• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring the influence of microRNA miR-34 on p53 dynamics: a numerical study*

    2021-04-12 00:48:52NanLiu劉楠HongliYang楊紅麗andLianguiYang楊聯(lián)貴
    Communications in Theoretical Physics 2021年3期

    Nan Liu (劉楠),Hongli Yang (楊紅麗) and Liangui Yang (楊聯(lián)貴)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Abstract The tumor suppressor p53 is at the hub of the cellular DNA damage response network.P53-dependent cell fate decision is inseparable from p53 dynamics.A type of non-coding microRNA miR-34 has the function of enhancing p53 content.An intriguing question arises: How does miR-34 affect p53 kinetics?To address this question,we reconstruct a p53 signal transduction network model containing miR-34.Some experimental phenomena of p53 pulses are reproduced to explain the rationality of the model.The method of numerical bifurcation is used to investigate the effect of miR-34 on p53 kinetics.We point out that appropriate or higher miR-34 transcription rates can prevent DNA-damaged cell proliferation by causing p53 oscillation or high steady-state kinetic behavior,respectively.However,the lack of miR-34 synthesis ability will induce p53 to remain at a low level,and cells cannot respond correctly to DNA damage.These results are well in line with the anti-cancer role of miR-34.Our work sheds light on how miR-34 carries out its tumor-suppressive function from tuning p53 dynamic aspect.

    Keywords: miR-34,P53 kinetic model,oscillation,bifurcation

    1.Introduction

    P53,one of the most important genetic guardians,can suppress the canceration of a variety of cells[1].As a transcription factor,p53 enables a large number of target genes to be transactivated.These target genes are involved in cell senescence,programmed cell death,cell cycle arrest,metastasis inhibition,and DNA damage response,etc [2].More than half of human cancers are related to p53 gene defects: for example,p53 gene loss or mutation[3,4].MicroRNA(miR)is a class of non-coding RNA molecules,which bind to the untranslated region of messenger RNA in a specific sequence,causing translation to be inhibited[5].Among them,miR-34 has a positive effect on p53 level[6].Therefore,it is not surprising that the down-expression of miR-34 occurs in a lot of p53-related tumors [7].Conversely,the over-expression of miR-34 induced by p53 suggests that miR-34 has an anticancer effect in many human cancer cells [8].It has been found experimentally that the cell fate after DNA damage is regulated by p53 dynamics,that is,the periodic pulse dynamics of p53 level makes cells stop cell division,stable medium concentration of p53 triggers cell senescence,and a monotonous increase in p53 concentration leads to cell apoptosis[9,10].Therefore,it is necessary to explore the kinetic regulation of p53.However,how miR-34 finely controls the dynamics of p53 after DNA damage is not fully understood.

    In the progress of p53 kinetics research,both biological experiments and mathematical models have played a very important role [11].The mathematical models are very predictable.For example: (i) as early as 2002,Tiana et al [12]used the p53-Mdm2 (the major negative regulator of p53)motif to add a large time delay,which resulted in a stable limit cycle for the dynamic system,although the undamped oscillation of p53 had not been discovered at that time;(ii)as early as 2011,Zhang et al [13] employed a mathematical model to demonstrate that there may be two-stage dynamics in the p53 system,as far as we know,this phenomenon was not reported experimentally until 2020 [14].As we all know,negative feedback loop(NFL)is essential to generate pulses dynamic in protein signal networks,and the periodic pulse dynamics requires time lag in NFL[15].Time delay plays a role in many oscillating or chaotic systems[16–18].In fact,most of the p53 vibrator models have two elements,i.e.NFL and delay.Delay differential equations obviously include time lag,and ordinary differential equations(ODE)can also include an invisible time delay.There are hidden delay in the p53 models that distinguishes the cytoplasm and the nucleus [19].Similarly,supposing an intermediate substance between p53 and Mdm2 is also a way to hide the time lag [20].Adding a positive feedback loop (PFL) to the NFL can also produce continuous and stable vibration,because PFL can provide delay for NFL[21].In a variety of biological networks,the NFL-PFL coupling model is more tunable and therefore more realistic [22–24].

