• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Upper Ocean Temperatures Hit Record High in 2020

    2021-04-07 10:20:42LijingCHENGJohnABRAHAMKevinTRENBERTHJohnFASULLOTimBOYERRicardoLOCARNINIBinZHANGFujiangYULiyingWANXingrongCHENXiangzhouSONGYulongLIUMichaelMANNFrancoRESEGHETTISimonaSIMONCELLIViktorGOURETSKIGengxinCHEN1AlexeyMISHONOVJim
    Advances in Atmospheric Sciences 2021年4期

    Lijing CHENG,John ABRAHAM,Kevin E.TRENBERTH,John FASULLO,Tim BOYER,Ricardo LOCARNINI,Bin ZHANG,Fujiang YU,Liying WAN,Xingrong CHEN,Xiangzhou SONG,Yulong LIU,Michael E.MANN,Franco RESEGHETTI,Simona SIMONCELLI,Viktor GOURETSKI,Gengxin CHEN1,Alexey MISHONOV,1,Jim REAGAN,1,and Jiang ZHU

    1International Center for Climate and Environment Sciences, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    2Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

    3University of St.Thomas, School of Engineering, Minnesota 55105, USA

    4National Center for Atmospheric Research, Boulder, Colorado 80307, USA

    5National Oceanic and Atmospheric Administration, National Centers for Environmental Information,Silver Spring, Maryland 20910, USA

    6Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    7National Marine Environmental Forecasting Center, Ministry of Natural Resources of China, Beijing 100081, China

    8College of Oceanography, Hohai University, Nanjing 210098, China

    9National Marine Data and Information Service, Tianjin 300171, China

    10Department of Meteorology &Atmospheric Science, The Pennsylvania State University,University Park, Pennsylvania 16802, USA

    11Italian National Agency for New Technologies, Energy and Sustainable Economic Development,S.Teresa Research Center, Lerici 19032, Italy

    12Istituto Nazionale di Geofisica e Vulcanologia, Sede di Bologna, Bologna 40128, Italy

    13South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

    14ESSIC/CISESS-MD, University of Maryland, College Park, Maryland 20742, USA

    The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system.It also provides insights about the changes to come,owing to the persistence of both decadal variations and secular trends,which the ocean records extremely well (Hansen et al.,2011;IPCC,2013;Rhein et al.,2013;Trenberth et al.,2016;Abram et al.,2019).It is well established that the emission of greenhouse gasses by human activities is mainly responsible for global warming since the industrial revolution (IPCC,2013;Abram et al.,2019).The increased concentration of heat-trapping greenhouse gases in the atmosphere has interfered with natural energy flows.Currently there is an energy imbalance in the Earth’s climate system of almost 1 W m(Trenberth et al.,2014;von Schuckmann et al.,2016,2020a;Wijffels et al.,2016;Johnson et al.,2018;Cheng et al.,2019a;von Schuckmann et al.,2020a).Over 90% of this excess heat is absorbed by the oceans,leading to an increase of ocean heat content (OHC) and sea level rise,mainly through thermal expansion and melting of ice over land.These processes provide a useful means to quantify climate change.

    The first global OHC time series by Levitus et al.(2000) identified a robust long-term 0?3000 m ocean warming from 1948?98.Since then,many other analyses of global and regional OHC data have been performed.Here,we provide the first analysis of recent ocean heating,incorporating 2020 measurements through 2020 into our analysis.These state-of-the-art data products are made available by the Institute of Atmospheric Physics (IAP),which is part of the Chinese Academy of Sciences (CAS) (Cheng et al.,2017) and the National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA) (Levitus et al.,2012).Both datasets have corrected systematic errors and then use comprehensive mapping methods to convert discrete ocean measurements into a comprehensive picture of the ocean(see Methods).

    The most recent data indicate that the OHC in the upper 2000 m layer of the world’s oceans has increased with a mean rate of 5.7 ± 1.0 ZJ yrfor the 1958?2020 period (IAP/CAS) (Fig.1).There is a more rapid increase in OHC that began~1980s and has continued unabated since then (Fig.1).Since 1986,the average annual increase is 9.1 ± 0.3 ZJ yr(1986 to 2020),almost eight times larger than the linear rate from 1958~1985 (1.2 ± 0.6 ZJ yr).Further,the uncertainty has decreased as improved instruments (e.g.,Argo) and analysis methods have become available (Cheng et al.,2017;Argo,2020) (Fig.1).Moreover,each decade has been warmer than its preceding decade.

    The 2020 OHC value is higher than the last year’s value,by 20 ± 8.3 ZJ using the IAP/CAS data,and by 1 ± 3.5 ZJ using NOAA/NCEI.Both are the highest on record (Table 1).Differences between the OHC analyses reflect the uncertainties in the calculation due to method and data coverage.OHC values herein are preliminary and will be augmented by ocean profile data which are not immediately available at the end of the year (but added later),and by calibration and quality control processes which also occur on longer time scales.Further quantification of the uncertainties in OHC will help to better specify the confidence in OHC assessment.Even taking into account these caveats,IAP and NCEI OHC values both indicate a continued warming of the ocean,even though a year marked by a prominent La Ni?a event.Efforts are underway to better understand the differences of OHC between IAP and NCEI,and between gridded analysis with other indirect measurements such as TOA data and sea level data.

    Fig.1.(Upper) Global upper 2000 m OHC from 1958 through 2020.The histogram presents annual anomalies relative to a 1981?2010 baseline,with positive anomalies shown as red bars and negative anomalies as blue.(Bottom) Global 0?500 m,500?1000 m,1000?1500 m,and 1500?2000 m OHC stripes from 1958 to 2020.Units:ZJ.

    Figure 2 separately displays accumulated thermal energy in the layers 0–300-m,300–700-m,700–2000-m,and below-2000-m.We rely upon deep-ocean heating information (updated from Purkey and Johnson 2010) for heating rates below 2000 m and apply a linear rate of OHC increase of 1.15 ± 1.0 ZJ yrafter 1992.Prior to 1992,negligible deep-ocean heating is assumed (Cheng et al.,2017).The new results indicate a total full-depth ocean warming of 380 ± 81 ZJ (equal to a net heating of 0.39 ± 0.08 W mover the global surface) from 1960 to 2020,with contributions of 40.3%,21.6%,29.2%and 8.9% from the 0–300-m,300–700-m,700–2000-m,and below-2000-m layers,respectively.

    A regional assessment of ocean warming (Figs.3 and 4) is crucial and relevant to community risk assessment and societal adaptation more so than global metrics.The geographical pattern of 2020 OHC relative to 1981?2010 (Fig.3a) shows warming throughout most of the world’s oceans with higher rates of warming in both the northern and southern Atlantic(except southeast of Greenland),and in localized zones of the Pacific,Indian and Southern Oceans.When compared with 2019 (Fig.3b),the spatial pattern of OHC anomalies in 2020 is much less distinct because internal variability can overwhelm long-term trends.The Indo-Pacific basin changed from El Ni?o conditions in 2019 and the first six months of 2020 into a La Ni?a state during the last half of 2020.The steeper thermocline during La Ni?a in both the Indian and Pacific Oceans caused the eastern Pacific Ocean to be cooler in 2020 than in 2019.On the other hand,the western Pacific and eastern Indian Oceans were warmer in 2020 (Cheng et al.2019b).Other warmer regions include the North Pacific and the middle-latitude Atlantic Oceans.

    Table 1.Ranked order of the hottest five years of the ocean,since 1955.The OHC values are anomalies for the upper 2000 m in units of ZJ relative to the 1981?2010 average.

    Fig.2.Ocean heat budget from 1960 to 2020 based on IAP analysis data from 0 to 2000 m,and from Purkey and Johnson (2010) for deep ocean change below 2000 m (units:ZJ).Figure updated from Cheng et al.(2017).The anomalies are relative to 1958?62 baseline,and the time series are smoothed by LOWESS (locally weighted scatterplot smoothing) with span width of 24 months.The gray dashed lines are the 95% confidence interval of the total ocean heat budget.

    Fig.3.(a) