[摘要]"核仁蛋白在核糖體發(fā)生中至關重要,同時核仁蛋白調控細胞的增殖、凋亡和細胞周期。核仁功能的異常與人類疾病密切相關,包括遺傳性疾病、癌癥、神經(jīng)退行性疾病等。本文綜述了核仁蛋白在幾種疾病中的作用和核仁蛋白作為治療靶點的潛力。
[關鍵詞]"細胞核仁;核仁蛋白質類;疾病;綜述
[中圖分類號]"R341.31
[文獻標志碼]"A
[文章編號]"2096-5532(2021)04-0626-03
核仁是核糖體發(fā)生的主要場所,核仁蛋白對細胞的生命活動進行調控[1]。核仁功能改變表現(xiàn)為核糖體發(fā)生異常或核仁應激,可以誘發(fā)疾病,也可以作為癌癥的治療靶點[2-4]。核仁異?;钴S為癌細胞發(fā)生的標志,靶向核仁蛋白的藥物成為抗癌藥物篩選的重要方向。本文對近年來核仁蛋白與遺傳性疾病、癌癥和其他非遺傳性疾病的研究進行綜述。
1"核仁蛋白功能
核仁是核糖體生物發(fā)生的主要場所,同時調控細胞內(nèi)的生命活動。位于核仁的rDNA轉錄產(chǎn)生rRNA,rDNA損傷是造成核仁功能異常的重要原因。核糖體RNA和約80種核糖體蛋白的合成以及核糖體組裝需要200多個裝配因子的參與[5]。核糖體前體加工和組裝的大部分過程都在核仁中完成,因此,核仁結構和功能的完整性是核糖體生物正常發(fā)生的保證[6-7]。研究最為廣泛的核仁蛋白信號通路為核仁應激。在存在抑癌蛋白P53的正常細胞中,p53的mRNA轉錄正常,但是細胞通過降解蛋白質使P53蛋白保持較低水平。核仁應激信號通路中,核糖體蛋白L5、核糖體蛋白L11等功能破壞,不再參與核糖體構建,而與P53的主要E3泛素連接酶鼠雙微粒體2(MDM2)結合,抑制MDM2與P53的結合和泛素化降解,促進P53穩(wěn)定,上調蛋白水平,從而誘導細胞凋亡、周期停滯等[7]。P53非依賴性的核仁應激更復雜,核仁應激后通過抑制MDM2促使E2F蛋白家族轉錄因子1(E2F-1)下調,調控細胞周期;核糖體蛋白L5、L11與癌基因蛋白c-Myc結合,降低其轉錄活性和c-Myc mRNA水平,促進其降解,導致P53缺失的腫瘤細胞增殖減少[8]。抑癌蛋白可變閱讀框蛋白(ARF)是一個核仁蛋白,能夠與MDM2蛋白的羧基端相互作用,抑制MDM2介導的P53泛素化降解和P53轉錄下調,在侵襲性淋巴瘤中ARF失活,促使野生型P53下調,無法發(fā)揮抑癌作用。核仁蛋白在核糖體發(fā)生和P53介導腫瘤發(fā)生中發(fā)揮著重要作用。誘導核仁應激可用于癌癥治療。
2"遺傳性疾病與核仁蛋白
近年的研究表明,多種遺傳性疾病病人的基因組中都發(fā)現(xiàn)了大量的核糖體蛋白或者核糖體生物發(fā)生因子基因突變的情況,其中,至少有一半的先天性再生障礙性貧血病人的核糖體蛋白基因發(fā)生突變[9]。除此之外,已明確的核糖體病變還包括Treacher Collins綜合征(TCS)、北美印第安兒童肝硬化、5q染色體綜合征、散發(fā)性先天性無脾征[10]等。在這些疾病中,核糖體發(fā)生病變會造成核仁功能受損,影響早期發(fā)育,誘發(fā)畸形[11]。核糖體病變誘發(fā)的表型表現(xiàn)在某些特定的組織或器官中。以TCS綜合征為例,該病是由RNA聚合酶Ⅰ(Pol Ⅰ)轉錄臂或其轉錄輔助因子TCOF1的雜合突變引起的,突變后的細胞無法正常完成顱面神經(jīng)嵴細胞增殖、遷移、分化,造成病人畸形表型[12]。這種表型主要集中在病人顱面,表現(xiàn)為顱面畸形、下頜骨發(fā)育不全、外耳畸形、雙眼外眥下移等,但是病人不會出現(xiàn)顱骨畸形。在先天性再生障礙性貧血中,多種核糖體蛋白中任何一種蛋白的突變都會影響骨髓的造血功能,這些突變只特異性存在于某些組織器官中,與P53在不同組織中表達水平存在差異有關[13]。DEAD(Asp-Glu-Ala-Asp)-box RNA解旋酶DDX21具有ATP依賴性催化RNA解旋的活性,參與調控核糖體生物發(fā)生、轉錄、前體mRNA剪接和RNA衰變等過程[14]。CALO等[12]研究顯示,TCS綜合征病人基因突變引起DDX21從核仁重新定位到核質,導致rRNA加工受阻和核糖體蛋白基因轉錄水平下調,從而導致顱面疾病。顱面神經(jīng)嵴細胞中P53轉錄活躍,細胞對P53介導的細胞凋亡敏感,突變細胞凋亡水平更高,阻斷DDX21的變化可恢復細胞凋亡的易感性和消除TCS綜合征相關的顱面表型[12]。SONG等[14]研究發(fā)現(xiàn),DDX21與去乙酰化轉移酶SIRT7共作用可保證包括P53基因在內(nèi)的基因組穩(wěn)定性;JANIC等[15]研究顯示,不同細胞中DNA修復方式和P53激活信號通路不同,造成了P53在不同組織中的調控結果存在差異。除了受P53表達調控影響,核仁功能異常的補償存在組織特異性[12],而P53的上調是核仁功能異常全局作用的結果。一般的抗凋亡藥物并不能特異性恢復不同組織核糖體發(fā)生,因此,核糖體病變的治療方案或許更應該聚焦于誘導特異性補償,如上調核糖體發(fā)生增加蛋白HBS1L表達[16]。