    Motivated by the above considerations,we develop a NFLs-PFLs coupled p53 ODE model containing miR-34.Our model is derived by modifying the model of Zhuge et al[25].Their model used a nonlinear sigmoidal function (the generalized Hill function) to adapt the model established by Zhang et al[26],and explained the mediation of p53 co-factor on p53 dynamics and cell fate well.In this work,we ignore the role of co-factor and add miR-34 pathway to the p53 vibrator module to rebuild a mathematical model in order to analyze the effect of miR-34 on p53 dynamics under DNA damage.For a detailed description of the model,see section 2.We first reproduce the continuous or damped oscillation of p53 found in the experiments[27,28].Secondly,the method of numerical bifurcation is applied to the model,and we find that this ODE system has two kinds of stability under standard parameters,one is a stable limit cycle,and the other is a stable fixed point.The appropriate expression of miR-34 is required for p53 oscillation.Finally,we investigate the kinetics of p53 under the combined action of the parameter regulated by DNA damage and the production parameter of miR-34.The dynamic effect of miR-34 on p53 system is verified again.The anticancer effect of miR-34 is explained from the perspective of p53 kinetics.

    2.Model

    Figure 1.Schematic depiction of ATM-p53-Mdm2 module regulated by miR-34.Arrow-headed and solid-circle-headed solid lines denote promotion and inhibition,respectively.Arrow-headed dashed lines represent state transition or degradation.

    In resting cells,the ubiquitin-proteasome degradation pathway caused by Mdm2 results in low levels of p53 [29].In turn,p53 can promote the expression of Mdm2.In the case of DNA damage,the mutual regulation between p53 and Mdm2 is altered.The protein kinase ATM first senses DNA damage and is activated by phosphorylation [30].After being activated,ATM catalyzes the phosphorylation of p53 and Mdm2[31].Phosphorylated p53 has more transcriptional activity,while phosphorylated Mdm2 is more easily degraded [32].Interestingly,phosphorylated Mdm2 can also increase the translation efficiency of p53 messenger RNA[33].On the one hand,p53 triggers the dephosphorylation (inactivation) of ATM by inducing the expression of phosphatase (Wip1),forming a NFL [34].On the other hand,p53 induces the transcription of miR-34,and miR-34 hinders the translation of the protein (Mdm4) required for Mdm2 to ubiquitinate p53.Therefore,miR-34 inhibits the pro-degradation function of Mdm2 on p53,forming a PFL[6].The schematic diagram of the model is shown in figure 1.Here Mdm2 is divided into three categories,i.e.Mdm2 in the nucleus (Mdm2n),Mdm2 in the cytoplasm(Mdm2c),and phosphorylated Mdm2 in the cytoplasm(Mdm2p).According to the law of mass action,the equations are as follows:

    Here [] represents the dimensionless concentration and prime means its differentiation to time.All promotion or inhibition are expressed as the generalized Hill functions.The sub-functions are as follows:

    Table 1.Simulation parameters.

    Numerical solution is done by MATLAB Euler method.The numerical bifurcation is performed with the free software XPPAUT.The parameter values and descriptions are shown in the table 1.These parameters mainly come from [25],and some parameters are adjusted with ‘trial and error’ method.Limited to experimental data,the real parameter values are usually difficult to obtain,and the‘trial and error’approach is popular,for example in [35].The concentration units of the parameters are dimensionless ‘C’,the proportional constants have no unit marked as ‘’,and the time unit is minutes ‘min’.

    3.Results

    3.1.Reproduction of p53 oscillation dynamics

    Figure 2.(a) Time series of [p53] and (b) trajectory in the deterministic case.Here [Mdm2]=[Mdm2n]+[Mdm2c]+[Mdm2p].

    Figure 3.Time series of[p53]under random simulation.The noise intensity D is set to 10?7.(a)is 50 single-cell samples,and the color bar represents the dimensionless concentration of p53.(b) is the average of 50 single cells.

    The vibration dynamic of p53 under the deterministic case is exhibited in figure 2(a).The p53 oscillation period is between 4 and 7 h,which is consistent with the pulse interval in the experiment[27].The long-lasting and stable-interval pulse of p53 means that the system has the possibility of a stable limit cycle.To explain this point clearly,we draw a trajectory in the three-dimensional space in figure 2(b).The trajectory from the origin quickly converges to a stable circle,which is the limit cycle.In real cells,p53 will not oscillate indefinitely because the damaged DNA will be repaired during the p53 pulse phase.When DNA damage drops to a certain level,p53 may recover to a basal concentration[36].The above analysis are the p53 oscillation dynamics under the ideal condition.Due to the PH and temperature etc in the real cells are fluctuation,or the number of molecules in a cell is not very large,the ODE model cannot reflect the dynamics of the protein well.There may be internal noise or external noise disturbing the system[37].Therefore,we will consider the oscillation of p53 corresponded to the stochastic differential equation(SDE) next.

    The ODE dx/dt=F(x) can be rewritten as SDE dx/dt= F(x)+ξ,here ξ is the noise term.ξ is usually assumed Gaussian white with zero mean,i.e.〈ξ(t)〉=0 andwhere δ(t) is the Dirac function and D is the homogeneous constant matrix,which describes the intensity of noise.A noise system with such properties can further obtain the Fokker–Planck equation by introducing a probability flow.Therefore,this SDE system is used to create the potential landscape related to steady probabilitydistribution [38].As mentioned above,the cellular networks have internal or external noise,and this additive noise is closer to the internal noise [39].We display 50 single-cell samples in figure 3(a).All of them exhibit significant p53 pulse.Unlike the deterministic case,the pulse interval and height of p53 are uncertain in the random simulation.In other words,the p53 oscillations are not synchronized in the population of cells.It is easy to understand that the oscillation of p53 is damped in the population cells,because the condition of population cells is the average result of all single cells,as shown in figure 3(b).Thus,the p53 oscillation behavior observed experimentally by Western blotting is damped [28].

    Figure 4.Time occurs of [p53] at different vmir values.

    3.2.The kinetics of p53 mediated by miR-34

    The function of miR-34 in the p53 signaling network has been initially discovered,but how miR-34 regulates p53 dynamics remains mysterious.Figure 4 depicts the p53 kinetics of three miR-34 expression rate (vmir) scenarios.When miR-34 is expressed at a low level (vmir=0.02),p53 remains at a low level;when miR-34 is expressed at a high level(vmir=0.04),the p53 level first increases monotonically,then decreases and finally stabilizes at a higher level.The model shows that for p53 to oscillate,miR-34 needs to maintain a medium production rate,similar to the prediction in [40].In order to fully reflect the correlation between miR-34 generation rate and p53 kinetics,we draw a bifurcation diagram in figure 5.There are four key points in figure 5(a),the saddle node bifurcation point at the steadystate branch (SN),the Hopf bifurcation point (HB),the saddle node bifurcation point at the limit cycle branch (SNL),and the saddle node invariant circle bifurcation point (SNIC).The oscillation originates from HB and ends at SNIC.These four bifurcation points divide this parameter into five intervals: (i)when vmir∈[0,SN],p53 maintains a low steady state;(ii)when vmir∈(SN,SNIC],the system appears excitable state;(iii)when vmir∈(SNIC,HB],p53 has only stable oscillation; (iv) when vmir∈(HB,SNL],p53 has both stable steady state and stable oscillation; and (v) when vmir∈(SNIC,+∞),p53 finally high steady state will be achieved.

    This oscillator has a remarkable characteristic that the oscillation appears in the form of‘all or none’,that is,all the oscillation is of large amplitude,and there is no ambiguous phenomenon of either seeming or non oscillation.Such oscillation feature may be attributed to the existence of PFL[41].And the oscillation produced by this vibrator has a variety of rhythms,as shown in figure 5(b).A wide range of frequencies is required by many biological processes (like heartbeats and cell cycles)[24].Therefore,our model may be more suitable for the truth.Moreover,the bifurcation diagram shows that in addition to stable oscillation,there is also a stable steady state in the dynamic system under the default parameters.As shown in figure 6,there are one stable limit cycle and one stable fixed point in the phase diagram.Which dynamic of the system can appear is historically dependent.Indeed,p53 pulsed cells accounted for a certain percentage after DNA damage,but not all in the experiment [27].Thereby,it is plausible that the p53 dynamic system has other stability.

    3.3.The combined effect of miR-34 and ATM on p53 dynamics

    The above analysis suggest that different miR-34 expression capabilities cause distinct p53 kinetics.In order to make these results more solid,we further combine vmirwith another parameter vatmto analyze.As a sensor,ATM activation parameter vatmis affected by DNA damage [30].Figure 7 depicts the bifurcation curve of p53 steady-state branch as a function of vatmunder different vmirvalues.P53 keep low concentration when vmir=0.02 despite vatmvarying.The bifurcation curve is ‘S’ shaped when vmir=0.03: the lower branch is composed of stable nodes; the middle branch is consist of unstable saddle points; and the upper branch is the unstable focus in a large vatmrange.The bifurcation curves corresponding to vmir=0.04 and vmir=0.03 are qualitatively similar,and the only difference is that the oscillation is compressed in a very narrow vatminterval.As vatmincreases,the unstable focus becomes stable nodes after encountering HB.The bifurcation curves also mean that: (i) if the expression of miR-34 is low,p53 will not reach a high concentration;(ii)the appropriate expression of miR-34 will make p53 oscillation conditions more relaxed; and (iii) when miR-34 is expressed in large quantities,p53 is more likely to be at a high concentration.These agree well with the previous analysis in section 3.2.

