• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt/NbPWO雙功能催化劑的制備及氫解堿木質(zhì)素制備芳香單體

    2022-10-19 10:09:50曹美芳陳博阮濤歐陽新平邱學(xué)青
    物理化學(xué)學(xué)報 2022年10期
    關(guān)鍵詞:陳博新平華南理工大學(xué)

    曹美芳,陳博,阮濤,歐陽新平,*,邱學(xué)青

    1華南理工大學(xué)化學(xué)與化工學(xué)院廣東省綠色化學(xué)產(chǎn)品技術(shù)重點實驗室,廣州 510640

    2 廣東工業(yè)大學(xué)輕工化工學(xué)院,廣州 510006

    1 Introduction

    Lignocellulosic biomass consisting of cellulose,hemicellulose and lignin is the abundant renewable resource,which is capable of substituting fossil resources in the production of chemicals and fuels1-3. However, lignin is notoriously recalcitrant to degradation, and hence is always treated as wastes4-6. If this resource can be efficiently transformed into chemicals or fuels, it can alleviate the dependence of fossil resources. Consequently, researches on lignin depolymerization have drawn an enormous amount of attention7,8.

    Many approaches to the conversion of lignin have emerged over the past decade, including hydrogenolysis9, oxidative depolymerization10, biodegradation11, photocatalysis12etc.Hydrogenolysis of lignin is considered as an efficient reductive depolymerization strategy to produce bulk aromatic compounds.During this process, a majority of heterogeneous catalysts based on metal (Ru, Pt, Pb, Ni) have been developed12-14.

    Niobium oxides as both promoter and support of catalyst can enhance catalytic activity and prolong catalyst life, which got lots of attentions in the catalytic transformation of lignin15.Wang’s group recently reported that layered Ru/Nb2O5could promote the cleavage of C-O bonds, and hence gain high yield of aromatic hydrocarbons16. Au/Nb2O5catalyst was also reported to be used in conversion lignin into phenolics, in which the synergistic effect of both the niobium support and electronrich Au nanoparticles facilitated the cleavage of C-O linkage17. Xia reported that woody biomass was directly converted to liquid alkanes over Pt/NbOPO4catalyst. The cleavage of C-O linkage was attributed to the synergetic effect of noble metal Pt particles which promote the dissociation of hydrogen and NbOxspecies which produce the Br?nsted acid sites and trigger specific adsorption18. Lately, the cleavage mechanism of C-C bonds via NbOxspecies was illustrated by depolymerization of aromatic plastic waste and aromatic polymers such as polyethylene terephthalate, polycarbonate, and polyphenylene oxide etc10,19.

    The current depolymerization of lignin is focused on cleavage of lignin β-O-4 linkages, resulting in lots of C-C linkages existed in the form of aromatic oligomers. Because the dissociation energy of C-C bonds (226-494 kJ·mol-1) is higher than that of C-O bonds (209-348 kJ·mol-1), the improved efficiency of depolymerization is dependent on the cleavage efficiency of C-C bond20,21.

    To provide the efficient catalyst and realize the efficient valorization of lignin, an environmentally friendly strategy was used to construct a Pt/NbPWO bifunctional catalyst, in which the NbPWO carrier was prepared by hydrothermal recrystallization of microemulsion containing template and Nb precursor. This catalyst applied to the hydrogenolysis of alkali lignin contributed to a high yield of aromatic monomer. This work provides guidance to design catalyst and paves a way to the valorization of alkali lignin.

    2 Experimental

    2.1 Catalyst preparation

    The mesoporous niobium phosphotungstic acid (PW12/Nb2O5abbreviate the NbPWO) catalyst support was prepared via hydrothermal method. In briefly, 36 mL of 0.25 mol·L-1ammonium niobate oxalate hydrate (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd., China), 0 g, 1 g, 1.5 g, 2.0 g phosphor-tungstic acid (PW12) (99%, Shanghai Macklin Biochemical Co., Ltd., China) and 12 mL cetyl trimethyl ammonium bromide (CTAB) (99%) were mixed with constant stirring rate of 300 r·min-1(named: PW0, PW1, PW2, PW3).Deionized water was then added to this solution in order to adjust pH. The emulsion was stirred for 30 min, followed by kept in an oven at 80 °C for 24 h, then aged at 130 °C for 24 h in a hydrothermal Teflon lined autoclave (HTG-100-SS1, Anhui CHEM Co., Ltd., China). The resultant solid was filtered,washed and dried, and then calcined in an air atmosphere22.According to the above preparation conditions, PW12was replaced with ammonium hydrogen phosphate (99%) and ammonium paratungstate (99%), named NbPO and NbWO.Additional, according to the above preparation conditions,ammonium niobate oxalate hydrate was replaced with aluminium trichloride (99%), colloidal silica (99%), titanium chloride (99%) and zirconium nitrate pentahydrate (99%),respectively, named AlPWO, SiPWO, TiPWO and ZrPWO.

    Pt supported on NbPWO catalyst was prepared by wet impregnation. 0.3 g support and 0.5 mL of 1 mg·L-1chloroplatinic acid (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd., China) solution was added to 20 mL distilled water and stirred for 24 h. Then, this solution was heated at 80 °C vaporate the water under magnetic agitation. The samples were reduced in 8% H2/92% Ar atmosphere at 200 °C for 2 h with a heating rate of 3 °C·min-123.

    2.2 Reaction procedure

    The reaction for the hydrogenolysis of lignin was test as follow method: 0.1 g alkali lignin (99%, Sigma-Aldrich, UK)and catalyst (0.05 g) were loaded into an autoclave reactor (Auto Chem100, Beijing Century Senlong experimental Co., Ltd.,China) with 15 mL distilled water and 5 mL cyclohexane(99.5%). After sealed and purged, the reactor was charged with different pressure H2and conducted at 300 °C with a magnetic stirring speed of 400 r·min-1, for 4 h. After the reaction, the catalyst was separated the organic phase was extract using ethyl acetate. The products were analyzed by gas chromatography(GC 2015, Shimadzu, Iapan) and GC-MS (5975C-7890A,Agilent Technology Co., Ltd., Germany)24. The aromatic product yield for hydrogenolysis of alkali lignin was calculated as follows:

    Structural information of depolymerized products and native lignin was analyzed by two-dimension heteronuclear single quantum coherence (HSQC)25. The molecular weight of depolymerized products and native lignin was calculated by gel permeation chromatography (GPC)26.

    2.3 Catalyst characterization

    X-ray diffraction (XRD): XRD measurement for the state and crystal structure of elements in the catalyst by Bruker D8 Advance (D8 Advance, Bruker Co., Ltd., Germany). The test conditions: Cu Kαwas used as the incident light source, the working voltage was 40 kV, the working current was 40 mA, the scanning speed was 10 (°)·min-1, and the scanning Angle was 10°-80°. MDI Jade 6.0 software was used to analyze the data27.

    Inductively coupled plasma atomic emission spectroscopy(ICP-AES): The content of precious metals in the catalyst were determined using ICP-AES (Agilent 5110, Agilent Technology Co., Ltd., Germany)28.

    Brunauer Emmett Teller (BET): The specific surface area and pore size distribution of catalyst were determined by nitrogen adsorption-desorption isotherms (Tristar 3020, Mike Co., Ltd.,USA). BET equation was used to calculate the specific surface area of the sample, and BJH model was used to calculate the pore distribution27.

    Infrared spectra of adsorbed pyridine (Py-IR): The sample was weighed and pressed into thin slices, placed in the sample chamber of the infrared spectrometer (Tensor 27, Bruker Co.,Ltd., Germany). After vacuum pretreatment, the background spectrogram was collected. Pyridine was then adsorbed for 30 min, and desorbed and IR scanned after equilibrium26.

    Ammonia temperature programmed desorption (NH3-TPD):Qualitative and quantitative analysis of solid acid catalyst was carried out via NH3-TPD (Auto Chem 2920, Mike Co., Ltd.,USA). Sample was placed in a reaction tube, and the temperature was raised from room temperature to 400 °C at 10 °C·min-1for drying pretreatment. After He was purged for 1 h, the sample was cooled to and exposed to 10% NH3/He for 1 h until saturation.Finally, the desorption gas was detected by TCD detector at a temperature of 10 °C·min-1to 700 °C.

    X-ray photoelectron spectroscopy (XPS): Valence state of different elements was analyzed by XPS (Thermo Scientific,Thermo Fisher Co., Ltd., USA)29. The full and partial spectra of different elements were obtained by calibration with the binding energy of C 1s (284.8). Then peak separation, fitting and integration of spectra of different elements used Advantage software.

    Hydrogen temperature-programmed reduction (H2-TPR):Reduction degree of precious metal and its interaction with support were performed using the Auto Chem 2920 apparatus(Auto Chem 2920, Mike Co., Ltd., USA). The above samples were heated to 900 °C at a heating rate of 10 °C·min-1and amount of hydrogen consumption was detected using a TCD detector30.

    3 Results and discussion

    3.1 Catalyst characterization

    Fig. 1a showed schematic representation of the formation process of the flower-shaped NbPWO support. The hydrothermally synthesized flower-like assembled nanorod NbPWO sample contained stacked nanorods, which arranged together and formed a spherical micro-flower, as confirmed by SEM and TEM (Fig. 1b,d). SEM image showed a developed channel structure on flower-shaped NbPWO support, which could promote diffusion of lignin bio-oil. Pt loaded by wet impregnation and the loading amount was 3% (w, mass fraction)by ICP-AES. EDS spectra showed the presence of Pt, Nb, P, W and O elements in Pt/NbPWO. Owing to the special flowershaped structure, NbPWO support could not only make full use of 3D rods for the loading of the active Pt metal, but also effectively limit the aggregation or restacking of nanorods.

    The X-ray diffraction (XRD) patterns of Pt/NbPWO display typical peaks at 2θ = 23.1°, 23.7°, 33.5° and 33.9° etc., which are readily indexed to planes of polycrystalline structure PW phase (PDF#41-0326) (Fig. 2a). Additionally, diffraction peak of Pt/NbPWO was in good agreement with PW phase, indicating the related crystal structure. No diffraction peak from NbOxis found in Pt/NbPWO composite because of the amorphous state of NbOx. This result was well matched with EDX mapping images (Fig. 1c), implying the homogeneous dispersion of NbOxthroughout the PW12framework. In general, we deduced that the Keggin structure of PW12remained unchanged when it was introduced into NbOxby hydrothermally method31,32.