3"非遺傳性疾病與核仁蛋白
3.1"癌癥與核仁蛋白的關系
核糖體生物發(fā)生率的上調可能促進組織的腫瘤轉化。在慢性肝病中,伴有核仁肥大的肝細胞數(shù)量越多,癌癥發(fā)生率越高[17]。在腫瘤中存在兩種核仁應激途徑——P53依賴性和非依賴性途徑,所以即使腫瘤細胞中P53缺失,仍然可通過靶向核仁激活腫瘤細胞周期檢查點甚至誘導細胞凋亡[18]。各種細胞損傷必須伴隨核仁功能的改變才會造成P53的穩(wěn)定和激活[19],所以以核仁蛋白為靶標的藥物比一般的細胞毒性藥物對腫瘤細胞的作用效果更好[20]。在核仁蛋白中尋找藥物靶點成為極具潛力的研究方向。核仁素是典型的核仁蛋白,正常細胞中主要分布于核仁,少量分布在細胞質和細胞膜上。增殖活躍的細胞中核仁素表達水平較高,尤其腫瘤細胞中,細胞膜表面的核仁素可以和腫瘤生長因子結合,轉運生長因子進入細胞內(nèi),促進腫瘤的發(fā)生和發(fā)展[21]。因此,細胞膜上核仁素高表達為重要的癌變信號。
3.2"以核仁蛋白為靶標抗癌藥物的研發(fā)
目前已上市用于治療癌癥的烷化劑、抗嵌入劑、抗代謝物、拓撲異構酶和激酶抑制劑等,都可以通過抑制核仁的核糖體發(fā)生功能增強它們對癌細胞的毒性作用[22-24],如順鉑通過抑制Pol Ⅰ,破壞核仁結構;多柔比星(DOX)、喜樹堿可以通過抑制拓撲異構酶影響rRNA加工;氟尿嘧啶、高三尖杉酯堿損害rRNA,但不破壞核仁結構。烷化劑奧沙利鉑甚至不通過DNA損傷而通過抑制核糖體生物合成誘導癌細胞死亡[23]。兩種特異性抑制rDNA轉錄的小分子藥物CX-3543、CX-5461都表現(xiàn)出良好的抗癌藥潛能,其對DNA、mRNA和蛋白質合成的選擇性超過普通藥物200倍[25]。
核仁蛋白能夠與核酸分子特異性結合的特點更有利于開發(fā)具有靶向性的抗癌藥物,如核酸適配體AS1411。核酸適配體是一類通過篩選得到的寡核苷酸序列,能夠特異性和靶物質結合,也可以根據(jù)需求進行不同的修飾,作為藥物的載體靶向給藥。AS1411經(jīng)過修飾能夠嵌入藥物DOX,將其靶向運輸?shù)桨┘毎?,然后與癌細胞膜高表達的核仁素蛋白特異性結合,被細胞內(nèi)吞后進入細胞發(fā)揮作用[26]。AS1411在二期臨床試驗中顯示出對腎癌和非小細胞肺癌具有明顯治療作用[27],聯(lián)合阿糖胞苷治療急性髓性白血病的二期臨床試驗也已經(jīng)完成。此外,DENG等[28]合成了一種能有效富集在腫瘤細胞核仁的光籠型四價鉑前藥coumaplatin,其光照活化后的藥物活性比母體藥物奧沙利鉑高出96倍,可有效克服腫瘤細胞的耐藥性。
3.3"其他非遺傳性疾病與核仁蛋白關系
除上述疾病外,許多疾病也與核仁蛋白相關,如抑郁癥[29]、缺血性心臟病[30]、阿爾茨海默病[31]等。其中,包括阿爾茨海默病、帕金森病、亨廷頓病等在內(nèi)的神經(jīng)退行性疾病,與神經(jīng)元的核仁應激誘導相關[32]。但是,以核仁為靶點治療此類疾病的藥物仍未有報道,可能與這些疾病發(fā)病機制尚不十分清楚有關。
綜上所述,無論是核仁的核糖體生物發(fā)生功能,還是核仁應激對增殖、凋亡和細胞周期的調控,都與人類疾病密切相關。過去幾十年研究結果已經(jīng)顯示了影響核糖體生物發(fā)生的遺傳突變與癌癥風險升高之間存在因果關聯(lián)。因此,核仁蛋白被看作重要的藥物作用靶點。隨著研究的深入,核仁蛋白與人類疾病之間的關系將更加清晰,這將為靶向性治療相關疾病提供理論支持。
[參考文獻]
[1]NOLLER H F,"LANCASTER L,"MOHAN S,"et al. Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA[J]."Quarterly Reviews of Biophysics,"2017,50: e12. doi:10.1017/S0033583517000117.
