电影网站| 国产91精品成人一区二区三区| 日本 欧美在线| 在线播放国产精品三级| 国产精品1区2区在线观看.| 午夜福利一区二区在线看| 一级,二级,三级黄色视频| 法律面前人人平等表现在哪些方面| 色老头精品视频在线观看| 久久国产乱子伦精品免费另类| 中文字幕另类日韩欧美亚洲嫩草| 久久草成人影院| 亚洲午夜精品一区,二区,三区| 一a级毛片在线观看| 日本a在线网址| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 精品人妻在线不人妻| www.www免费av| 国产日韩一区二区三区精品不卡| 夜夜看夜夜爽夜夜摸| 国产欧美日韩精品亚洲av| 人人妻人人澡人人看| 脱女人内裤的视频| 日本免费一区二区三区高清不卡 | 日本在线视频免费播放| 又紧又爽又黄一区二区| 国产私拍福利视频在线观看| 波多野结衣一区麻豆| 香蕉久久夜色| 国产xxxxx性猛交| 丝袜美腿诱惑在线| 欧美日韩福利视频一区二区| 在线国产一区二区在线| 欧美av亚洲av综合av国产av| 母亲3免费完整高清在线观看| 欧美成人午夜精品| avwww免费| 亚洲五月天丁香| 免费在线观看日本一区| 久久久久亚洲av毛片大全| 精品免费久久久久久久清纯| av片东京热男人的天堂| 超碰成人久久| 1024香蕉在线观看| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 国产又爽黄色视频| 一级片免费观看大全| 精品国产乱子伦一区二区三区| 人人妻人人澡欧美一区二区 | 中文字幕av电影在线播放| 波多野结衣av一区二区av| 中国美女看黄片| 可以在线观看毛片的网站| 久久国产乱子伦精品免费另类| 亚洲精华国产精华精| 国产日韩一区二区三区精品不卡| 好男人电影高清在线观看| 制服丝袜大香蕉在线| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 成在线人永久免费视频| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看的高清视频| 亚洲第一欧美日韩一区二区三区| 九色亚洲精品在线播放| 久久中文看片网| 热99re8久久精品国产| 在线观看舔阴道视频| 国产av一区二区精品久久| 后天国语完整版免费观看| 老司机深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 精品人妻1区二区| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频 | 欧美色欧美亚洲另类二区 | 久久人妻福利社区极品人妻图片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美激情在线| 亚洲狠狠婷婷综合久久图片| 欧美中文综合在线视频| 久久婷婷成人综合色麻豆| 亚洲av第一区精品v没综合| 欧美久久黑人一区二区| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 久久人妻av系列| 波多野结衣高清无吗| 亚洲黑人精品在线| 啦啦啦观看免费观看视频高清 | 操出白浆在线播放| 亚洲自偷自拍图片 自拍| 亚洲成人久久性| 成人免费观看视频高清| 亚洲avbb在线观看| 午夜视频精品福利| 女生性感内裤真人,穿戴方法视频| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| √禁漫天堂资源中文www| 好男人电影高清在线观看| 日韩av在线大香蕉| 一级毛片精品| 日本欧美视频一区| 好男人在线观看高清免费视频 | 亚洲va日本ⅴa欧美va伊人久久| 18禁国产床啪视频网站| 操美女的视频在线观看| 精品福利观看| 国产一区二区在线av高清观看| 操出白浆在线播放| 久久草成人影院| 亚洲 欧美 日韩 在线 免费| 亚洲九九香蕉| 50天的宝宝边吃奶边哭怎么回事| 国产精品影院久久| 亚洲精品久久国产高清桃花| 国产在线精品亚洲第一网站| 国产在线观看jvid| 欧美乱妇无乱码| 国产精品乱码一区二三区的特点 | 级片在线观看| 久久久久亚洲av毛片大全| 国产精品久久视频播放| 91九色精品人成在线观看| 亚洲成人国产一区在线观看| 国产97色在线日韩免费| 动漫黄色视频在线观看| а√天堂www在线а√下载| 免费在线观看日本一区| 美女大奶头视频| 波多野结衣一区麻豆| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 精品国产国语对白av| 精品乱码久久久久久99久播| 国产精品亚洲av一区麻豆| 在线观看www视频免费| 国产成人精品久久二区二区91| 一级毛片精品| 亚洲激情在线av| 色av中文字幕| 亚洲成人久久性| 国产高清有码在线观看视频 | 成年版毛片免费区| 亚洲激情在线av| 男女床上黄色一级片免费看| 99久久精品国产亚洲精品| 一边摸一边做爽爽视频免费| 欧美成人性av电影在线观看| 中文字幕av电影在线播放| 亚洲视频免费观看视频| 国产亚洲欧美98| 色哟哟哟哟哟哟| 大型av网站在线播放| 色综合婷婷激情| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 亚洲精品一区av在线观看| 真人一进一出gif抽搐免费| 美女国产高潮福利片在线看| 88av欧美| 日本三级黄在线观看| 村上凉子中文字幕在线| 99精品久久久久人妻精品| 国产精品98久久久久久宅男小说| 国产精品日韩av在线免费观看 | 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 精品国产亚洲在线| 亚洲精华国产精华精| 国产亚洲精品一区二区www| 日韩三级视频一区二区三区| 亚洲天堂国产精品一区在线| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| av视频在线观看入口| 9191精品国产免费久久| 久久精品影院6| 九色国产91popny在线| 一区福利在线观看| 国产97色在线日韩免费| 91字幕亚洲| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 国产成人精品久久二区二区免费| 亚洲熟妇中文字幕五十中出| 国产激情久久老熟女| 亚洲欧美日韩无卡精品| 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 大香蕉久久成人网| 国产精品亚洲一级av第二区| 大型av网站在线播放| 又黄又粗又硬又大视频| 女性生殖器流出的白浆| 黄片播放在线免费| 日韩欧美一区二区三区在线观看| 大码成人一级视频| 涩涩av久久男人的天堂| 久久这里只有精品19| 麻豆久久精品国产亚洲av| 午夜免费激情av| 精品少妇一区二区三区视频日本电影| 精品免费久久久久久久清纯| 久久久久久久久中文| 成人免费观看视频高清| 亚洲欧美日韩高清在线视频| 亚洲男人天堂网一区| 久久人妻av系列| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站| 国产av在哪里看| 99在线视频只有这里精品首页| 国产亚洲精品一区二区www| 亚洲男人天堂网一区| 欧美另类亚洲清纯唯美| 久久久久久免费高清国产稀缺| 国产高清有码在线观看视频 | 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 日韩高清综合在线| 老熟妇乱子伦视频在线观看| cao死你这个sao货| 亚洲一区中文字幕在线| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 日本免费a在线| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 熟妇人妻久久中文字幕3abv| 天堂√8在线中文| 久久国产精品人妻蜜桃| 欧美激情 高清一区二区三区| 久久影院123| 国产欧美日韩一区二区三| 多毛熟女@视频| 久久婷婷人人爽人人干人人爱 | 欧美日本亚洲视频在线播放| 精品国产一区二区久久| 久久久久久人人人人人| 男人的好看免费观看在线视频 | 久久天躁狠狠躁夜夜2o2o| 九色亚洲精品在线播放| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 人成视频在线观看免费观看| 一边摸一边抽搐一进一出视频| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 老司机深夜福利视频在线观看| 性色av乱码一区二区三区2| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清 | 美女免费视频网站| 午夜福利成人在线免费观看| 久久国产精品男人的天堂亚洲| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 国产单亲对白刺激| 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 国产主播在线观看一区二区| 日韩欧美在线二视频| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 正在播放国产对白刺激| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 亚洲,欧美精品.| 国产99久久九九免费精品| 国产亚洲欧美在线一区二区| 色播在线永久视频| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看 | 亚洲一区中文字幕在线| 欧美成人性av电影在线观看| av免费在线观看网站|