• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt/NbPWO雙功能催化劑的制備及氫解堿木質(zhì)素制備芳香單體

    2022-10-19 10:09:50曹美芳陳博阮濤歐陽新平邱學(xué)青
    物理化學(xué)學(xué)報 2022年10期
    關(guān)鍵詞:陳博新平華南理工大學(xué)

    曹美芳,陳博,阮濤,歐陽新平,*,邱學(xué)青

    1華南理工大學(xué)化學(xué)與化工學(xué)院廣東省綠色化學(xué)產(chǎn)品技術(shù)重點實驗室,廣州 510640

    2 廣東工業(yè)大學(xué)輕工化工學(xué)院,廣州 510006

    1 Introduction

    Lignocellulosic biomass consisting of cellulose,hemicellulose and lignin is the abundant renewable resource,which is capable of substituting fossil resources in the production of chemicals and fuels1-3. However, lignin is notoriously recalcitrant to degradation, and hence is always treated as wastes4-6. If this resource can be efficiently transformed into chemicals or fuels, it can alleviate the dependence of fossil resources. Consequently, researches on lignin depolymerization have drawn an enormous amount of attention7,8.

    Many approaches to the conversion of lignin have emerged over the past decade, including hydrogenolysis9, oxidative depolymerization10, biodegradation11, photocatalysis12etc.Hydrogenolysis of lignin is considered as an efficient reductive depolymerization strategy to produce bulk aromatic compounds.During this process, a majority of heterogeneous catalysts based on metal (Ru, Pt, Pb, Ni) have been developed12-14.

    Niobium oxides as both promoter and support of catalyst can enhance catalytic activity and prolong catalyst life, which got lots of attentions in the catalytic transformation of lignin15.Wang’s group recently reported that layered Ru/Nb2O5could promote the cleavage of C-O bonds, and hence gain high yield of aromatic hydrocarbons16. Au/Nb2O5catalyst was also reported to be used in conversion lignin into phenolics, in which the synergistic effect of both the niobium support and electronrich Au nanoparticles facilitated the cleavage of C-O linkage17. Xia reported that woody biomass was directly converted to liquid alkanes over Pt/NbOPO4catalyst. The cleavage of C-O linkage was attributed to the synergetic effect of noble metal Pt particles which promote the dissociation of hydrogen and NbOxspecies which produce the Br?nsted acid sites and trigger specific adsorption18. Lately, the cleavage mechanism of C-C bonds via NbOxspecies was illustrated by depolymerization of aromatic plastic waste and aromatic polymers such as polyethylene terephthalate, polycarbonate, and polyphenylene oxide etc10,19.

    The current depolymerization of lignin is focused on cleavage of lignin β-O-4 linkages, resulting in lots of C-C linkages existed in the form of aromatic oligomers. Because the dissociation energy of C-C bonds (226-494 kJ·mol-1) is higher than that of C-O bonds (209-348 kJ·mol-1), the improved efficiency of depolymerization is dependent on the cleavage efficiency of C-C bond20,21.

    To provide the efficient catalyst and realize the efficient valorization of lignin, an environmentally friendly strategy was used to construct a Pt/NbPWO bifunctional catalyst, in which the NbPWO carrier was prepared by hydrothermal recrystallization of microemulsion containing template and Nb precursor. This catalyst applied to the hydrogenolysis of alkali lignin contributed to a high yield of aromatic monomer. This work provides guidance to design catalyst and paves a way to the valorization of alkali lignin.

    2 Experimental

    2.1 Catalyst preparation

    The mesoporous niobium phosphotungstic acid (PW12/Nb2O5abbreviate the NbPWO) catalyst support was prepared via hydrothermal method. In briefly, 36 mL of 0.25 mol·L-1ammonium niobate oxalate hydrate (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd., China), 0 g, 1 g, 1.5 g, 2.0 g phosphor-tungstic acid (PW12) (99%, Shanghai Macklin Biochemical Co., Ltd., China) and 12 mL cetyl trimethyl ammonium bromide (CTAB) (99%) were mixed with constant stirring rate of 300 r·min-1(named: PW0, PW1, PW2, PW3).Deionized water was then added to this solution in order to adjust pH. The emulsion was stirred for 30 min, followed by kept in an oven at 80 °C for 24 h, then aged at 130 °C for 24 h in a hydrothermal Teflon lined autoclave (HTG-100-SS1, Anhui CHEM Co., Ltd., China). The resultant solid was filtered,washed and dried, and then calcined in an air atmosphere22.According to the above preparation conditions, PW12was replaced with ammonium hydrogen phosphate (99%) and ammonium paratungstate (99%), named NbPO and NbWO.Additional, according to the above preparation conditions,ammonium niobate oxalate hydrate was replaced with aluminium trichloride (99%), colloidal silica (99%), titanium chloride (99%) and zirconium nitrate pentahydrate (99%),respectively, named AlPWO, SiPWO, TiPWO and ZrPWO.

    Pt supported on NbPWO catalyst was prepared by wet impregnation. 0.3 g support and 0.5 mL of 1 mg·L-1chloroplatinic acid (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd., China) solution was added to 20 mL distilled water and stirred for 24 h. Then, this solution was heated at 80 °C vaporate the water under magnetic agitation. The samples were reduced in 8% H2/92% Ar atmosphere at 200 °C for 2 h with a heating rate of 3 °C·min-123.