[2]ZHOU X,"HAO Q,"ZHANG Q,"et al. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition[J]."Cell Death and Differentiation,"2015,22(5):755-766.
[3]DOSIL M A,"NAVARIDAS R,"MIRANTES C,"et al. Tumor suppressive function of E2F-1 on PTEN-induced serrated colorectal carcinogenesis[J]."The Journal of Pathology,"2019,247(1):72-85.
[4]ZENG J Y,"LIBIEN J,"SHAIK F,"et al. Nucleolar PARP-1 expression is decreased in Alzheimer’s disease: consequences for epigenetic regulation of rDNA and cognition[J]."Neural Plasticity,"2016,"2016:8987928.
[5]KRESSLER D,"HURT E,"BASSLER J. Driving ribosome assembly[J]."Biochimica et Biophysica Acta,"2010,1803(6):673-683.
[6]DE LA CRUZ J,"GMEZ-HERREROS F,"RODRGUEZ-GALN O,"et al. Feedback regulation of ribosome assembly[J]."Current Genetics,"2018,64(2):393-404.
[7]DALLA VENEZIA N,"VINCENT A,"MARCEL V,"et al. Emerging role of eukaryote ribosomes in translational control[J]."International Journal of Molecular Sciences,"2019,20(5): E1226.
[8]JUNG J H,"KIM M J,"LEE H,"et al. Farnesiferol c induces apoptosis via regulation of L11 and c-Myc with combinational potential with anticancer drugs in non-small-cell lung cancers[J]."Scientific Reports,"2016,6:26844.
[9]TANIGUCHI T,"CHIKATSU N,"TAKAHASHI S,"et al. Expression of p16INK4A and p14ARF in hematological malignancies[J]."Leukemia,"1999,13(11):1760-1769.
[10]LEE J H,"LIST A,"SALLMAN D A. Molecular pathogenesis of myelodysplastic syndromes with deletion 5q[J]."European Journal of Haematology,"2019,102(3):203-209.
[11]MILLS E W,"GREEN R. Ribosomopathies: there’s strength in numbers[J]."Science (New York,"N Y),"2017,358(6363): eaan2755.
[12]CALO E,"GU B,"BOWEN M E,"et al. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders[J]."Nature,"2018,554(7690):112-117.
[13]WARREN A J. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome[J]."Advances in Biological Regulation,"2018,67:109-127.
[14]SONG C L,"HOTZ-WAGENBLATT A,"VOIT R,"et al. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability[J]."Genes amp; Development,"2017,31(13):1370-1381.
[15]JANIC A,"VALENTE L J,"WAKEFIELD M J,"et al. DNA repair processes are critical mediators of p53-dependent tumor suppression[J]."Nature Medicine,"2018,24(7):947-953.
[16]O’CONNELL A E,"GERASHCHENKO M V,"O’DONOHUE M F,"et al. Mammalian Hbs1L deficiency causes conge-nital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation[J]."PLoS Genetics,"2019,15(2): e1007917.
[17]KODIHA M,"SALIMI A,"WANG Y M,"et al. Pharmacological AMP kinase activators target the nucleolar organization and control cell proliferation[J]."PLoS One,"2014,9(1): e88087.
[18]PESTOV D G,"STREZOSKA Z,"LAU L F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G1/S transition[J]."Molecular and Cellular Biology,"2001,21(13):4246-4255.
[19]OU H L,"SCHUMACHER B. DNA damage responses and p53 in the aging process[J]."Blood,"2018,131(5):488-495.
[20]LAWRENCE M G,"OBINATA D,"SANDHU S,"et al. Patient-derived models of abiraterone-"and enzalutamide-resistant prostate cancer reveal sensitivity to ribosome-directed therapy[J]."European Urology,"2018,74(5):562-572.
[21]FUJIKI H,"WATANABE T,"SUGANUMA M. Cell-surface nucleolin acts as a central mediator for carcinogenic,"anti-carcinogenic,"and disease-related ligands[J]."J Cancer Res Clin Oncol,"2014,140(5):689-699.
[22]LESSARD F,"BRAKIER-GINGRAS L,"FERBEYRE G. Ribosomal proteins control tumor suppressor pathways in response to nucleolar stress[J]."BioEssays: News and Reviews in Molecular,"Cellular and Developmental Biology,"2019,41(3): e1800183. doi:10.1002/bies.201800183.
[23]BRUNO P M,"LIU Y P,"PARK G Y,"et al. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress[J]."Nature Medicine,"2017,23(4):461-471.
[24]KAWAMURA K,"QI F,"MENG Q M,"et al. Nucleolar protein nucleolin functions in replication stress-induced DNA da-mage responses[J]."Journal of Radiation Research,"2019,60(3):281-288.
[25]TAYLOR J S,"ZEKI J,"ORNELL K,"et al. Down-regulation of MYCN protein by CX-5461 leads to neuroblastoma tumor growth suppression[J]."Journal of Pediatric Surgery,"2019,54(6):1192-1197.
[26]堵玉林,梁靜. 核酸適配體在腫瘤靶向治療方面的研究進展[J]."化學通報,"2017,80(9):809-818,862.
[27]ROSENBERG J E,"BAMBURY R M,"VAN ALLEN E M,"et al. A phase Ⅱ trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma[J]. Invest New Drugs,"2014,32:178-187.
[28]DENG Z,"WANG N,"LIU Y,"et al. A Photocaged,"Water-oxidizing,"and nucleolus-targeted Pt(Ⅳ) complex with a distinct anticancer mechanism[J]. J Am Chem Soc,"2020,142(17):7803-7812.
[29]GOS T,"STEINER J,"KRELL D,"et al. Ribosomal DNA transcription in the anterior cingulate cortex is decreased in unipolar but not bipolar I depression[J]."Psychiatry Research,"2013,210(1):338-345.
[30]MAMAEV N N,"GUDKOVA A Y,"AMINEVA K K. AgNORs in the myocardium in ischaemic heart disease complica-ted by heart failure: a postmortem study[J]."Molecular Patho-logy: MP,"1998,51(2):102-104.
[31]DNMEZ-ALTUNTA"H,"AKALIN H,"KARAMAN Y,"et al. Evaluation of the nucleolar organizer regions in Alzhei-mer’s disease[J]."Gerontology,"2005,51(5):297-301.
[32]PARLATO R,"KREINER G. Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle[J]?"Journal of Molecular Medicine (Berlin,"Germany),"2013,91(5):541-547.
[33]HETMAN M,"PIETRZAK M. Emerging roles of the neuronal nucleolus[J]."Trends in Neurosciences,"2012,35(5):305-314.
(本文編輯"黃建鄉(xiāng))