    Figure 5.(a)Codimension-one bifurcation diagram of[p53]versus the parameter vmir.The red solid and the black solid lines represent stable and unstable equilibria,respectively.The green solid lines and the blue dotted lines are the maxima and minima of stable and unstable limit cycles,respectively.(b)The oscillation period as a function of vmir.The green solid lines and the blue dotted lines are the period of stable and unstable limit cycles,respectively.

    Figure 6.Phase diagram on ([p53],[Mdm2]) plane.

    We further extend the four bifurcation points in figure 5(a)on the (vmir,vatm) parameter plane,as shown in figure 8.This parameter region is divided into five subregions by four bifurcation curves:(i)p53 is low expressed in the R1 region;(ii)the p53 regulatory network is excitable in the R2 region;(iii)in the R3 area,p53 has repeated pulses; (iv) the p53 dynamic system appears atypical bistable(stable steady state and stable vibration)when the parameters are in the R4 region; and (v) in the R5 region,p53 cascade occurs.The co-dimension two bifurcation graph confirms the correctness of co-dimension one bifurcation graphs.When the abnormal DNA signal is sufficient to fully activate ATM,miR-34 can finely regulate the dynamics of p53 motif.Furthermore,the two PFLs coupled dynamical systems have the potential to produce tristability [42].In our model,in addition to the miR-34 pathway,the Mdm2p pathway is also a PFL.When the expression level of miR-34 is extremely high,as plotted in figure 9,the lower branch of the ‘S’ shaped curve is folded.Since the intermediate steady state of the tristable state is very low and close to the low steady state,we do not do the extra research.

    Figure 7.Codimension-one bifurcation diagram of [p53] versus the parameter vatm at the given vmir.Only steady-state branches are presented here.The red solid and the black solid lines represent stable and unstable steady-state,respectively.

    4.Discussion and conclusion

    Figure 8.Codimension-two bifurcation diagram for parameters vmir and vatm.

    Figure 9.Codimension-one bifurcation diagram of [p53] versus the parameter vatm when vmir=0.2.Here HC is the homoclinic bifurcation point.The red solid and the black solid lines represent stable and unstable steady-state,respectively.Blue dotted lines are the maxima and minima of unstable limit cycles.

    Our ODE model does not include the equations of Wip1 and Mdm4,but the roles of these two proteins in the signal transduction network have been considered,i.e.p53 promotes ATM inactivation,and miR-34 inhibits the effect of Mdm2n on p53 degradation.In addition to Mdm4,miR-34 suppresses SIRT1 protein is also a possible mechanism[6].SIRT1 does not participate in the degradation of p53,but converts active p53 into inactive p53.Therefore miR-34 prevents p53 inactivation.If this pathway is introduced,the reduction coefficientdp53should be the multiplication of two Hill functions (degradation multiply by inactivation),which is similar to the generation coefficient(production multiply by activation).We reset.The parameter j is negatively related to the strength of this pathway.When this effect of miR-34 on this way is not very strong (j=1),our results remain unchanged.But as the intensity of this effect increases (j=0.1),the p53 oscillation behavior will be destroyed and replaced by an ultra-high steady state (see figure 10).However,the inhibition of miR-34 on SIRT1 does not seem to occur in some cases [6].

    Figure 10.The scenario of another miR-34 pathway is introduced into the model.Codimension-one bifurcation diagram of [p53]versus the parameter vmir at the given j.Only steady-state branches are presented here.The red solid and the black solid lines represent stable and unstable steady-state,respectively.

