• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sampled-Data Asynchronous Fuzzy Output Feedback Control for Active Suspension Systems in Restricted Frequency Domain

    2021-04-13 06:55:46WenfengLiZhengchaoXieYucongCaoPakKinWongandJingZhao
    IEEE/CAA Journal of Automatica Sinica 2021年5期

    Wenfeng Li, Zhengchao Xie, Yucong Cao, Pak Kin Wong, and Jing Zhao

    Abstract—This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain. In order to better investigate uncertain suspension dynamics, the sampleddata Takagi-Sugeno (T-S) fuzzy half-car active suspension(HCAS) system is considered, which is further modelled as a continuous system with an input delay. Firstly, considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay, a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system. Secondly, since external disturbances often belong to a restricted frequency range, a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly, given a full information of state variables is hardly available in practical suspension systems, a two-stage method is proposed to calculate the static output feedback control gains.Moreover, an iterative algorithm is proposed to compute the optimum solution. Finally, numerical simulations verify the effectiveness of the proposed controllers.

    I. INTRODUCTION

    WITH the widespread application of vehicles, it is of great significance to improve the ride quality and driving safety of vehicles [1]–[8]. As an essential component of the vehicle chassis, suspension systems generally consist of three key components: linkages, spring elements and vibration absorbers, which play a critical role in the enhancement of ride comfort and handling stability [9]. In recent years, active suspension systems have been gaining an increasing research attention because of their excellent potentials to improve the three main performance requirements simultaneously, i.e., ride comfort, handling stability and road holding capability [10]. In the open literatures, much research effort has been devoted to the control synthesis of active suspension systems, such as disturbance-observer-based control [11], preview control [12],adaptive control [13], [14], fault tolerant control [15], eventtriggered control [16] and so on. To effectively address the uncertainties and nonlinearities encountered in active suspension systems and other engineering systems, Takagi-Sugeno (T-S) fuzzy-model-based control methods have drawn much attention owing to their capability of approximating any smooth nonlinear dynamic systems to any specified accuracy from the viewpoint of theory [15]–[23]. For instance, the authors in [15] presented a reliable fuzzy controller design method for active suspension systems with taking actuator delay and fault into account. A fuzzy control method was presented for uncertain vehicle suspension systems subject to the random incomplete communication links in [17]. The authors in [21] presented a fuzzy control approach for nonlinear electrohydraulic active suspension systems with consideration of input constraints. The authors in [19]presented a fuzzy dynamic sliding mode control method for active suspension systems. However, few of reported T-S fuzzy control methods were presented for the half-car active suspension (HCAS) model. To better investigate suspension dynamics, this work focuses on the T-S fuzzy control of HCAS systems.

    With the rapid development of digital devices, most continuous-time systems are controlled via a high-speed digital computer, which are called as the sampled-data control systems [24]. Considering that the latest sampling signals are unchanged until the occurrence of next sampling, a lot of investigations have presented for the analysis and synthesis of sampled-data control systems, such as discrete-time system approach [25], [26], hybrid discrete/continuous-time approach[27] and input-delay approach [28], [29]. Among the above three main approaches, the input-delay approach has been widely adopted to analyze and synthesize the sampled-data control system, especially in the context of non-uniform sampling interval [24]. In this approach, an input delay is employed to represent the digital control law between two sampling instants. Based on the time-delay approach, a robust sampled-data H∞control method was presented for vehicle active suspension systems in [30]. The problem of fuzzy sampled-data control of the uncertain active suspension system was investigated in [29]. However, the premise variables of the fuzzy system and the fuzzy controller were assumed as identical in the above fuzzy control method. As pointed out in[20], [31], the fuzzy system and the fuzzy controller cannot share the same identical premise variables anymore due to the introduction of time delay. Hence, the asynchronous constraint needs careful treatments in the sampled-data control strategy, which is considered in this work.

    It should be noted that the above sampled-data control methods are considered in the entire frequency range. In other words, the above methods ignore an important fact that external disturbances always belong to a certain frequency range. Under the finite frequency external disturbances, the above entire frequency control approaches are much conservative because of overdesign [32]. Moreover, according to ISO-2631, the vertical vibration between 4–8 Hz may cause a serious injury to human’s organs due to resonance.Regarding to finite frequency control, as a consequence,numerous fruitful results have been presented in recent years.As a milestone in the road of finite frequency control, the generalized Kalman-Yakubovich-Popov (KYP) lemma was developed in [33], [34], which is powerful to transform a frequency domain inequality into an equivalent linear matrix inequality (LMI). Based on the generalized KYP lemma, the authors in [35]–[39] carried out various studies on the robust state-feedback control of active suspension systems in restricted frequency range. However, a full knowledge of state variables is hardly available in practical suspension systems.To guarantee the feasibility of finite frequency control methods, the dynamic output feedback control strategy was investigated in [40]. Taking advantages of simple structure and convenient implementation, the finite frequency static output feedback control strategy was investigated in[41]–[45]. However, no above output feedback control method was focused on sampled-data T-S fuzzy HCAS systems with asynchronous constraints. That is still an open and challenging problem and motivates this work.

    Motivated by above discussions, this paper proposes a sampled-data fuzzy static output feedback control approach for HCAS systems with asynchronous constraints in restricted frequency domain. The main contributions of this paper are as follows:

    1) A reconstructed method is employed to synchronize the membership functions of the fuzzy controller and the fuzzy system, which is effective to address the asynchronous premise variables for sampled-data T-S fuzzy HCAS systems.

    2) A new finite frequency controller design method is proposed for the concerned sampled-data asynchronous T-S fuzzy HCAS systems, which is effective to reduce conservatism under external disturbances over the concerned frequency range compared with the entire frequency controller presented in [29].

    3) An iterative algorithm is proposed to compute the optimum fuzzy static output feedback controller for T-S fuzzy sampled-data HCAS systems in restricted frequency domain,which contributes significantly to maintain the feasibility of the controller.

    The rest of this paper is organized as follows. Section II formulates the problem. The main results of control synthesis are given in Section III. Section IV verifies the performances of the proposed controllers via numerical simulations, and Section V concludes the research. Four useful lemmas,namely Lemmas 1 to 4, are presented in Appendix.

    Notations: For a matrix P , PTand P?1denote its transpose and inverse, respectively. [P]sdenotes P + PT. * is used to represent a term that is induced by symmetry in symmetric block matrices or complex matrix expressions. A blockdiagonal matrix is denoted by diag{·}. Rndenotes the ndimensional Euclidean space. For matrices P and Q, the Kronecker product is denoted by P?Q.

    II. PROBLEM FORMULATION AND PRELIMINARIES

    A. T-S Fuzzy Model of Uncertain HCASs

    For a better investigation into suspension dynamics, a typical uncertain HCAS model as shown in Fig. 1 is considered in this paper [20], [29]. The definitions of all symbols are listed in Table I. Assuming the pitch angle as a small one, the dynamic equations of the uncertain HCAS model can be obtained as follows:

    Fig. 1. Uncertain HCAS model.

    TABLE I SYMBOL DEFINITIONS OF HCAS MODEL

    B. Sampled-data Fuzzy Output Feedback Control

    C. Asynchronous Constraints and Problem Formulation

    The overall structure of the sampled-data fuzzy control for HCAS systems is shown in Fig. 2. It is obvious that the premise variables of the fuzzy system and the fuzzy controller are unmatched. In other words, the asynchronous constraints of membership functions are of significance to be considered,which can be described as follows [16], [31]:

    Fig. 2. Schematic diagram of sampled-data fuzzy control for HCAS systems.

    III. MAIN RESULTS

    In this section,a sampled-data fuzzy output feedback control algorithm is proposed for the T-S fuzzy HCAS system.

    A. Problem Analysis

    B. Parameterization of Controller

    Similarly to the proof of Lemma 4, the inequalities (34) and(35) can be guaranteed by (29) and (30), respectively. Based on (27), (34) and (35), Theorem 2 can be obtained. ■

    Remark 4: To deal with the problem of static output feedback controller design, a two-stage method was presented in [41], [42], [45]. However, the above literatures were focused on linear systems without consideration of time delay.Motivated by the two-stage method, Theorem 2 generalizes this idea to address the problem of sampled-data output feedback control in restricted frequency domain for T-S fuzzy HCAS systems with asynchronous constraints and transmission delay.

    Remark 5: It should be noted that the inequalities in(29)–(31) are no longer LMIs because of the existence of KsTLj, where both Ksand Ljare unknown matrices.Nevertheless, if Ksis a priori known matrix, (29)–(31)become a set of LMIs, which are feasible to seek an optimal solution. Inspired by [42], [45], Kscan be fixed as a set of local control gains of a sampled-data fuzzy state feedback controller in finite frequency domain, i.e.Ksj=Ksjf,j=1,2,...,8(that is Stage 1). Therefore, the local sampled-data output feedback control gains can be obtained by solving Theorem 2 (that is Stage 2). As a special case, if defining Cy=I, a set of new local state feedback control gains can be obtained by solving Theorem 2, which is effective to update the initial state feedback control gains.

    C. Computation of Controller

    Note that a set of local state feedback control gains can be obtained by solving Lemma 4, hence, the following optimization problem is feasible to find a set of local output feedback control gains with an optimal performance index:

    x111=0,x112=1;x121=0,x122=1;x131=1,x132=0;x211=1,x212=0;x221=1,x222=0;

    Remark 6: Recalling Remark 5, if setting Cy=I, a set of updated state feedback gains can be obtained by solving (36).That contributes greatly to the iteration to search a set of local output feedback control gains with a smaller performance index. Based on above discussions, an iterative algorithm with implementation details is proposed to search a set of optimal local output feedback control gains, which is summarized in Algorithm 1.

    Algorithm 1 η? N?Step 1: Input scalars T, ρ, λ1, λ2, α and , and choose the concerned frequency range.Step 2: Compute the initial local state feedback control gains via Lemma 4. Set i=1.Ksf(1)j Ksof(1)Step 3: Compute the initial local output feedback control gains and the corresponding performance index γ1 via the j Ks=Ksf(1)optimization in (36) with .Step 4:j i

    IV. SIMULATION RESULTS

    TABLE II PARAMETERS AND VALUES OF HALF-CAR SUSPENSION MODEL

    Fig. 3. Frequency response results for: (a) from z˙sf to z¨s, (b) from z˙sr to z¨s,(c) from z ˙sf to θ¨ and (d) from z ˙sf to θ¨.

    For description in brevity, the fuzzy output feedback controller is denoted as Controller II hereafter. To better highlight the effectiveness of the proposed controllers, another fuzzy sampled-data state feedback controller presented in [29]is adopted for comparative purpose, which is designed over the entire frequency range. The compared fuzzy sampled-data state feedback controller is denoted as Controller III and the control gains were presented in [29].

    A. Frequency Response

    In this subsection, the results of frequency response are shown in Fig. 3. It should be noted that the uncertain parameters are fixed as ms=690 kg, muf=40 kg and mur=45 kgand the system is simplified as a continuous system. In all simulation results, the responses of the HCAS systems with Controllers I–III and no controller are denoted by red solid line, blue double-dashed line, green dash-dotted line and black dotted line, respectively. Fig. 3 shows that all the three controllers yield smaller gain values than that produced by the passive suspension system, which illustrates the effectiveness of the three controllers. It can also be observed from Fig. 3 that the gain values generated by Controllers I and II are smaller than that generated by Controller III, which indicates that the proposed Controllers I and II are more effective to improve ride comfort than Controller III. Moreover, Fig. 3 shows Controllers I and II have similar gain values, which illustrates the proposed Algorithm1 can derive a less conservative counterpart in static output feedback control.

    In a word, the frequency response results verify the performance of the proposed sampled-data fuzzy output feedback control algorithm.

    B. Bump Response

    In this subsection, a typical bumped road profile is applied for simulation analyses, which is formulated as follows:

    Fig. 4. Bump response results at low speed for: (a) body vertical acceleration, (b) pitching angular acceleration, (c) relative front suspension travel and (d) relative rear suspension travel.

    Fig. 5. Bump response results at low speed for: (a) relative dynamic front tire load, (b) relative dynamic rear tire load, (c) front actuator force and (d)rear actuator force.

    Furthermore, Figs. 6 and 7 give the bump response results at high speed. Similarly to the case of low speed, it can be observed from Figs. 6 and 7 that all controllers yield a better ride quality than the passive suspension and guarantee the suspension hard constraints. Besides, Figs. 6 and 7 verify the advantages of the proposed controllers in comparison with Controller III.

    In addition, the root mean square (RMS) values of body vertical acceleration and pitching angular acceleration are listed in Tables III and IV. At low speed, the RMS values of body vertical acceleration and pitching angular acceleration can be reduced by 41.05% and 35.96% with Controller I,41.93% and 36.88% with Controller II and 37.42% and 22.48% with Controller III, respectively. At high speed, the RMS values of body vertical acceleration and pitching angular acceleration can be reduced by 30.89% and 5.21% with Controller I, 31.85% and 7.19% with Controller II and 21.45% and 6.47% with Controller III, respectively.Moreover, as shown in Tables III and IV, with the increase of velocity, a degradation of control performance is emerged,especially for pitching angular acceleration, which means the proposed controllers possess a limitation at high speed.

    Fig. 6. Bump response results at high speed for: (a) body vertical acceleration, (b) pitching angular acceleration, (c) relative front suspension travel and (d) relative rear suspension travel.

    Fig. 7. Bump response results at high speed for: (a) relative dynamic front tire load, (b) relative dynamic rear tire load, (c) front actuator force and (d)rear actuator force.

    TABLE III¨zs RMS VALUES OF UNDER BUMP ROAD DISTURBANCE

    TABLE IV RMS VALUES OF θ ¨ UNDER BUMP ROAD DISTURBANCE

    In a word, the bump response results verify the effectiveness of the proposed sampled-data fuzzy output feedback control algorithm.

    C. Rough Road Response

    The following rough road is further considered to evaluate the performances of the proposed controllers, which is similar to the vehicle body resonance frequency with a highfrequency disturbance added to simulate the rough road surface [21], [46]:

    where zrr(t) is the same as zrf(t) but with a time delay of(lf+lr)/V and the velocity is chosen as V =10 km/h.

    Fig. 8. Rough response results for: (a) body vertical acceleration, (b)pitching angular acceleration, (c) relative front suspension travel and (d)relative rear suspension travel.

    Fig. 9. Rough response results for: (a) relative dynamic front tire load, (b)relative dynamic rear tire load, (c) front actuator force and (d) rear actuator force.

    The rough response results are plotted in Figs. 8 and 9. As shown in Fig. 8(a) and (b), the proposed controllers can reduce body vertical acceleration and pitching angular acceleration significantly compared with Controller III and the passive suspension. Figs. 8(c) and (d) shows both front and rear suspension travels lie in a feasible range. Figs. 9(a) and(b) reveals that the relative tire loads of both front and rear tires are less than one, which means an acceptable road holding property is achieved. Figs. 9(c) and (d) gives the front and rear actuator forces, respectively, which are less than the maximum actuator force.

    In a word, the rough response results verify the effectiveness and advantages of the proposed sampled-data fuzzy output feedback control algorithm.

    Remark 7: As for the implementation of the fuzzy controller, the estimation of sprung mass and un-sprung mass is necessary, which is a potential limit simultaneously. In practical vehicles, various estimation methods were presented for vehicle inertial parameters. For instance, the authors in[47] presented a dual unscented Kalman filter to estimate vehicle inertial parameters. The authors in [48] constructed an online state-parameter observer to estimate road irregularities and vehicle mass for suspension systems. Actually, the unsprung mass may be used as the nominal value to calculate weighting factors because the change in the un-sprung mass is small enough to be ignored [46].

    V. CONCLUSIONS

    This paper proposes a novel sampled-data fuzzy output feedback control algorithm for T-S fuzzy HCAS systems, in which the issues of asynchronous premises variables,uncertain sprung and un-sprung masses are considered. First,by the input delay approach, the sampled-data T-S fuzzy HCAS system is modeled as a continuous T-S fuzzy system with a time delay. Then the asynchronous premise variables are synchronized via a reconstructed method, which facilitates the controller design. Second, a two-stage method is applied to calculate finite frequency static output feedback control gains. Moreover, an iterative algorithm is proposed to search an optimum finite frequency output feedback controller.Numerical simulations on an uncertain HCAS model illustrate the advantages of the proposed fuzzy sampled-data output feedback control algorithm as compared with the previous entire frequency control method [29] and the passive suspension.

    The nonlinearities of components in suspension systems are ignored in this paper, which will be studied in the future work to improve the feasibility of the controller in real suspension systems. Moreover, the control performance at high speed should be further improved at the future work.

    APPENDIx

    Lemma 1 [49]: The sampled-data T-S fuzzy HCAS system in (20) is asymptotically stable for any time delayτ(t)satisfying 0 ≤τ(t)≤T, if there exist symmetric matrices P1>0, R1>0 and S1>0 such that the following inequality holds:

    在线观看66精品国产| 一区在线观看完整版| 成人国语在线视频| 精品国产国语对白av| 久久久久久免费高清国产稀缺| av在线播放免费不卡| 成人亚洲精品一区在线观看| 在线观看免费午夜福利视频| 美女福利国产在线| 日韩免费av在线播放| 国产欧美日韩一区二区三| 18禁美女被吸乳视频| 久久这里只有精品19| 黑人欧美特级aaaaaa片| 激情视频va一区二区三区| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 亚洲精品国产色婷婷电影| 美女国产高潮福利片在线看| 成年动漫av网址| 黄频高清免费视频| 精品欧美一区二区三区在线| 99久久99久久久精品蜜桃| 欧美成人午夜精品| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 免费黄频网站在线观看国产| 亚洲精品中文字幕一二三四区 | 一本综合久久免费| 欧美亚洲日本最大视频资源| 亚洲成人国产一区在线观看| 欧美日韩成人在线一区二区| 国产精品九九99| 国产精品 国内视频| 首页视频小说图片口味搜索| 色播在线永久视频| 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 欧美黄色淫秽网站| 丰满少妇做爰视频| 99国产极品粉嫩在线观看| 亚洲中文av在线| 99精品久久久久人妻精品| 国产成人av激情在线播放| 欧美乱码精品一区二区三区| tube8黄色片| 成在线人永久免费视频| 99热网站在线观看| a级毛片黄视频| 亚洲第一av免费看| av网站免费在线观看视频| 熟女少妇亚洲综合色aaa.| av不卡在线播放| 日本黄色视频三级网站网址 | 国产精品 国内视频| 国产精品免费大片| 日本黄色视频三级网站网址 | 久久99一区二区三区| 日本撒尿小便嘘嘘汇集6| 色播在线永久视频| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 久久婷婷成人综合色麻豆| 久久久水蜜桃国产精品网| 日本av免费视频播放| 黄色a级毛片大全视频| 蜜桃国产av成人99| 久久精品人人爽人人爽视色| 成年女人毛片免费观看观看9 | 亚洲精品在线美女| 日韩熟女老妇一区二区性免费视频| 超色免费av| svipshipincom国产片| av免费在线观看网站| 亚洲视频免费观看视频| 国产欧美日韩一区二区精品| 美女福利国产在线| 美女午夜性视频免费| 满18在线观看网站| 黄片播放在线免费| 99久久人妻综合| 国产一区二区三区在线臀色熟女 | 亚洲色图 男人天堂 中文字幕| 9色porny在线观看| av免费在线观看网站| 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 国产高清videossex| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 18禁黄网站禁片午夜丰满| 精品少妇内射三级| 波多野结衣av一区二区av| 国产成人精品久久二区二区91| 国产精品 欧美亚洲| 亚洲精品成人av观看孕妇| 精品乱码久久久久久99久播| 国产精品秋霞免费鲁丝片| 丝袜美足系列| 久久狼人影院| 欧美日韩成人在线一区二区| 亚洲色图综合在线观看| 亚洲伊人色综图| 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡| 亚洲精品成人av观看孕妇| 男女床上黄色一级片免费看| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 大型黄色视频在线免费观看| 国产成人精品久久二区二区91| 男女高潮啪啪啪动态图| 日韩免费av在线播放| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 成在线人永久免费视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲 | 欧美精品啪啪一区二区三区| 99re6热这里在线精品视频| 操出白浆在线播放| 高清欧美精品videossex| 精品国产一区二区三区四区第35| cao死你这个sao货| 国产aⅴ精品一区二区三区波| 久久久久久免费高清国产稀缺| 性高湖久久久久久久久免费观看| av网站在线播放免费| 黑人巨大精品欧美一区二区mp4| 精品少妇黑人巨大在线播放| 亚洲精品乱久久久久久| 在线观看www视频免费| av有码第一页| 欧美国产精品一级二级三级| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 777久久人妻少妇嫩草av网站| 亚洲视频免费观看视频| 成人国产av品久久久| 91av网站免费观看| 人人澡人人妻人| 国产精品影院久久| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频 | 丰满迷人的少妇在线观看| 中文字幕制服av| 性色av乱码一区二区三区2| 一级毛片电影观看| 新久久久久国产一级毛片| 欧美在线一区亚洲| 日日爽夜夜爽网站| 欧美精品高潮呻吟av久久| 亚洲欧美一区二区三区黑人| 午夜老司机福利片| 在线 av 中文字幕| 久久毛片免费看一区二区三区| 国产亚洲精品久久久久5区| 精品少妇黑人巨大在线播放| 国产欧美日韩一区二区三| 91麻豆精品激情在线观看国产 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲 国产 在线| 天堂动漫精品| 大片电影免费在线观看免费| 狠狠精品人妻久久久久久综合| 99国产精品免费福利视频| 操美女的视频在线观看| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 91老司机精品| h视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 美国免费a级毛片| av视频免费观看在线观看| 国产精品美女特级片免费视频播放器 | 精品人妻在线不人妻| 成人手机av| netflix在线观看网站| 日韩欧美一区视频在线观看| 亚洲天堂av无毛| 久久精品亚洲精品国产色婷小说| 两个人免费观看高清视频| 最黄视频免费看| 99国产精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 久久国产精品大桥未久av| 国产亚洲午夜精品一区二区久久| 在线亚洲精品国产二区图片欧美| 亚洲七黄色美女视频| 淫妇啪啪啪对白视频| 亚洲全国av大片| 欧美精品一区二区大全| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 肉色欧美久久久久久久蜜桃| 正在播放国产对白刺激| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| 人人澡人人妻人| 国产精品久久久av美女十八| 日本av免费视频播放| 热99国产精品久久久久久7| 中文字幕人妻丝袜一区二区| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 51午夜福利影视在线观看| 9色porny在线观看| 少妇精品久久久久久久| 国产精品偷伦视频观看了| 欧美乱码精品一区二区三区| 日韩欧美三级三区| 亚洲国产av新网站| 亚洲成人免费电影在线观看| 美女高潮到喷水免费观看| 午夜久久久在线观看| 热re99久久精品国产66热6| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 人人妻,人人澡人人爽秒播| 一边摸一边抽搐一进一小说 | av天堂在线播放| 桃红色精品国产亚洲av| 美国免费a级毛片| 亚洲久久久国产精品| 狂野欧美激情性xxxx| 亚洲精品国产区一区二| 国产免费福利视频在线观看| 日日夜夜操网爽| 少妇被粗大的猛进出69影院| 精品久久久久久电影网| 日本黄色视频三级网站网址 | 欧美中文综合在线视频| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 精品国产国语对白av| 国产伦理片在线播放av一区| 成人国产av品久久久| 99精品久久久久人妻精品| av免费在线观看网站| 国产精品av久久久久免费| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久小说| 国产精品1区2区在线观看. | 亚洲精品自拍成人| 香蕉久久夜色| 在线天堂中文资源库| svipshipincom国产片| 在线观看人妻少妇| 亚洲色图 男人天堂 中文字幕| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 国产精品久久久人人做人人爽| 国产成人一区二区三区免费视频网站| www日本在线高清视频| 亚洲精品国产精品久久久不卡| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边抽搐一进一出视频| videosex国产| 夫妻午夜视频| 飞空精品影院首页| 露出奶头的视频| 成人国语在线视频| 成年版毛片免费区| 亚洲成av片中文字幕在线观看| 欧美日韩一级在线毛片| 丝袜美足系列| 久久久精品免费免费高清| 日韩人妻精品一区2区三区| av天堂久久9| 成人av一区二区三区在线看| 免费观看人在逋| 美女扒开内裤让男人捅视频| 国产精品一区二区精品视频观看| 在线永久观看黄色视频| 亚洲五月婷婷丁香| 看免费av毛片| 亚洲av成人不卡在线观看播放网| 免费女性裸体啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 精品国产亚洲在线| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区 | 黄色毛片三级朝国网站| 午夜免费成人在线视频| 欧美在线一区亚洲| 一级毛片女人18水好多| 91字幕亚洲| 亚洲av日韩在线播放| 国产精品 欧美亚洲| 亚洲国产欧美日韩在线播放| 国产免费福利视频在线观看| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 国产视频一区二区在线看| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 纵有疾风起免费观看全集完整版| 热re99久久国产66热| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 国产不卡一卡二| 首页视频小说图片口味搜索| av线在线观看网站| 久久性视频一级片| 黄色成人免费大全| 大型av网站在线播放| 久久精品亚洲精品国产色婷小说| 国产成人精品在线电影| 丁香六月欧美| 国产伦理片在线播放av一区| www.熟女人妻精品国产| 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 99精品久久久久人妻精品| 国精品久久久久久国模美| 免费黄频网站在线观看国产| 又大又爽又粗| 午夜福利视频精品| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 欧美乱码精品一区二区三区| 亚洲视频免费观看视频| 日韩有码中文字幕| 曰老女人黄片| 岛国毛片在线播放| 精品欧美一区二区三区在线| 999久久久精品免费观看国产| 国产有黄有色有爽视频| 天堂8中文在线网| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| videos熟女内射| 夜夜夜夜夜久久久久| 免费看a级黄色片| 日本wwww免费看| 嫩草影视91久久| 99香蕉大伊视频| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区免费开放| 激情视频va一区二区三区| 欧美日韩成人在线一区二区| 亚洲成人免费电影在线观看| 超色免费av| 建设人人有责人人尽责人人享有的| 最近最新免费中文字幕在线| 在线观看66精品国产| 亚洲精华国产精华精| 欧美日韩av久久| 国产精品久久久久久人妻精品电影 | 日韩一区二区三区影片| 视频在线观看一区二区三区| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 欧美激情久久久久久爽电影 | 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美精品济南到| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 悠悠久久av| 麻豆国产av国片精品| 国产高清视频在线播放一区| 亚洲熟女精品中文字幕| 成人av一区二区三区在线看| 99热国产这里只有精品6| 91字幕亚洲| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲乱码少妇综合久久| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 亚洲成人免费av在线播放| 少妇的丰满在线观看| 欧美在线黄色| 2018国产大陆天天弄谢| 午夜福利乱码中文字幕| 色尼玛亚洲综合影院| 午夜福利一区二区在线看| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 一区二区三区乱码不卡18| 天堂中文最新版在线下载| 色老头精品视频在线观看| 一级片免费观看大全| 国产精品亚洲一级av第二区| 香蕉国产在线看| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 91麻豆av在线| 久久久精品免费免费高清| 制服人妻中文乱码| 久久中文看片网| 免费在线观看日本一区| 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 精品福利永久在线观看| 一二三四在线观看免费中文在| 一区二区三区精品91| 蜜桃国产av成人99| 国产成人一区二区三区免费视频网站| 91成人精品电影| 可以免费在线观看a视频的电影网站| 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 日本精品一区二区三区蜜桃| 久久国产亚洲av麻豆专区| 99国产综合亚洲精品| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 极品教师在线免费播放| 久久精品亚洲熟妇少妇任你| 最新美女视频免费是黄的| 欧美激情 高清一区二区三区| 免费在线观看日本一区| 精品国产乱码久久久久久男人| a级毛片黄视频| 99riav亚洲国产免费| 悠悠久久av| 亚洲人成伊人成综合网2020| 欧美在线黄色| 国产在线精品亚洲第一网站| 一个人免费在线观看的高清视频| 免费日韩欧美在线观看| 视频在线观看一区二区三区| 12—13女人毛片做爰片一| aaaaa片日本免费| 国产在线观看jvid| 