    2.2 Reaction procedure

    The reaction for the hydrogenolysis of lignin was test as follow method: 0.1 g alkali lignin (99%, Sigma-Aldrich, UK)and catalyst (0.05 g) were loaded into an autoclave reactor (Auto Chem100, Beijing Century Senlong experimental Co., Ltd.,China) with 15 mL distilled water and 5 mL cyclohexane(99.5%). After sealed and purged, the reactor was charged with different pressure H2and conducted at 300 °C with a magnetic stirring speed of 400 r·min-1, for 4 h. After the reaction, the catalyst was separated the organic phase was extract using ethyl acetate. The products were analyzed by gas chromatography(GC 2015, Shimadzu, Iapan) and GC-MS (5975C-7890A,Agilent Technology Co., Ltd., Germany)24. The aromatic product yield for hydrogenolysis of alkali lignin was calculated as follows:

    Structural information of depolymerized products and native lignin was analyzed by two-dimension heteronuclear single quantum coherence (HSQC)25. The molecular weight of depolymerized products and native lignin was calculated by gel permeation chromatography (GPC)26.

    2.3 Catalyst characterization

    X-ray diffraction (XRD): XRD measurement for the state and crystal structure of elements in the catalyst by Bruker D8 Advance (D8 Advance, Bruker Co., Ltd., Germany). The test conditions: Cu Kαwas used as the incident light source, the working voltage was 40 kV, the working current was 40 mA, the scanning speed was 10 (°)·min-1, and the scanning Angle was 10°-80°. MDI Jade 6.0 software was used to analyze the data27.

    Inductively coupled plasma atomic emission spectroscopy(ICP-AES): The content of precious metals in the catalyst were determined using ICP-AES (Agilent 5110, Agilent Technology Co., Ltd., Germany)28.

    Brunauer Emmett Teller (BET): The specific surface area and pore size distribution of catalyst were determined by nitrogen adsorption-desorption isotherms (Tristar 3020, Mike Co., Ltd.,USA). BET equation was used to calculate the specific surface area of the sample, and BJH model was used to calculate the pore distribution27.

    Infrared spectra of adsorbed pyridine (Py-IR): The sample was weighed and pressed into thin slices, placed in the sample chamber of the infrared spectrometer (Tensor 27, Bruker Co.,Ltd., Germany). After vacuum pretreatment, the background spectrogram was collected. Pyridine was then adsorbed for 30 min, and desorbed and IR scanned after equilibrium26.

    Ammonia temperature programmed desorption (NH3-TPD):Qualitative and quantitative analysis of solid acid catalyst was carried out via NH3-TPD (Auto Chem 2920, Mike Co., Ltd.,USA). Sample was placed in a reaction tube, and the temperature was raised from room temperature to 400 °C at 10 °C·min-1for drying pretreatment. After He was purged for 1 h, the sample was cooled to and exposed to 10% NH3/He for 1 h until saturation.Finally, the desorption gas was detected by TCD detector at a temperature of 10 °C·min-1to 700 °C.

    X-ray photoelectron spectroscopy (XPS): Valence state of different elements was analyzed by XPS (Thermo Scientific,Thermo Fisher Co., Ltd., USA)29. The full and partial spectra of different elements were obtained by calibration with the binding energy of C 1s (284.8). Then peak separation, fitting and integration of spectra of different elements used Advantage software.

    Hydrogen temperature-programmed reduction (H2-TPR):Reduction degree of precious metal and its interaction with support were performed using the Auto Chem 2920 apparatus(Auto Chem 2920, Mike Co., Ltd., USA). The above samples were heated to 900 °C at a heating rate of 10 °C·min-1and amount of hydrogen consumption was detected using a TCD detector30.

    3 Results and discussion

    3.1 Catalyst characterization

    Fig. 1a showed schematic representation of the formation process of the flower-shaped NbPWO support. The hydrothermally synthesized flower-like assembled nanorod NbPWO sample contained stacked nanorods, which arranged together and formed a spherical micro-flower, as confirmed by SEM and TEM (Fig. 1b,d). SEM image showed a developed channel structure on flower-shaped NbPWO support, which could promote diffusion of lignin bio-oil. Pt loaded by wet impregnation and the loading amount was 3% (w, mass fraction)by ICP-AES. EDS spectra showed the presence of Pt, Nb, P, W and O elements in Pt/NbPWO. Owing to the special flowershaped structure, NbPWO support could not only make full use of 3D rods for the loading of the active Pt metal, but also effectively limit the aggregation or restacking of nanorods.

    The X-ray diffraction (XRD) patterns of Pt/NbPWO display typical peaks at 2θ = 23.1°, 23.7°, 33.5° and 33.9° etc., which are readily indexed to planes of polycrystalline structure PW phase (PDF#41-0326) (Fig. 2a). Additionally, diffraction peak of Pt/NbPWO was in good agreement with PW phase, indicating the related crystal structure. No diffraction peak from NbOxis found in Pt/NbPWO composite because of the amorphous state of NbOx. This result was well matched with EDX mapping images (Fig. 1c), implying the homogeneous dispersion of NbOxthroughout the PW12framework. In general, we deduced that the Keggin structure of PW12remained unchanged when it was introduced into NbOxby hydrothermally method31,32.

    The N2adsorption isotherm measure of Pt/NbPWO showed an obvious hierarchically porous structure with a significantly higher specific surface area of 74 m2·g-1and a total pore volume of 0.19 m3·g-1(Fig. 2b and Table 1) than Pt/NbPO and Pt/NbWO, which is possibly due to that the addition of PW12promoted the formation of nano-flower structure of the support.NbPWO was a heteropolyacid composed of heteropoly anions(PW12) and cations (NbOx). PW12was formed by coordination bridge of oxygen atoms and had a certain pore structure (Fig.1a).

    Fig. 2c showed the acid content of NbPWO support at different calcination temperatures (500 °C, 600 °C, 700 °C). It was worth noting that the acid content was as higher as 1 mmol·g-1when the calcination temperature was 500 °C. With the increase of calcination temperature, the catalyst of solid acid content decreased obviously. When the calcination temperature is 700 °C, the acid content of the catalyst is 0.4 mmol·g-1. The reason may be that the crystal system of NbOxwas from T-NbOxto TT-NbOxat high calcination temperature30.

    Fig. 1 (a) Schematic representation of the formation process of the flower-shaped NbPWO support after heat treating in air at 500 °C.(b) SEM image, (c) the HADDF result and corresponding EDX mapping images and (d, e) TEM images of Pt/NbPWO samples.

    Fig. 2 (a) XRD pattern of Pt/NbWO samples and PW12 and (b) N2 adsorption isotherms of Pt/NbWO, Pt/NbPO and Pt/NbPWO; (c) NH3-TPD curves of different calcination temperature.

    Py-IR experiments were conducted to determine the acidic properties and the reaction mechanism in hydrogenolysis. Fig. 3 displayed that intense bands of Pt/NbPWO catalyst at 1450 cm-1and 1610 cm-1were assigned to Lewis acid (L), at 1543 cm-1and 1575 cm-1were attributed to Bronsted acid (B) and at 1492 cm-1was ascribed to the synergic effect of L and B acid sites15.Table 1 showed the content of L and B acid respectively in the above three Nb-based samples. The acid contents of the Pt/NbPWO catalyst were significantly higher than those of the other catalysts. In hydrogenolysis of lignin, L acid could promote C-O bonds cleavage, while B acid could promote C-C bonds fracture13. Pt/NbPWO catalyst had abundant B acidsites and higher acid content, which could effectively transform alkali lignin, and improve the yield of aromatic monomer.

    Fig. 3 Py-IR spectra of Pt/NbWO, Pt/NbPO and Pt/NbPWO.

    Table 1 Pore size distribution and acid content of different catalysts.

    Fig. 4 shows the H2-TPR patterns of the Pt/NbPWO, Pt/NbPO and Pt/NbPWO. The supports possess obvious reduction peaks,which could be ascribed to the bulk oxygen and surface or subsurface oxygen of NbPWO, NbPO and NbPWO33. Furthermore,two peaks at about 93 °C and 160 °C (< 200 °C) should attribute to the bulk platinum oxide reduction (PtOxto Pt0)34. Reduction peaks of Pt0over Pt/NbPWO was more obvious than those of other catalysts, the reason may be that flower -shaped Pt/NbPWO catalyst promoted the loading of the active Pt metal.A low valence of NbOxappeared after the reduction of Pt/NbPWO at 450 °C, while the additional weak reduction peak near 395 °C was assigned to the reduction of surface NbPWO which interacted with Pt, implying a stronger metal-support interaction (SMSI) of Pt particles with the NbPWO support35.These results demonstrated the existence of the Pt-NbOxinterface, where the NbPWO surface provided more anchoring sites for Pt.

    To explore the surface valence state of catalysts, the XPS survey spectrum of Pt/NbWO, Pt/NbPO and Pt/NbPWO samples were presented in Fig. 5. The Pt 4forbital showed two peaks in above samples, which were attributed to Pt 4f7/2and Pt 4f5/2,respectively. The binding energies (BEs) of Pt0were determined as 71 eV and 74 eV36. When P together with W species participated in the synthesis of catalyst, the BEs of Pt was significantly smaller compared with those with sole P and W species. The downward shift in BEs indicated that PW12affected the electron cloud density and distribution of Pt nanoparticles in the catalyst, reducing the energy barriers of H2dissociation. As shown in Fig. 5b, the Nb5+also presented two peaks corresponding to Nb 3d5/2and Nb 3d3/2. The binding energies of Nb5+over the Pt/NbPWO obviously decreased, indicating that PW12could promote the formation or exposure of Nbδ+species and increase surface acidic sites.

    Fig. 5 XPS spectra of (a) Pt 4f orbital in NbWO, NbPO and NbPWO. and (b) Nb 3d orbital in Pt/NbWO, Pt/NbPO and Pt/NbPWO.

    Fig. 6 (a) Reaction results for the hydrogenolysis of alkali lignin over various Pt-loaded catalysts, influence of (b) temperature and(c) H2 pressure over Pt/NbPWO. (a) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, 300 °C, H2 1.2 MPa,4 h. (b) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, H2 1.2 MPa, 4 h. (c) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, 300 °C, 4 h. (d) Main structure of the depolymerized products.

    3.2 Evaluate of catalytic performance

    Fig. 6a compared the hydrogenolysis performance for alkali lignin over various Pt-based catalysts under the same reaction condition. It is found that among the selected Pt catalysts,Pt/NbPWO exhibited the highest yield of aromatic monomers(18.04%). In comparison, commercial Pt/C catalyst only gave a very low aromatic monomer yield (8.13%). The reason may be ascribed to the acid sites of Pt/NbPWO, preventing further hydrogenation24. Comparing with Pt/NbPO and Pt/NbWO,Pt/NbPWO possessed larger specific surface area and abundant mesoporous showed a large enhancement of catalytic activity.Moreover, the special flower-shaped structure took advantage of 3D rods for the loading of the active Pt metal, making Pt species uniform distributed on the NbPWO catalyst (Fig. 1c) and could effectively limit the aggregation.

    As shown in Fig. 6, the influence of reaction temperature and H2pressure on catalytic depolymerization of alkali lignin over Pt/NbPWO was studied. The yield of the aromatic monomers over the Pt/NbPWO catalyst increased to the peak value of 18.05% at 300 °C and 1.2 MPa H2. The efficiency of lignin depolymerization decreased under a low H2pressure short after reaction temperature due to the recalcitrance and the stability of lignin. However, increasing the H2pressure caused low aromatic monomer yield, the reason may be ascribed to overhydrogenation of benzene ring and partial products dissolved in aqueous-phase. Increasing the reaction temperature also caused low aromatic monomer yield, which may be attributed to the recondensation of lignin-depolymerized monomer products19.

    The depolymerization products of alkali lignin were analyzed by HSQC (Fig. 7 and Table 3). The signals of Aα(δC/δH 71.4/4.87 and δC/δH 85.5/4.7) and Aβ(δC/δH 84.1/4.32 for G unit and δC/δH 87.1/4.11 for S unit) corresponded to benzylic alcohol. The signals of Bα(δC/δH 876.7/5.5), Bβ(δC/δH 53.7/3.1), and Bγ(δC/δH 62.9/3.7) corresponded to phenylcoumaran linkages. The signals of Cα, Cβand Cγ(δC/δH 85.6/4.7, δC/δH 54.5/2.9 and δC/δH 72/3.8, 4.2, respectively)corresponded to resinol linkages13. The aromatic region of alkali lignin is mainly composed of G type units along with a small amount of S and H types37. Compared with the alkali lignin, the peak area of A, B and C structures of the depolymerized product decreased significantly or the signal peak disappeared directly,indicating that the catalyst could effectively break the C-O and C-C bonds of alkali lignin37.

    Fig. 8 shows that the molecular weight of alkali lignin was 1379 Da, which indicated that depolymerization products without the addition of catalyst was 727 Da, whereas the molecular weight of depolymerization products with Pt/NbPWO catalyst reduced to 583 Da, confirming that the catalyst could effectively break the linking bonds of lignin subunits.

    Fig. 7 2D-HSQC NMR spectra of alkali lignin (a: side-chain region; c: aromatic region) and depolymerization products at optimized condition(b: side-chain region; d: aromatic region); (A) β-O-4 alkyl-aryl ethers; (B) phenylcoumarans; (C) resinols; (S) syringyl units; (S’) oxidized syringyl units; (G) guaiacyl units; (H) P-hydroxyphenyl units and (PB) coumarate.

    Fig. 8 GPC distribution of depolymerization products.

    In order to verify the universality of the catalyst, Pt/NbPWO catalyst was applied to the depolymerization of Birch organosolv lignin (BOSL) and enzymatic hydrolysis lignin (EHL). The products distributions were shown in Table 2. The depolymerization products of the three kinds of lignin were mainly G-type products, with a small amount of H-type and S-type products37. The yield of aromatic monomer of lignin extracted with dioxane was 35.17% and that of enzymatic hydrolysis was 25.31%. The structures of native BOSL and EHL were measured by two-dimensional HSQC NMR spectroscopy(Fig. 9). Compared with alkali lignin, the β-O-4 units correlation signals of BOSL and EHL obviously resonated, meantime, the β-O-4 bonds contents of BOSL and EHL were higher (Table 3),which suggested the chemical structure changed mainlyviahydroxyl condensation of alkali lignin in the extraction process.The β-O-4 bond contents of BOSL were higher than that of AL and EHL, hence gaining the higher yield of aromatic monomers.By comparing the aromatic monomers yield and total bond content of different original lignin, it was found that utilization ratio of AL and EHL was higher over Pt/NbPWO catalyst, the reason may be that the structure of BOSL was fragile due to more β-O-4 units, causing that the depolymerization product was condensed.

    Table 2 The hydrogenolysis of lignin into aromatic monomers in different condition.

    Table 3 Structural characteristics of the different lignin by 2D-HSQC method.

    3.3 Catalyst reusability

    Stability of catalyst was shown in Fig. 10a, which indicated that the catalyst still maintained a high lignin depolymerization efficiency after used 5 times. XRD profiles of the used and fresh Pt/NbPWO catalysts (Fig. 10b) indicated that the crystal structure of the catalyst was not significantly changed. The particle size of NbOxon the used Pt/NbPWO catalyst was slightly larger relative to that of fresh activated samples,indicating that catalyst particles tiny agglomeration during the hydrothermal reaction (Fig. 10b). NH3-TPD profiles (Fig. 10c)shown that the total acid content of Pt/NbPWO catalysts after 5 times slightly decreased from 1.08 mmol·g-1to 1.02 mmol·g-1.

    Fig. 9 2D-HSQC NMR spectra of (a, b) BOSL and (c, d) EHL.

    Fig. 10 (a) The stability of the Pt/NbPWO catalyst for the hydrogenolysis of alkali lignin. Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g,H2O 15 mL, cyclohexane 5 mL, H2 1.2 MPa, 300 °C for 4 h. (b) XRD analysis and (c) NH3-TPD profiles of the fresh and used Pt/NbPWO catalyst.

    4 Conclusions

    The Pt/NbPWO catalyst was prepared by hydrothermal and wetness impregnation methods. The Pt/NbPWO catalyst displayed good ability for the cleavage of C-O ether band and C-C bonds of lignin, giving 18.05%, 35.17% and 25.13% of aromatic monomer yields for alkali lignin, BOSL and EHL,respectively. It was found that 500 °C was the optimized calcination temperature for preparing the catalyst, in which higher temperature led to a considerable loss of acidity, while lower temperature caused the unstablization of catalyst during the depolymerization process. Abundant Br?nsted acid sites and high total acid content should contribute to the desired catalytic activity in the hydrogenation of lignin.

    猜你喜歡
    陳博新平華南理工大學(xué)
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    策劃師
    名家名作(2021年1期)2021-11-13 00:52:33
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    咸的“糖”
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    當(dāng)機器人遇上人工智能——記華南理工大學(xué)自動化科學(xué)與工程學(xué)院副教授張智軍
    精靈偵探團之神秘大盜(十一)
    焦唯、王琪斐美術(shù)作品
    精品国产国语对白av| 国产精品香港三级国产av潘金莲| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦 在线观看视频| 亚洲一区二区三区欧美精品| 亚洲国产欧美在线一区| 高清欧美精品videossex| 美女视频免费永久观看网站| 久久精品aⅴ一区二区三区四区| 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 黄色毛片三级朝国网站| 国产在线一区二区三区精| 亚洲,欧美精品.| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色 | 12—13女人毛片做爰片一| 久久av网站| 久久精品91无色码中文字幕| 亚洲欧洲日产国产| 国产日韩欧美视频二区| 国产伦理片在线播放av一区| 91国产中文字幕| 丰满人妻熟妇乱又伦精品不卡| 五月天丁香电影| 亚洲国产毛片av蜜桃av| 狠狠狠狠99中文字幕| 在线av久久热| 在线 av 中文字幕| 人妻 亚洲 视频| 亚洲欧美一区二区三区黑人| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| 精品亚洲成国产av| 国产av精品麻豆| 精品国产乱码久久久久久男人| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久av网站| 18在线观看网站| 国产人伦9x9x在线观看| 国产无遮挡羞羞视频在线观看| 亚洲av美国av| 国产国语露脸激情在线看| 久久99热这里只频精品6学生| 丰满饥渴人妻一区二区三| 91麻豆精品激情在线观看国产 | 国内毛片毛片毛片毛片毛片| 一本色道久久久久久精品综合| 天天躁日日躁夜夜躁夜夜| av线在线观看网站| 天堂中文最新版在线下载| 最新在线观看一区二区三区| 在线 av 中文字幕| 久热这里只有精品99| 久久亚洲真实| 9色porny在线观看| 大型黄色视频在线免费观看| 少妇裸体淫交视频免费看高清 | 欧美国产精品一级二级三级| 日本撒尿小便嘘嘘汇集6| 久久天躁狠狠躁夜夜2o2o| 日韩人妻精品一区2区三区| cao死你这个sao货| 午夜久久久在线观看| 老司机在亚洲福利影院| 国产精品二区激情视频| 精品国产乱码久久久久久小说| 脱女人内裤的视频| 十八禁高潮呻吟视频| 成在线人永久免费视频| 熟女少妇亚洲综合色aaa.| 老司机在亚洲福利影院| 国产精品二区激情视频| 久9热在线精品视频| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 中文字幕另类日韩欧美亚洲嫩草| 午夜成年电影在线免费观看| 亚洲精品在线美女| 免费高清在线观看日韩| 一级片'在线观看视频| 亚洲一区中文字幕在线| 久久久精品免费免费高清| 中国美女看黄片| av天堂久久9| 欧美日韩黄片免| 亚洲成av片中文字幕在线观看| 制服诱惑二区| 免费一级毛片在线播放高清视频 | 久久精品国产99精品国产亚洲性色 | 99久久人妻综合| 99精国产麻豆久久婷婷| 亚洲国产中文字幕在线视频| 婷婷成人精品国产| 国产一区二区激情短视频| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 日韩精品免费视频一区二区三区| 成年人黄色毛片网站| 午夜久久久在线观看| 99九九在线精品视频| 久久国产精品影院| kizo精华| 日本一区二区免费在线视频| 精品久久久精品久久久| 巨乳人妻的诱惑在线观看| 久久久久久久精品吃奶| 亚洲欧洲精品一区二区精品久久久| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看 | 精品久久久久久电影网| 在线 av 中文字幕| 十八禁网站免费在线| 国产极品粉嫩免费观看在线| 国产亚洲精品一区二区www | 这个男人来自地球电影免费观看| 国产在线精品亚洲第一网站| 极品少妇高潮喷水抽搐| 交换朋友夫妻互换小说| 国产av国产精品国产| 亚洲av成人不卡在线观看播放网| 欧美在线一区亚洲| 亚洲 欧美一区二区三区| 日韩制服丝袜自拍偷拍| 免费观看av网站的网址| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 在线观看免费视频日本深夜| 日韩欧美一区二区三区在线观看 | 免费不卡黄色视频| 又紧又爽又黄一区二区| 91成年电影在线观看| 中文字幕色久视频| 一区二区三区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 精品第一国产精品| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 怎么达到女性高潮| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 黄色怎么调成土黄色| 大型黄色视频在线免费观看| 日韩人妻精品一区2区三区| 我的亚洲天堂| 日本五十路高清| 亚洲精品中文字幕一二三四区 | 成人亚洲精品一区在线观看| 多毛熟女@视频| 精品一区二区三区视频在线观看免费 | 亚洲专区字幕在线| 免费在线观看完整版高清| 日韩有码中文字幕| 国产精品久久久久久精品电影小说| 91麻豆精品激情在线观看国产 | 欧美精品一区二区免费开放| 男女高潮啪啪啪动态图| 精品第一国产精品| 肉色欧美久久久久久久蜜桃| 久久免费观看电影| www.熟女人妻精品国产| 少妇粗大呻吟视频| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 亚洲av成人不卡在线观看播放网| 超色免费av| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 国产色视频综合| 黑人操中国人逼视频| av在线播放免费不卡| 91国产中文字幕| 亚洲午夜理论影院| 久久中文看片网| 国产欧美日韩综合在线一区二区| 精品福利观看| 欧美日本中文国产一区发布| 国产精品免费大片| 十八禁高潮呻吟视频| 男女边摸边吃奶| 久久 成人 亚洲| 国产精品久久久av美女十八| 欧美日韩一级在线毛片| 久热爱精品视频在线9| 国产一区二区激情短视频| 婷婷丁香在线五月| 999久久久国产精品视频| 久久久久久久精品吃奶| 脱女人内裤的视频| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 黄网站色视频无遮挡免费观看| 国产成人精品在线电影| 可以免费在线观看a视频的电影网站| 天堂8中文在线网| 国产伦人伦偷精品视频| 老鸭窝网址在线观看| 少妇的丰满在线观看| 精品卡一卡二卡四卡免费| 天堂俺去俺来也www色官网| 午夜免费成人在线视频| 亚洲精品国产精品久久久不卡| 少妇的丰满在线观看| 亚洲精品在线美女| 精品免费久久久久久久清纯 | 一本大道久久a久久精品| 亚洲视频免费观看视频| av又黄又爽大尺度在线免费看| 亚洲成人免费电影在线观看| 国产成人精品无人区| 高潮久久久久久久久久久不卡| 欧美av亚洲av综合av国产av| 视频区图区小说| 老司机在亚洲福利影院| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 日韩欧美国产一区二区入口| 男人操女人黄网站| 激情在线观看视频在线高清 | 一进一出抽搐动态| 麻豆乱淫一区二区| 精品福利永久在线观看| 香蕉久久夜色| 国产午夜精品久久久久久| 亚洲avbb在线观看| 极品少妇高潮喷水抽搐| 女警被强在线播放| 热re99久久精品国产66热6| 欧美激情高清一区二区三区| 黄片播放在线免费| 国产av一区二区精品久久| 极品人妻少妇av视频| 麻豆乱淫一区二区| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 亚洲av美国av| 国产片内射在线| 精品亚洲成a人片在线观看| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 亚洲精品中文字幕一二三四区 | 男女免费视频国产| 在线观看舔阴道视频| 日韩欧美三级三区| 亚洲精品国产色婷婷电影| 色在线成人网| 老司机午夜十八禁免费视频| 久久久久久久大尺度免费视频| 欧美精品人与动牲交sv欧美| 国产在视频线精品| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 日本欧美视频一区| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 日本av免费视频播放| 91精品国产国语对白视频| 欧美日韩亚洲高清精品| 宅男免费午夜| 一级片免费观看大全| 婷婷丁香在线五月| 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 在线观看免费高清a一片| 18禁国产床啪视频网站| 老司机福利观看| 日韩中文字幕欧美一区二区| 亚洲视频免费观看视频| 亚洲精华国产精华精| 精品久久久精品久久久| videosex国产| 国产精品电影一区二区三区 | 久久国产精品人妻蜜桃| 亚洲av成人一区二区三| 每晚都被弄得嗷嗷叫到高潮| 他把我摸到了高潮在线观看 | 国产精品久久久久成人av| 日本五十路高清| 国产av精品麻豆| 欧美日韩福利视频一区二区| 国产免费视频播放在线视频| 好男人电影高清在线观看| 亚洲性夜色夜夜综合| 久久久国产成人免费| 99精品在免费线老司机午夜| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日韩大片免费观看网站| 新久久久久国产一级毛片| 香蕉国产在线看| 午夜激情av网站| 久久人妻熟女aⅴ| 一区二区三区国产精品乱码| 国产在线免费精品| xxxhd国产人妻xxx| 久久天堂一区二区三区四区| 午夜成年电影在线免费观看| 波多野结衣av一区二区av| 在线观看免费午夜福利视频| 不卡一级毛片| 黄片大片在线免费观看| 亚洲中文字幕日韩| 亚洲人成电影观看| 亚洲熟女毛片儿| 交换朋友夫妻互换小说| 亚洲午夜精品一区,二区,三区| 亚洲性夜色夜夜综合| 久久ye,这里只有精品| 欧美日韩精品网址| xxxhd国产人妻xxx| www日本在线高清视频| 日韩成人在线观看一区二区三区| 午夜福利在线免费观看网站| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 12—13女人毛片做爰片一| 黄色视频不卡| 精品国产一区二区久久| 亚洲国产欧美网| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 欧美精品av麻豆av| 天堂俺去俺来也www色官网| 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 夜夜爽天天搞| 老司机亚洲免费影院| 久久中文字幕一级| 一本大道久久a久久精品| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲 | 亚洲专区国产一区二区| a级毛片在线看网站| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 五月天丁香电影| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 性高湖久久久久久久久免费观看| 精品少妇久久久久久888优播| 亚洲,欧美精品.| www.熟女人妻精品国产| 国产高清激情床上av| 一本—道久久a久久精品蜜桃钙片| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 国产在线观看jvid| 久久久国产一区二区| 国产又爽黄色视频| 一级片'在线观看视频| 欧美在线黄色| 夫妻午夜视频| 1024香蕉在线观看| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 一本色道久久久久久精品综合| 亚洲va日本ⅴa欧美va伊人久久| 91精品国产国语对白视频| 一区二区三区激情视频| www.999成人在线观看| 成人三级做爰电影| 在线亚洲精品国产二区图片欧美| a级毛片在线看网站| 一区二区三区乱码不卡18| kizo精华| 狂野欧美激情性xxxx| 麻豆乱淫一区二区| 黄片小视频在线播放| 国产欧美日韩综合在线一区二区| 日韩免费av在线播放| 欧美日韩一级在线毛片| 老熟女久久久| 免费不卡黄色视频| 国产日韩欧美在线精品| 法律面前人人平等表现在哪些方面| 国产精品香港三级国产av潘金莲| 国产高清videossex| kizo精华| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 亚洲午夜理论影院| 日本a在线网址| 五月天丁香电影| 亚洲黑人精品在线| 建设人人有责人人尽责人人享有的| 大香蕉久久成人网| 亚洲国产欧美日韩在线播放| 精品一区二区三区四区五区乱码| 亚洲国产毛片av蜜桃av| 多毛熟女@视频| 国产不卡av网站在线观看| 丰满迷人的少妇在线观看| 亚洲久久久国产精品| 99精品在免费线老司机午夜| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| 天天操日日干夜夜撸| 亚洲精品一卡2卡三卡4卡5卡| 这个男人来自地球电影免费观看| 丝袜在线中文字幕| 一区二区av电影网| 欧美精品高潮呻吟av久久| 2018国产大陆天天弄谢| 亚洲成人国产一区在线观看| 怎么达到女性高潮| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 久久精品国产亚洲av高清一级| 女性被躁到高潮视频| 母亲3免费完整高清在线观看| 少妇 在线观看| 成人手机av| 午夜精品国产一区二区电影| 日韩大片免费观看网站| 国产av一区二区精品久久| 国产一区二区 视频在线| 日本黄色日本黄色录像| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯 | 自线自在国产av| 操美女的视频在线观看| 一区福利在线观看| 国产一区二区 视频在线| 亚洲熟妇熟女久久| 一本综合久久免费| 久久天躁狠狠躁夜夜2o2o| 久久久久久免费高清国产稀缺| 在线观看免费午夜福利视频| 欧美av亚洲av综合av国产av| 国产片内射在线| 精品人妻熟女毛片av久久网站| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 亚洲欧美精品综合一区二区三区| 99香蕉大伊视频| 亚洲全国av大片| 成人国产av品久久久| 好男人电影高清在线观看| 两人在一起打扑克的视频| 精品国产一区二区三区四区第35| 最新美女视频免费是黄的| 在线天堂中文资源库| 91九色精品人成在线观看| cao死你这个sao货| 欧美日韩黄片免| 久久久精品国产亚洲av高清涩受| 精品国产一区二区三区四区第35| 国产一区二区 视频在线| 国产亚洲欧美在线一区二区| 久久精品亚洲熟妇少妇任你| 亚洲一区二区三区欧美精品| 精品国产亚洲在线| 亚洲人成伊人成综合网2020| 成年动漫av网址| 亚洲情色 制服丝袜| 成人免费观看视频高清| 在线 av 中文字幕| 乱人伦中国视频| bbb黄色大片| 国产精品久久久av美女十八| 制服人妻中文乱码| 午夜福利在线免费观看网站| 女性被躁到高潮视频| 又大又爽又粗| 日韩欧美国产一区二区入口| 国产精品免费大片| 啦啦啦 在线观看视频| 国产成+人综合+亚洲专区| 色精品久久人妻99蜜桃| 18禁观看日本| 熟女少妇亚洲综合色aaa.| 欧美黑人欧美精品刺激| 国产亚洲精品一区二区www | 欧美久久黑人一区二区| 天天添夜夜摸| 久久国产精品影院| 国产国语露脸激情在线看| 国产又爽黄色视频| 久久影院123| 成年人免费黄色播放视频| 丰满少妇做爰视频| 久久天躁狠狠躁夜夜2o2o| 国产高清视频在线播放一区| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 亚洲第一青青草原| 久久久久久久久久久久大奶| 久久精品亚洲精品国产色婷小说| 女性生殖器流出的白浆| 91老司机精品| 午夜福利,免费看| 亚洲精品久久午夜乱码| 天堂中文最新版在线下载| 亚洲熟女毛片儿| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品久久成人aⅴ小说| 脱女人内裤的视频| 满18在线观看网站| 免费在线观看影片大全网站| 亚洲国产欧美在线一区| 亚洲精品美女久久久久99蜜臀| 国产在视频线精品| 久久精品亚洲av国产电影网| 色在线成人网| 午夜激情久久久久久久| 国产淫语在线视频| 欧美大码av| 亚洲av日韩精品久久久久久密| 午夜福利影视在线免费观看| 亚洲七黄色美女视频| 国产精品国产高清国产av | 精品欧美一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 高清欧美精品videossex| 黄片大片在线免费观看| 在线观看人妻少妇| 黑人欧美特级aaaaaa片| 久久人妻熟女aⅴ| 激情视频va一区二区三区| 亚洲免费av在线视频| 一进一出好大好爽视频| 91九色精品人成在线观看| 最新的欧美精品一区二区| 97在线人人人人妻| 丰满迷人的少妇在线观看| 国内毛片毛片毛片毛片毛片| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡动漫免费视频| 亚洲av美国av| 热99国产精品久久久久久7| 亚洲熟女精品中文字幕| 精品一区二区三卡| 国精品久久久久久国模美| 欧美在线一区亚洲| 91字幕亚洲| 亚洲欧洲日产国产| 午夜福利在线免费观看网站| 国产精品亚洲一级av第二区| 最新在线观看一区二区三区| 亚洲成av片中文字幕在线观看| 欧美性长视频在线观看| 亚洲天堂av无毛| 国产真人三级小视频在线观看| 99精品在免费线老司机午夜| 久久亚洲真实| 99国产极品粉嫩在线观看| 一级毛片电影观看| 极品教师在线免费播放| 黄网站色视频无遮挡免费观看| 首页视频小说图片口味搜索| 亚洲精品美女久久久久99蜜臀| 久久久久网色| 女警被强在线播放| 国产不卡av网站在线观看| 国产在视频线精品| 麻豆国产av国片精品| av欧美777| 少妇猛男粗大的猛烈进出视频| 老鸭窝网址在线观看| 99国产极品粉嫩在线观看| 丰满迷人的少妇在线观看| 亚洲av第一区精品v没综合| 亚洲国产成人一精品久久久| 一级毛片电影观看| 久久人妻福利社区极品人妻图片| 国产精品久久久久久精品古装| 国产亚洲欧美精品永久| 91成年电影在线观看| 亚洲成人免费电影在线观看| 久久久久国产一级毛片高清牌| 国产欧美亚洲国产| 一二三四在线观看免费中文在| 操美女的视频在线观看| 99国产精品免费福利视频| 下体分泌物呈黄色| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av美国av| 老熟妇乱子伦视频在线观看| 极品人妻少妇av视频| 99精品欧美一区二区三区四区| 欧美国产精品va在线观看不卡| 日本一区二区免费在线视频| 91麻豆精品激情在线观看国产 | 久久ye,这里只有精品| 亚洲精品美女久久av网站| 18禁美女被吸乳视频| 岛国在线观看网站| 久久久久国内视频| 飞空精品影院首页| 日韩一卡2卡3卡4卡2021年| 国产xxxxx性猛交| 91大片在线观看| 亚洲精品粉嫩美女一区| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 热re99久久精品国产66热6| 久久午夜亚洲精品久久| 伊人久久大香线蕉亚洲五| 国产成人免费观看mmmm| 亚洲美女黄片视频| √禁漫天堂资源中文www| 宅男免费午夜| 热re99久久国产66热| 久久99一区二区三区| 日韩一区二区三区影片| 视频区图区小说| 精品国产一区二区三区四区第35| 久久人妻av系列| 五月开心婷婷网|