    In summary,the main reason of cancer is DNA damage[11].This paper uses numerical methods to study a mathematical model of miR-34 and p53 motif crosstalk after DNA damage.If cells fail to respond appropriately to DNA damage,it may lead to uncontrolled cell proliferation [11].We find that miR-34 plays an important role in p53-mediated cellular DNA damage response.If ATM is fully activated,the moderate miR-34 synthesis rate triggers p53 oscillation,leading to cell cycle arrest.The larger miR-34 production rate is conducive to the high concentration of p53,causing cell senescence or apoptosis.Too low miR-34 production will make cells with low p53 concentration,meaning that DNA damaged cells can also proliferate.This may be the reason why the miR-34 content in many tumors is low.Moreover,miR-34 can also be related to the apoptosis regulatory network downstream of p53 [43],which is worthy of further research in the future.We hope that our work will be helpful to the design of biological experiments and anti-cancer strategies.

    www.色视频.com| 十八禁国产超污无遮挡网站| 成人高潮视频无遮挡免费网站| 好男人电影高清在线观看| 久久婷婷人人爽人人干人人爱| 九色成人免费人妻av| www.www免费av| 国产亚洲欧美98| 看片在线看免费视频| 一个人看的www免费观看视频| 成人国产一区最新在线观看| 欧美性猛交黑人性爽| 给我免费播放毛片高清在线观看| 十八禁国产超污无遮挡网站| 亚洲第一区二区三区不卡| 亚洲自拍偷在线| 亚洲内射少妇av| 午夜免费激情av| 国产精品伦人一区二区| 伊人久久精品亚洲午夜| 18禁黄网站禁片免费观看直播| 九九热线精品视视频播放| 国产亚洲av嫩草精品影院| 亚洲美女搞黄在线观看 | 成人欧美大片| 国产免费男女视频| 无遮挡黄片免费观看| 成人特级av手机在线观看| 久久午夜亚洲精品久久| 窝窝影院91人妻| 国产一区二区三区视频了| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 99久国产av精品| 国产伦一二天堂av在线观看| 国产不卡一卡二| 一个人免费在线观看电影| xxxwww97欧美| 久久久久国产精品人妻aⅴ院| 日韩欧美精品v在线| 黄色视频,在线免费观看| 老司机午夜十八禁免费视频| 日本熟妇午夜| 村上凉子中文字幕在线| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| 欧美激情久久久久久爽电影| 香蕉av资源在线| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av天美| 黄色一级大片看看| 国产精品一及| 男插女下体视频免费在线播放| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 久久人人爽人人爽人人片va | 激情在线观看视频在线高清| 久久久久久久久大av| 欧美成人一区二区免费高清观看| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 90打野战视频偷拍视频| 国产精品久久久久久久久免 | 成人特级av手机在线观看| 18禁黄网站禁片午夜丰满| 国产精品野战在线观看| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| 国产中年淑女户外野战色| 人人妻人人看人人澡| 亚洲精品在线观看二区| 国产伦人伦偷精品视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女视频黄频| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 日本黄大片高清| 波多野结衣高清作品| 1024手机看黄色片| 国产成+人综合+亚洲专区| 日韩欧美精品v在线| 国产高清有码在线观看视频| 精品久久久久久久久久久久久| 欧美日韩综合久久久久久 | 国产精品自产拍在线观看55亚洲| 中出人妻视频一区二区| 欧美区成人在线视频| 宅男免费午夜| 毛片女人毛片| 国产精品人妻久久久久久| 久久久久久九九精品二区国产| 哪里可以看免费的av片| 一级黄片播放器| 日韩欧美在线乱码| 