中文字幕最新亚洲高清| 日韩三级视频一区二区三区| 欧美人与性动交α欧美软件| 18在线观看网站| 国产成人欧美| 桃花免费在线播放| 国产精品香港三级国产av潘金莲| 青青草视频在线视频观看| 色94色欧美一区二区| 欧美性长视频在线观看| 亚洲av国产av综合av卡| 欧美日韩亚洲高清精品| 日韩中文字幕视频在线看片| 黄片小视频在线播放| 真人做人爱边吃奶动态| 天堂中文最新版在线下载| 精品少妇一区二区三区视频日本电影| 99热国产这里只有精品6| 欧美av亚洲av综合av国产av| 国产高清国产精品国产三级| 久久久国产精品麻豆| 一进一出抽搐动态| 亚洲国产看品久久| 精品一区二区三区av网在线观看 | 看免费av毛片| 国产伦人伦偷精品视频| 亚洲色图av天堂| 欧美成狂野欧美在线观看| 久久精品国产a三级三级三级| av又黄又爽大尺度在线免费看| 亚洲精品一二三| 国产免费视频播放在线视频| 国产福利在线免费观看视频| 欧美亚洲日本最大视频资源| 18禁裸乳无遮挡动漫免费视频| 另类亚洲欧美激情| 亚洲成人手机| 亚洲国产欧美一区二区综合| 午夜精品国产一区二区电影| 日韩中文字幕视频在线看片| 一本一本久久a久久精品综合妖精| 亚洲国产欧美网| 一级片免费观看大全| 成人av一区二区三区在线看| 欧美一级毛片孕妇| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| 国产精品久久久久久人妻精品电影 | 99国产精品一区二区蜜桃av | 国产精品.久久久| 色老头精品视频在线观看| 久久午夜亚洲精品久久| 无遮挡黄片免费观看| 制服人妻中文乱码| 99国产综合亚洲精品| 亚洲精品成人av观看孕妇| 无人区码免费观看不卡 | 淫妇啪啪啪对白视频| 精品国产一区二区三区久久久樱花| 黄色视频在线播放观看不卡| 一进一出抽搐动态| 精品人妻在线不人妻| 免费一级毛片在线播放高清视频 | 国产欧美日韩一区二区三区在线| 777米奇影视久久| 天堂动漫精品| 老司机亚洲免费影院| 欧美日韩视频精品一区| 亚洲第一av免费看| 一级毛片女人18水好多| 高清黄色对白视频在线免费看| 国产一区二区三区视频了| 国产成人欧美在线观看 | 最黄视频免费看| 精品一区二区三卡| 日本av手机在线免费观看| 久久中文字幕一级| 精品一区二区三区视频在线观看免费 | 80岁老熟妇乱子伦牲交| 亚洲成人手机| 视频在线观看一区二区三区| 97在线人人人人妻| 久久热在线av| 黄频高清免费视频| 亚洲国产欧美日韩在线播放| 高清av免费在线| 亚洲精品国产精品久久久不卡| 曰老女人黄片| 国产成人av教育| h视频一区二区三区| 91精品国产国语对白视频| 电影成人av| 狠狠精品人妻久久久久久综合| 午夜久久久在线观看| 亚洲av日韩精品久久久久久密| 欧美日韩精品网址| 波多野结衣一区麻豆| 99re在线观看精品视频| 国产成人免费无遮挡视频| cao死你这个sao货| 成人国产一区最新在线观看| 日韩大片免费观看网站| 99国产精品免费福利视频| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 99久久精品国产亚洲精品| 免费少妇av软件| www.精华液| 国产精品国产av在线观看| 黄色怎么调成土黄色| 国产精品一区二区在线观看99| 日韩免费高清中文字幕av| cao死你这个sao货| 亚洲三区欧美一区| 国产欧美日韩一区二区精品| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 80岁老熟妇乱子伦牲交| 怎么达到女性高潮| 久久国产精品大桥未久av| 欧美人与性动交α欧美软件| av网站免费在线观看视频| 亚洲欧美激情在线| 日韩有码中文字幕| 免费黄频网站在线观看国产| 色尼玛亚洲综合影院| 国产在线视频一区二区| av电影中文网址| 18禁美女被吸乳视频| 少妇 在线观看| 免费在线观看黄色视频的| 亚洲美女黄片视频| √禁漫天堂资源中文www| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 性高湖久久久久久久久免费观看| 女人爽到高潮嗷嗷叫在线视频| 性色av乱码一区二区三区2| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 国产欧美日韩一区二区三区在线| 成人国语在线视频| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 久久人妻熟女aⅴ| 麻豆乱淫一区二区| 精品国产一区二区久久| 在线观看人妻少妇| 黄色丝袜av网址大全| 日韩三级视频一区二区三区| 一本久久精品| 天天操日日干夜夜撸| 一级黄色大片毛片| 午夜精品久久久久久毛片777| 纯流量卡能插随身wifi吗| 桃花免费在线播放| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 国产亚洲欧美在线一区二区| 日韩免费高清中文字幕av| 亚洲精华国产精华精| 午夜精品国产一区二区电影| 亚洲免费av在线视频| 考比视频在线观看| 我的亚洲天堂| 国产男女超爽视频在线观看| 757午夜福利合集在线观看| 成人手机av|