    The N2adsorption isotherm measure of Pt/NbPWO showed an obvious hierarchically porous structure with a significantly higher specific surface area of 74 m2·g-1and a total pore volume of 0.19 m3·g-1(Fig. 2b and Table 1) than Pt/NbPO and Pt/NbWO, which is possibly due to that the addition of PW12promoted the formation of nano-flower structure of the support.NbPWO was a heteropolyacid composed of heteropoly anions(PW12) and cations (NbOx). PW12was formed by coordination bridge of oxygen atoms and had a certain pore structure (Fig.1a).

    Fig. 2c showed the acid content of NbPWO support at different calcination temperatures (500 °C, 600 °C, 700 °C). It was worth noting that the acid content was as higher as 1 mmol·g-1when the calcination temperature was 500 °C. With the increase of calcination temperature, the catalyst of solid acid content decreased obviously. When the calcination temperature is 700 °C, the acid content of the catalyst is 0.4 mmol·g-1. The reason may be that the crystal system of NbOxwas from T-NbOxto TT-NbOxat high calcination temperature30.

    Fig. 1 (a) Schematic representation of the formation process of the flower-shaped NbPWO support after heat treating in air at 500 °C.(b) SEM image, (c) the HADDF result and corresponding EDX mapping images and (d, e) TEM images of Pt/NbPWO samples.

    Fig. 2 (a) XRD pattern of Pt/NbWO samples and PW12 and (b) N2 adsorption isotherms of Pt/NbWO, Pt/NbPO and Pt/NbPWO; (c) NH3-TPD curves of different calcination temperature.

    Py-IR experiments were conducted to determine the acidic properties and the reaction mechanism in hydrogenolysis. Fig. 3 displayed that intense bands of Pt/NbPWO catalyst at 1450 cm-1and 1610 cm-1were assigned to Lewis acid (L), at 1543 cm-1and 1575 cm-1were attributed to Bronsted acid (B) and at 1492 cm-1was ascribed to the synergic effect of L and B acid sites15.Table 1 showed the content of L and B acid respectively in the above three Nb-based samples. The acid contents of the Pt/NbPWO catalyst were significantly higher than those of the other catalysts. In hydrogenolysis of lignin, L acid could promote C-O bonds cleavage, while B acid could promote C-C bonds fracture13. Pt/NbPWO catalyst had abundant B acidsites and higher acid content, which could effectively transform alkali lignin, and improve the yield of aromatic monomer.

    Fig. 3 Py-IR spectra of Pt/NbWO, Pt/NbPO and Pt/NbPWO.

    Table 1 Pore size distribution and acid content of different catalysts.

    Fig. 4 shows the H2-TPR patterns of the Pt/NbPWO, Pt/NbPO and Pt/NbPWO. The supports possess obvious reduction peaks,which could be ascribed to the bulk oxygen and surface or subsurface oxygen of NbPWO, NbPO and NbPWO33. Furthermore,two peaks at about 93 °C and 160 °C (< 200 °C) should attribute to the bulk platinum oxide reduction (PtOxto Pt0)34. Reduction peaks of Pt0over Pt/NbPWO was more obvious than those of other catalysts, the reason may be that flower -shaped Pt/NbPWO catalyst promoted the loading of the active Pt metal.A low valence of NbOxappeared after the reduction of Pt/NbPWO at 450 °C, while the additional weak reduction peak near 395 °C was assigned to the reduction of surface NbPWO which interacted with Pt, implying a stronger metal-support interaction (SMSI) of Pt particles with the NbPWO support35.These results demonstrated the existence of the Pt-NbOxinterface, where the NbPWO surface provided more anchoring sites for Pt.

    To explore the surface valence state of catalysts, the XPS survey spectrum of Pt/NbWO, Pt/NbPO and Pt/NbPWO samples were presented in Fig. 5. The Pt 4forbital showed two peaks in above samples, which were attributed to Pt 4f7/2and Pt 4f5/2,respectively. The binding energies (BEs) of Pt0were determined as 71 eV and 74 eV36. When P together with W species participated in the synthesis of catalyst, the BEs of Pt was significantly smaller compared with those with sole P and W species. The downward shift in BEs indicated that PW12affected the electron cloud density and distribution of Pt nanoparticles in the catalyst, reducing the energy barriers of H2dissociation. As shown in Fig. 5b, the Nb5+also presented two peaks corresponding to Nb 3d5/2and Nb 3d3/2. The binding energies of Nb5+over the Pt/NbPWO obviously decreased, indicating that PW12could promote the formation or exposure of Nbδ+species and increase surface acidic sites.

    Fig. 5 XPS spectra of (a) Pt 4f orbital in NbWO, NbPO and NbPWO. and (b) Nb 3d orbital in Pt/NbWO, Pt/NbPO and Pt/NbPWO.

    Fig. 6 (a) Reaction results for the hydrogenolysis of alkali lignin over various Pt-loaded catalysts, influence of (b) temperature and(c) H2 pressure over Pt/NbPWO. (a) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, 300 °C, H2 1.2 MPa,4 h. (b) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, H2 1.2 MPa, 4 h. (c) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, 300 °C, 4 h. (d) Main structure of the depolymerized products.

    3.2 Evaluate of catalytic performance

    Fig. 6a compared the hydrogenolysis performance for alkali lignin over various Pt-based catalysts under the same reaction condition. It is found that among the selected Pt catalysts,Pt/NbPWO exhibited the highest yield of aromatic monomers(18.04%). In comparison, commercial Pt/C catalyst only gave a very low aromatic monomer yield (8.13%). The reason may be ascribed to the acid sites of Pt/NbPWO, preventing further hydrogenation24. Comparing with Pt/NbPO and Pt/NbWO,Pt/NbPWO possessed larger specific surface area and abundant mesoporous showed a large enhancement of catalytic activity.Moreover, the special flower-shaped structure took advantage of 3D rods for the loading of the active Pt metal, making Pt species uniform distributed on the NbPWO catalyst (Fig. 1c) and could effectively limit the aggregation.

    As shown in Fig. 6, the influence of reaction temperature and H2pressure on catalytic depolymerization of alkali lignin over Pt/NbPWO was studied. The yield of the aromatic monomers over the Pt/NbPWO catalyst increased to the peak value of 18.05% at 300 °C and 1.2 MPa H2. The efficiency of lignin depolymerization decreased under a low H2pressure short after reaction temperature due to the recalcitrance and the stability of lignin. However, increasing the H2pressure caused low aromatic monomer yield, the reason may be ascribed to overhydrogenation of benzene ring and partial products dissolved in aqueous-phase. Increasing the reaction temperature also caused low aromatic monomer yield, which may be attributed to the recondensation of lignin-depolymerized monomer products19.

    The depolymerization products of alkali lignin were analyzed by HSQC (Fig. 7 and Table 3). The signals of Aα(δC/δH 71.4/4.87 and δC/δH 85.5/4.7) and Aβ(δC/δH 84.1/4.32 for G unit and δC/δH 87.1/4.11 for S unit) corresponded to benzylic alcohol. The signals of Bα(δC/δH 876.7/5.5), Bβ(δC/δH 53.7/3.1), and Bγ(δC/δH 62.9/3.7) corresponded to phenylcoumaran linkages. The signals of Cα, Cβand Cγ(δC/δH 85.6/4.7, δC/δH 54.5/2.9 and δC/δH 72/3.8, 4.2, respectively)corresponded to resinol linkages13. The aromatic region of alkali lignin is mainly composed of G type units along with a small amount of S and H types37. Compared with the alkali lignin, the peak area of A, B and C structures of the depolymerized product decreased significantly or the signal peak disappeared directly,indicating that the catalyst could effectively break the C-O and C-C bonds of alkali lignin37.

    Fig. 8 shows that the molecular weight of alkali lignin was 1379 Da, which indicated that depolymerization products without the addition of catalyst was 727 Da, whereas the molecular weight of depolymerization products with Pt/NbPWO catalyst reduced to 583 Da, confirming that the catalyst could effectively break the linking bonds of lignin subunits.

    Fig. 7 2D-HSQC NMR spectra of alkali lignin (a: side-chain region; c: aromatic region) and depolymerization products at optimized condition(b: side-chain region; d: aromatic region); (A) β-O-4 alkyl-aryl ethers; (B) phenylcoumarans; (C) resinols; (S) syringyl units; (S’) oxidized syringyl units; (G) guaiacyl units; (H) P-hydroxyphenyl units and (PB) coumarate.

    Fig. 8 GPC distribution of depolymerization products.

    In order to verify the universality of the catalyst, Pt/NbPWO catalyst was applied to the depolymerization of Birch organosolv lignin (BOSL) and enzymatic hydrolysis lignin (EHL). The products distributions were shown in Table 2. The depolymerization products of the three kinds of lignin were mainly G-type products, with a small amount of H-type and S-type products37. The yield of aromatic monomer of lignin extracted with dioxane was 35.17% and that of enzymatic hydrolysis was 25.31%. The structures of native BOSL and EHL were measured by two-dimensional HSQC NMR spectroscopy(Fig. 9). Compared with alkali lignin, the β-O-4 units correlation signals of BOSL and EHL obviously resonated, meantime, the β-O-4 bonds contents of BOSL and EHL were higher (Table 3),which suggested the chemical structure changed mainlyviahydroxyl condensation of alkali lignin in the extraction process.The β-O-4 bond contents of BOSL were higher than that of AL and EHL, hence gaining the higher yield of aromatic monomers.By comparing the aromatic monomers yield and total bond content of different original lignin, it was found that utilization ratio of AL and EHL was higher over Pt/NbPWO catalyst, the reason may be that the structure of BOSL was fragile due to more β-O-4 units, causing that the depolymerization product was condensed.

    Table 2 The hydrogenolysis of lignin into aromatic monomers in different condition.

    Table 3 Structural characteristics of the different lignin by 2D-HSQC method.

    3.3 Catalyst reusability

    Stability of catalyst was shown in Fig. 10a, which indicated that the catalyst still maintained a high lignin depolymerization efficiency after used 5 times. XRD profiles of the used and fresh Pt/NbPWO catalysts (Fig. 10b) indicated that the crystal structure of the catalyst was not significantly changed. The particle size of NbOxon the used Pt/NbPWO catalyst was slightly larger relative to that of fresh activated samples,indicating that catalyst particles tiny agglomeration during the hydrothermal reaction (Fig. 10b). NH3-TPD profiles (Fig. 10c)shown that the total acid content of Pt/NbPWO catalysts after 5 times slightly decreased from 1.08 mmol·g-1to 1.02 mmol·g-1.

    Fig. 9 2D-HSQC NMR spectra of (a, b) BOSL and (c, d) EHL.

    Fig. 10 (a) The stability of the Pt/NbPWO catalyst for the hydrogenolysis of alkali lignin. Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g,H2O 15 mL, cyclohexane 5 mL, H2 1.2 MPa, 300 °C for 4 h. (b) XRD analysis and (c) NH3-TPD profiles of the fresh and used Pt/NbPWO catalyst.

    4 Conclusions

    The Pt/NbPWO catalyst was prepared by hydrothermal and wetness impregnation methods. The Pt/NbPWO catalyst displayed good ability for the cleavage of C-O ether band and C-C bonds of lignin, giving 18.05%, 35.17% and 25.13% of aromatic monomer yields for alkali lignin, BOSL and EHL,respectively. It was found that 500 °C was the optimized calcination temperature for preparing the catalyst, in which higher temperature led to a considerable loss of acidity, while lower temperature caused the unstablization of catalyst during the depolymerization process. Abundant Br?nsted acid sites and high total acid content should contribute to the desired catalytic activity in the hydrogenation of lignin.

    猜你喜歡
    陳博新平華南理工大學(xué)
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    策劃師
    名家名作(2021年1期)2021-11-13 00:52:33
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    咸的“糖”
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    當(dāng)機器人遇上人工智能——記華南理工大學(xué)自動化科學(xué)與工程學(xué)院副教授張智軍
    精靈偵探團之神秘大盜(十一)
    焦唯、王琪斐美術(shù)作品
    免费看av在线观看网站| 国产大屁股一区二区在线视频| 蜜桃久久精品国产亚洲av| 国产在线一区二区三区精| 午夜久久久久精精品| 内地一区二区视频在线| 秋霞在线观看毛片| 亚洲最大成人手机在线| 亚洲国产精品成人综合色| 一级毛片电影观看| 成人国产麻豆网| 99久久中文字幕三级久久日本| 亚洲伊人久久精品综合| 91av网一区二区| 久久久午夜欧美精品| 国产一区二区在线观看日韩| 国产老妇女一区| 夫妻性生交免费视频一级片| 欧美xxⅹ黑人| 国产精品久久久久久av不卡| 国产一级毛片七仙女欲春2| 亚洲精品日韩在线中文字幕| 又大又黄又爽视频免费| 你懂的网址亚洲精品在线观看| 欧美精品一区二区大全| 亚洲在线自拍视频| kizo精华| 水蜜桃什么品种好| 禁无遮挡网站| 国产亚洲精品久久久com| 久久久久精品久久久久真实原创| 久久精品久久久久久噜噜老黄| 婷婷色麻豆天堂久久| 国产成人精品福利久久| 亚洲精品乱码久久久v下载方式| 在线观看一区二区三区| 国产男女超爽视频在线观看| 精品久久久久久久末码| 国产精品久久久久久久电影| 波野结衣二区三区在线| 久久精品综合一区二区三区| 亚洲经典国产精华液单| av免费观看日本| 夫妻性生交免费视频一级片| 日韩视频在线欧美| 国产午夜精品论理片| 夫妻性生交免费视频一级片| 婷婷色麻豆天堂久久| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | av福利片在线观看| 精品人妻偷拍中文字幕| 少妇人妻一区二区三区视频| 久久久久久久久久黄片| 国产精品日韩av在线免费观看| 成人午夜高清在线视频| 在线 av 中文字幕| 婷婷色av中文字幕| 丝袜喷水一区| 国产成人午夜福利电影在线观看| 天堂俺去俺来也www色官网 | 国产伦精品一区二区三区四那| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 日韩欧美 国产精品| 精品久久久久久久久亚洲| 国产av不卡久久| 久久久国产一区二区| 亚洲精品久久午夜乱码| 国产在视频线精品| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 免费少妇av软件| 久久鲁丝午夜福利片| 天天躁夜夜躁狠狠久久av| 日韩精品有码人妻一区| 精品午夜福利在线看| 搡老妇女老女人老熟妇| 久久国内精品自在自线图片| 啦啦啦啦在线视频资源| 午夜精品一区二区三区免费看| 国产激情偷乱视频一区二区| 国产淫语在线视频| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| 久久国产乱子免费精品| 在线免费观看的www视频| 综合色丁香网| 老司机影院成人| 精品99又大又爽又粗少妇毛片| 日韩一区二区视频免费看| 黄色一级大片看看| 久久精品人妻少妇| 七月丁香在线播放| 一级二级三级毛片免费看| 久久国内精品自在自线图片| 欧美成人精品欧美一级黄| 日韩视频在线欧美| 亚洲成色77777| av在线观看视频网站免费| 在线免费观看的www视频| 久久6这里有精品| 亚洲欧美一区二区三区国产| 午夜久久久久精精品| 搞女人的毛片| 永久免费av网站大全| 欧美日韩精品成人综合77777| 亚洲内射少妇av| 亚洲国产精品成人综合色| 一级黄片播放器| 亚洲三级黄色毛片| 国产精品.久久久| freevideosex欧美| 亚洲精品色激情综合| 两个人视频免费观看高清| 亚洲成人久久爱视频| 九九爱精品视频在线观看| 国产精品不卡视频一区二区| 亚洲欧美一区二区三区黑人 | 26uuu在线亚洲综合色| 成人特级av手机在线观看| 97热精品久久久久久| 嘟嘟电影网在线观看| 在线观看人妻少妇| 精品酒店卫生间| 国产亚洲5aaaaa淫片| 国产欧美另类精品又又久久亚洲欧美| 亚洲aⅴ乱码一区二区在线播放| 午夜激情欧美在线| 十八禁国产超污无遮挡网站| 亚洲欧美日韩东京热| 人人妻人人澡欧美一区二区| 国产亚洲91精品色在线| 六月丁香七月| 一级av片app| 国产高清三级在线| 欧美日本视频| 边亲边吃奶的免费视频| 菩萨蛮人人尽说江南好唐韦庄| 69人妻影院| 亚洲欧美一区二区三区国产| 国产探花在线观看一区二区| 大话2 男鬼变身卡| 亚州av有码| 青春草亚洲视频在线观看| 日本一二三区视频观看| 免费看av在线观看网站| 少妇的逼水好多| 高清午夜精品一区二区三区| 黄片无遮挡物在线观看| 日韩av免费高清视频| 欧美激情在线99| 少妇人妻精品综合一区二区| av在线老鸭窝| 高清午夜精品一区二区三区| 99热网站在线观看| 国产精品久久久久久av不卡| 欧美日韩亚洲高清精品| 亚洲精品一二三| 中文字幕av成人在线电影| 亚洲av成人av| 久久午夜福利片| 亚洲成人一二三区av| 不卡视频在线观看欧美| 日本与韩国留学比较| 嫩草影院精品99| 精品一区二区三区视频在线| 真实男女啪啪啪动态图| 在线a可以看的网站| 精华霜和精华液先用哪个| 美女xxoo啪啪120秒动态图| 亚洲精品成人av观看孕妇| 午夜免费观看性视频| ponron亚洲| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 老女人水多毛片| 成年女人看的毛片在线观看| 日韩欧美三级三区| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 成年版毛片免费区| 国内揄拍国产精品人妻在线| 搡老乐熟女国产| 亚洲欧美一区二区三区国产| 99久久精品一区二区三区| 肉色欧美久久久久久久蜜桃 | 激情 狠狠 欧美| 久久久久性生活片| 97超碰精品成人国产| 国产黄色免费在线视频| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看| 天堂av国产一区二区熟女人妻| 亚洲最大成人中文| 91久久精品电影网| 国产不卡一卡二| 777米奇影视久久| 亚洲丝袜综合中文字幕| 亚洲第一区二区三区不卡| 在线免费观看的www视频| 男人和女人高潮做爰伦理| 精品一区二区三卡| 国产乱人视频| 狂野欧美激情性xxxx在线观看| 国产精品美女特级片免费视频播放器| 精品久久久久久久人妻蜜臀av| 日韩欧美 国产精品| 久久久久久国产a免费观看| 久久久久精品性色| av专区在线播放| 一区二区三区高清视频在线| 久久精品综合一区二区三区| a级毛色黄片| 久久亚洲国产成人精品v| 亚洲激情五月婷婷啪啪| 噜噜噜噜噜久久久久久91| 亚洲精品第二区| 中文资源天堂在线| 亚洲真实伦在线观看| av在线天堂中文字幕| 亚洲精品中文字幕在线视频 | 午夜福利网站1000一区二区三区| 日韩av免费高清视频| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 亚洲av一区综合| 久热久热在线精品观看| 久久鲁丝午夜福利片| 日韩精品有码人妻一区| 一本久久精品| 国产探花在线观看一区二区| 久久久亚洲精品成人影院| 亚洲精品国产成人久久av| 久久精品久久久久久久性| 亚洲色图av天堂| 亚洲美女视频黄频| 免费观看的影片在线观看| 欧美潮喷喷水| 久久99精品国语久久久| 日韩成人av中文字幕在线观看| 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看| 九九久久精品国产亚洲av麻豆| 一本久久精品| 美女被艹到高潮喷水动态| 男人舔奶头视频| 搡老妇女老女人老熟妇| 别揉我奶头 嗯啊视频| 精品国产露脸久久av麻豆 | 久久久久网色| 80岁老熟妇乱子伦牲交| 亚洲真实伦在线观看| 国精品久久久久久国模美| 国产久久久一区二区三区| 肉色欧美久久久久久久蜜桃 | 免费观看无遮挡的男女| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 国产精品三级大全| 久久久久性生活片| 国产成人精品福利久久| 久久久久久伊人网av| 中文乱码字字幕精品一区二区三区 | 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 中文字幕制服av| av.在线天堂| 欧美另类一区| 婷婷色av中文字幕| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 秋霞在线观看毛片| 国内精品一区二区在线观看| 精品一区二区免费观看| 日韩亚洲欧美综合| 亚洲无线观看免费| 日韩中字成人| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验| 欧美日韩精品成人综合77777| 能在线免费看毛片的网站| 成人一区二区视频在线观看| 亚洲精品久久久久久婷婷小说| 欧美zozozo另类| 尤物成人国产欧美一区二区三区| 大陆偷拍与自拍| 少妇的逼好多水| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 亚洲国产欧美人成| 国产精品蜜桃在线观看| 亚洲国产高清在线一区二区三| 国产亚洲最大av| 91精品国产九色| 大陆偷拍与自拍| 国产亚洲午夜精品一区二区久久 | 午夜精品一区二区三区免费看| 国产av在哪里看| 嫩草影院入口| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 啦啦啦中文免费视频观看日本| 国产成人精品一,二区| 只有这里有精品99| av国产久精品久网站免费入址| 99久久精品一区二区三区| 日韩中字成人| 男人和女人高潮做爰伦理| 亚洲性久久影院| 色吧在线观看| 国产精品国产三级国产专区5o| .国产精品久久| 色哟哟·www| 中文字幕免费在线视频6| av在线蜜桃| 久久99热这里只频精品6学生| av线在线观看网站| 91午夜精品亚洲一区二区三区| 欧美zozozo另类| 精品国内亚洲2022精品成人| 亚洲精品自拍成人| 丝袜美腿在线中文| 亚洲三级黄色毛片| 国产一区二区三区av在线| 国产亚洲精品久久久com| 麻豆成人av视频| 日韩三级伦理在线观看| 建设人人有责人人尽责人人享有的 | www.色视频.com| 熟女人妻精品中文字幕| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看| 91午夜精品亚洲一区二区三区| 精品久久久久久久久av| 久久久久性生活片| 精品熟女少妇av免费看| 国产成人精品一,二区| 日韩精品青青久久久久久| 性插视频无遮挡在线免费观看| 黄色欧美视频在线观看| 少妇人妻一区二区三区视频| 男人和女人高潮做爰伦理| 十八禁网站网址无遮挡 | 天天躁日日操中文字幕| 欧美潮喷喷水| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| 亚洲最大成人中文| 高清av免费在线| 欧美高清性xxxxhd video| 国产永久视频网站| 亚洲欧美日韩卡通动漫| 秋霞伦理黄片| 精品久久久久久电影网| 免费在线观看成人毛片| 夫妻性生交免费视频一级片| 亚洲av电影在线观看一区二区三区 | 在线免费观看不下载黄p国产| 成人高潮视频无遮挡免费网站| 国产成人福利小说| 成人亚洲精品av一区二区| 精品人妻偷拍中文字幕| 一区二区三区乱码不卡18| 久久精品国产亚洲av涩爱| 亚洲av成人av| 内地一区二区视频在线| 国产av在哪里看| 2021少妇久久久久久久久久久| 99re6热这里在线精品视频| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 国产精品国产三级专区第一集| 亚洲欧美清纯卡通| 不卡视频在线观看欧美| 有码 亚洲区| 亚洲精品一区蜜桃| 黄片无遮挡物在线观看| 亚洲精品日本国产第一区| 欧美激情久久久久久爽电影| 淫秽高清视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看| 简卡轻食公司| 欧美区成人在线视频| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 亚洲av男天堂| 亚洲精品456在线播放app| 纵有疾风起免费观看全集完整版 | 成人综合一区亚洲| 看非洲黑人一级黄片| 狂野欧美白嫩少妇大欣赏| 日本免费在线观看一区| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 晚上一个人看的免费电影| 汤姆久久久久久久影院中文字幕 | 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 国产极品天堂在线| 午夜精品在线福利| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 久久久欧美国产精品| 亚洲av免费在线观看| 99久久人妻综合| 五月伊人婷婷丁香| 日韩一区二区三区影片| 成人毛片60女人毛片免费| 色播亚洲综合网| 国产伦一二天堂av在线观看| 男女边吃奶边做爰视频| 99热这里只有是精品50| 亚洲欧洲国产日韩| 国产乱来视频区| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 亚洲av二区三区四区| 啦啦啦中文免费视频观看日本| 亚洲欧美成人精品一区二区| 国产av不卡久久| 国产高清三级在线| 免费av毛片视频| 亚洲av不卡在线观看| 婷婷色麻豆天堂久久| 在线免费十八禁| 亚洲第一区二区三区不卡| 好男人视频免费观看在线| 看免费成人av毛片| 一级毛片久久久久久久久女| 看黄色毛片网站| 午夜激情久久久久久久| 国产 一区 欧美 日韩| 搡女人真爽免费视频火全软件| 免费看日本二区| 国产黄频视频在线观看| 能在线免费观看的黄片| 亚洲电影在线观看av| 大片免费播放器 马上看| 十八禁网站网址无遮挡 | 欧美成人精品欧美一级黄| 久久99精品国语久久久| 最近的中文字幕免费完整| 欧美精品一区二区大全| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆 | 成人欧美大片| 国产亚洲91精品色在线| 国产亚洲av片在线观看秒播厂 | 亚洲最大成人手机在线| 高清午夜精品一区二区三区| 丰满少妇做爰视频| 国产一区二区三区综合在线观看 | 一个人看视频在线观看www免费| 亚洲av成人av| 亚洲在线自拍视频| 美女黄网站色视频| 99久久人妻综合| 亚洲欧洲国产日韩| 午夜福利成人在线免费观看| 日本色播在线视频| 超碰97精品在线观看| 2021天堂中文幕一二区在线观| 少妇人妻精品综合一区二区| 国产爱豆传媒在线观看| 国产淫片久久久久久久久| 亚洲欧美一区二区三区黑人 | 女的被弄到高潮叫床怎么办| 97人妻精品一区二区三区麻豆| 亚洲精品中文字幕在线视频 | 2018国产大陆天天弄谢| 丝袜喷水一区| 黑人高潮一二区| 精品久久久噜噜| 亚洲精品色激情综合| 十八禁国产超污无遮挡网站| 美女黄网站色视频| 国产亚洲av片在线观看秒播厂 | 午夜激情欧美在线| 亚洲av中文av极速乱| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 麻豆精品久久久久久蜜桃| 免费看a级黄色片| 人妻系列 视频| 免费看a级黄色片| 免费看av在线观看网站| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 人人妻人人澡欧美一区二区| 日本黄色片子视频| 91aial.com中文字幕在线观看| 欧美丝袜亚洲另类| 1000部很黄的大片| 国产精品一区www在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲成人久久爱视频| 日韩精品青青久久久久久| 三级国产精品片| 久久99精品国语久久久| 美女高潮的动态| 久久国产乱子免费精品| 中文字幕亚洲精品专区| 精品国产三级普通话版| 高清在线视频一区二区三区| 我的女老师完整版在线观看| 十八禁国产超污无遮挡网站| 亚洲18禁久久av| 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 一级毛片久久久久久久久女| 少妇熟女aⅴ在线视频| 日本爱情动作片www.在线观看| 黄色一级大片看看| 性插视频无遮挡在线免费观看| av福利片在线观看| 国产亚洲av嫩草精品影院| 亚洲精品aⅴ在线观看| 国产中年淑女户外野战色| ponron亚洲| 建设人人有责人人尽责人人享有的 | 亚洲最大成人av| 精品久久久久久久人妻蜜臀av| 欧美性感艳星| 九草在线视频观看| av国产久精品久网站免费入址| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 国产极品天堂在线| 99久国产av精品| 国产成人91sexporn| 国产免费又黄又爽又色| 亚洲欧洲日产国产| 亚洲精华国产精华液的使用体验| 日本爱情动作片www.在线观看| 波野结衣二区三区在线| 日本一二三区视频观看| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| 婷婷色综合大香蕉| 国产在线一区二区三区精| 国产一区亚洲一区在线观看| 秋霞伦理黄片| 偷拍熟女少妇极品色| 看免费成人av毛片| 欧美日韩国产mv在线观看视频 | 成人综合一区亚洲| 日韩强制内射视频| 看免费成人av毛片| 精品久久久精品久久久| 寂寞人妻少妇视频99o| 99热6这里只有精品| 亚洲成人中文字幕在线播放| av线在线观看网站| 久久人人爽人人爽人人片va| 国产成人午夜福利电影在线观看| 国产黄片视频在线免费观看| h日本视频在线播放| 在现免费观看毛片| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 99久久中文字幕三级久久日本| 天堂av国产一区二区熟女人妻| 综合色丁香网| 夫妻性生交免费视频一级片| 中文乱码字字幕精品一区二区三区 | 免费大片18禁| 大香蕉久久网| 美女cb高潮喷水在线观看| 午夜日本视频在线| 亚洲精品国产av蜜桃| 久久久久久久久久黄片| 国产精品人妻久久久久久| 色播亚洲综合网| 麻豆久久精品国产亚洲av| a级毛色黄片| 热99在线观看视频| 成年女人在线观看亚洲视频 | 国产亚洲av嫩草精品影院| 亚洲av中文av极速乱| 亚洲美女搞黄在线观看| 中文精品一卡2卡3卡4更新| 中文资源天堂在线| 97热精品久久久久久| 日韩人妻高清精品专区| 亚洲精品456在线播放app| 日韩大片免费观看网站| a级一级毛片免费在线观看| 国产av国产精品国产| 亚洲欧美精品自产自拍| 韩国高清视频一区二区三区| 搡女人真爽免费视频火全软件| 中文字幕久久专区| 欧美性感艳星| 色网站视频免费| 国产中年淑女户外野战色| 亚洲欧美成人综合另类久久久| 99热这里只有是精品50| 免费看美女性在线毛片视频| 精品国产一区二区三区久久久樱花 | 18+在线观看网站| 欧美成人a在线观看| 中文天堂在线官网| 亚洲成人一二三区av| 美女黄网站色视频| 国产午夜精品论理片| 亚洲综合精品二区| 蜜臀久久99精品久久宅男| 色尼玛亚洲综合影院| 国产一区二区亚洲精品在线观看|