亚洲精品成人久久久久久| 一夜夜www| 两人在一起打扑克的视频| 国产午夜精品论理片| 国产男靠女视频免费网站| 亚洲狠狠婷婷综合久久图片| 麻豆av噜噜一区二区三区| 亚洲无线观看免费| 午夜a级毛片| 天天躁日日操中文字幕| 天堂网av新在线| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 欧美+日韩+精品| 亚洲国产精品999在线| 91在线精品国自产拍蜜月| 极品教师在线视频| 波野结衣二区三区在线| 香蕉av资源在线| 久久九九热精品免费| 免费观看精品视频网站| 最好的美女福利视频网| 老鸭窝网址在线观看| 日本在线视频免费播放| 国产精品一区二区性色av| 亚洲熟妇中文字幕五十中出| 免费在线观看亚洲国产| 国产精品国产高清国产av| 久久亚洲精品不卡| 亚洲欧美清纯卡通| 赤兔流量卡办理| 日本五十路高清| 日本免费a在线| 免费看日本二区| 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 97超级碰碰碰精品色视频在线观看| 亚洲无线观看免费| 一进一出好大好爽视频| 三级毛片av免费| 亚洲国产日韩欧美精品在线观看| 丰满的人妻完整版| 欧美高清成人免费视频www| 两个人的视频大全免费| 日韩欧美免费精品| 中文在线观看免费www的网站| 全区人妻精品视频| 舔av片在线| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 免费高清视频大片| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 久久精品国产亚洲av香蕉五月| 亚洲五月婷婷丁香| 国产av麻豆久久久久久久| 国产三级在线视频| 十八禁人妻一区二区| 国产探花在线观看一区二区| av国产免费在线观看| 欧美成人a在线观看| 免费黄网站久久成人精品 | 国产亚洲精品久久久com| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 日本a在线网址| 久久精品国产亚洲av天美| 亚洲 欧美 日韩 在线 免费| 亚洲av一区综合| 亚洲美女搞黄在线观看 | 亚洲专区国产一区二区| 琪琪午夜伦伦电影理论片6080| 两人在一起打扑克的视频| 成年版毛片免费区| 露出奶头的视频| 亚洲av不卡在线观看| 欧美日韩综合久久久久久 | 一区二区三区四区激情视频 | 最近视频中文字幕2019在线8| 校园春色视频在线观看| 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 亚洲欧美日韩东京热| 亚洲,欧美精品.| 非洲黑人性xxxx精品又粗又长| 欧美日韩瑟瑟在线播放| 亚洲国产欧洲综合997久久,| 色av中文字幕| 午夜福利在线观看免费完整高清在 | 美女cb高潮喷水在线观看| 人人妻人人看人人澡| 欧美bdsm另类| 国产淫片久久久久久久久 | 国产欧美日韩精品亚洲av| 色视频www国产| av福利片在线观看| 淫秽高清视频在线观看| 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 夜夜爽天天搞| 国产av麻豆久久久久久久| 午夜福利欧美成人| 欧美色欧美亚洲另类二区| 欧美不卡视频在线免费观看| 亚洲国产欧美人成| 日韩欧美国产在线观看| 日本五十路高清| 俺也久久电影网| 在线播放无遮挡| 国产蜜桃级精品一区二区三区| 简卡轻食公司| 少妇高潮的动态图| 我要看日韩黄色一级片| 精品一区二区三区av网在线观看| av国产免费在线观看| 欧美色视频一区免费| 内射极品少妇av片p| 美女黄网站色视频| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 精品免费久久久久久久清纯| 色综合婷婷激情| 久久久成人免费电影| 亚洲人成伊人成综合网2020| 亚洲中文字幕一区二区三区有码在线看| 国产精品爽爽va在线观看网站| www.熟女人妻精品国产| 亚洲精品亚洲一区二区| 久久九九热精品免费| 亚洲,欧美,日韩| 亚洲自偷自拍三级| 国产久久久一区二区三区| 在线观看av片永久免费下载| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品综合一区在线观看| 波多野结衣高清作品| 国产精品伦人一区二区| 嫩草影视91久久| 18美女黄网站色大片免费观看| 美女被艹到高潮喷水动态| 亚洲精品日韩av片在线观看| 久久久国产成人免费| 免费无遮挡裸体视频| 久久久久久大精品| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 简卡轻食公司| 麻豆成人av在线观看| 欧美性感艳星| 国产在视频线在精品| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| av福利片在线观看| 91久久精品国产一区二区成人| 精品久久久久久久人妻蜜臀av| 黄色女人牲交| 99久久精品国产亚洲精品| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 国产精品电影一区二区三区| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 在线观看av片永久免费下载| 精品欧美国产一区二区三| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 久久人妻av系列| 91av网一区二区| 国产美女午夜福利| 一区二区三区激情视频| 91在线精品国自产拍蜜月| 精品久久久久久久人妻蜜臀av| 国产私拍福利视频在线观看| www.熟女人妻精品国产| 国产高清激情床上av| 久久99热6这里只有精品| 国产免费一级a男人的天堂| 99久久无色码亚洲精品果冻| 一个人看视频在线观看www免费| 久久久久久国产a免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲国产色片| 一级黄色大片毛片| 嫩草影院入口| 搞女人的毛片| 九九热线精品视视频播放| 99热这里只有是精品50| 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 91久久精品电影网| 精品欧美国产一区二区三| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 国产中年淑女户外野战色| 精品一区二区三区人妻视频| 久久午夜亚洲精品久久| 亚洲精品在线美女| 午夜免费激情av| 免费无遮挡裸体视频| 欧美性猛交╳xxx乱大交人| 看免费av毛片| 高清日韩中文字幕在线| 高清在线国产一区| 免费av毛片视频| 欧美另类亚洲清纯唯美| 少妇被粗大猛烈的视频| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| 一区二区三区免费毛片| 麻豆成人av在线观看| 丝袜美腿在线中文| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 成年版毛片免费区| 欧美zozozo另类| 欧美激情国产日韩精品一区| 久久久久久大精品| 久久精品国产99精品国产亚洲性色| 少妇熟女aⅴ在线视频| 久久精品国产自在天天线| 99riav亚洲国产免费| 成人精品一区二区免费| 亚洲国产精品999在线| 亚洲成人久久爱视频| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 一级黄色大片毛片| 高清毛片免费观看视频网站| 亚洲成人免费电影在线观看| 青草久久国产| 九九在线视频观看精品| 一本久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品久久国产高清桃花| 熟女电影av网| 97热精品久久久久久| 欧美+日韩+精品| av在线天堂中文字幕| 中文字幕久久专区| 亚洲激情在线av| 欧洲精品卡2卡3卡4卡5卡区| 国内揄拍国产精品人妻在线| 亚洲久久久久久中文字幕| 国产不卡一卡二| 国产精品伦人一区二区| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 久久热精品热| 亚洲最大成人手机在线| 欧美三级亚洲精品| 亚洲国产色片| 成人av一区二区三区在线看| 能在线免费观看的黄片| 亚洲av成人不卡在线观看播放网| 欧美xxxx性猛交bbbb| 国产精品综合久久久久久久免费| 麻豆成人午夜福利视频| 91午夜精品亚洲一区二区三区 | 99热精品在线国产| 亚洲av日韩精品久久久久久密| 国产av麻豆久久久久久久| 床上黄色一级片| 国产探花在线观看一区二区| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 最近视频中文字幕2019在线8| 精品久久久久久久人妻蜜臀av| 亚洲内射少妇av| 高潮久久久久久久久久久不卡| 欧美黄色片欧美黄色片| 怎么达到女性高潮| 亚洲av成人av| 国产 一区 欧美 日韩| avwww免费| 欧美高清性xxxxhd video| 亚洲美女视频黄频| 最近最新中文字幕大全电影3| 国产91精品成人一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 免费黄网站久久成人精品 | 天堂网av新在线| 久久人人爽人人爽人人片va | 日韩精品青青久久久久久| 日韩高清综合在线| 成年女人看的毛片在线观看| 欧美色视频一区免费| 99久久久亚洲精品蜜臀av| 国产人妻一区二区三区在| 91字幕亚洲| 免费在线观看成人毛片| 亚洲成人中文字幕在线播放| 国产成人啪精品午夜网站| 久久久成人免费电影| 国产综合懂色| 精品午夜福利在线看| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 99国产精品一区二区三区| 久久6这里有精品| 国语自产精品视频在线第100页| 欧美xxxx黑人xx丫x性爽| 熟女电影av网| 最近在线观看免费完整版| 国产精品综合久久久久久久免费| xxxwww97欧美| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久大av| 亚洲人成网站高清观看| 久久久久久国产a免费观看| 免费av观看视频| 偷拍熟女少妇极品色| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人性av电影在线观看| 精品不卡国产一区二区三区| 亚洲国产色片| 国产精品影院久久| 老司机午夜福利在线观看视频| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 可以在线观看毛片的网站| 中文字幕熟女人妻在线| 天天一区二区日本电影三级| 色精品久久人妻99蜜桃| 两个人的视频大全免费| 99热这里只有是精品在线观看 | 99热这里只有是精品50| 亚洲无线在线观看| 熟妇人妻久久中文字幕3abv| 中亚洲国语对白在线视频| 国产精品久久久久久久电影| 99精品久久久久人妻精品| 亚洲精品亚洲一区二区| 亚洲欧美精品综合久久99| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 天堂√8在线中文| 国产亚洲精品综合一区在线观看| 欧美激情在线99| 久久国产精品影院| 能在线免费观看的黄片| 亚洲国产精品999在线| 亚洲精品乱码久久久v下载方式| 香蕉av资源在线| 99热精品在线国产| 美女高潮的动态| 三级国产精品欧美在线观看| 美女 人体艺术 gogo| 久久国产乱子免费精品| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 久久午夜福利片| 久久精品夜夜夜夜夜久久蜜豆| 桃色一区二区三区在线观看| 日本与韩国留学比较| 很黄的视频免费| 91字幕亚洲| 欧美成狂野欧美在线观看| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| av在线蜜桃| 真人一进一出gif抽搐免费| 三级男女做爰猛烈吃奶摸视频| 国产三级黄色录像| 欧美最黄视频在线播放免费| 亚州av有码| 日本一本二区三区精品| 88av欧美| 亚洲欧美日韩高清在线视频| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 一区二区三区高清视频在线| 麻豆国产av国片精品| 欧美日本视频| 90打野战视频偷拍视频| 脱女人内裤的视频| 国产真实伦视频高清在线观看 | x7x7x7水蜜桃| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| .国产精品久久| 波多野结衣高清无吗| 久久午夜亚洲精品久久| 午夜两性在线视频| 成人午夜高清在线视频| 久久久久久久久久成人| 日本免费a在线| 国产亚洲精品av在线| 有码 亚洲区| 99精品在免费线老司机午夜| 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 人妻久久中文字幕网| 91av网一区二区| 成人鲁丝片一二三区免费| 99久久久亚洲精品蜜臀av| 麻豆国产av国片精品| 日本免费一区二区三区高清不卡| 99在线视频只有这里精品首页| 少妇高潮的动态图| 国模一区二区三区四区视频| 熟女电影av网| 男人的好看免费观看在线视频| 欧美日韩黄片免| 久9热在线精品视频| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 在线观看66精品国产| 亚洲五月婷婷丁香| 欧美一区二区精品小视频在线| 在现免费观看毛片| 永久网站在线| 青草久久国产| 国产精品一区二区三区四区免费观看 | 在现免费观看毛片| 成人欧美大片| 综合色av麻豆| 国产亚洲精品av在线| 亚洲18禁久久av| 日韩欧美在线二视频| 久久精品人妻少妇| 午夜精品久久久久久毛片777| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va | 久久久久性生活片| 亚洲av免费在线观看| 三级毛片av免费| 成人国产一区最新在线观看| 最新在线观看一区二区三区| 免费看a级黄色片| 老司机福利观看| 美女黄网站色视频| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 午夜两性在线视频| 中文字幕精品亚洲无线码一区| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 欧美区成人在线视频| 精品一区二区三区视频在线| 亚洲乱码一区二区免费版| 尤物成人国产欧美一区二区三区| a级毛片a级免费在线| 亚洲色图av天堂| 简卡轻食公司| 日本 av在线| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 免费在线观看影片大全网站| 精品午夜福利视频在线观看一区| 日本精品一区二区三区蜜桃| 欧美乱色亚洲激情| 国产亚洲av嫩草精品影院| 村上凉子中文字幕在线| 九色国产91popny在线| 深爱激情五月婷婷| 国产精品亚洲一级av第二区| 在线看三级毛片| 久久精品国产亚洲av香蕉五月| 亚洲午夜理论影院| 桃红色精品国产亚洲av| 色在线成人网| 欧美一级a爱片免费观看看| 少妇裸体淫交视频免费看高清| 亚洲精品在线美女| 最新在线观看一区二区三区| www.999成人在线观看| 99久久九九国产精品国产免费| 久99久视频精品免费| 日本 av在线| 人人妻人人看人人澡| 丝袜美腿在线中文| 国产乱人视频| 久久久久精品国产欧美久久久| 最近视频中文字幕2019在线8| 在线天堂最新版资源| 女人被狂操c到高潮| 精品午夜福利在线看| 亚洲最大成人中文| 99精品久久久久人妻精品| 久久亚洲精品不卡| 中文字幕av在线有码专区| 日韩欧美精品免费久久 | 老司机福利观看| 欧美一区二区国产精品久久精品| 在线a可以看的网站| 97超级碰碰碰精品色视频在线观看| 亚洲,欧美精品.| 搞女人的毛片| 别揉我奶头~嗯~啊~动态视频| 日本 av在线| 人人妻人人看人人澡| 毛片女人毛片| 精华霜和精华液先用哪个| 免费一级毛片在线播放高清视频| 亚洲五月天丁香| 欧美日本亚洲视频在线播放| 久久久精品大字幕| 色播亚洲综合网| 精品人妻1区二区| 精品一区二区三区av网在线观看| 久久久久久久精品吃奶| 成人国产一区最新在线观看| 国产高清三级在线| 99国产精品一区二区蜜桃av| 亚洲真实伦在线观看| 最近最新中文字幕大全电影3| 亚洲av第一区精品v没综合|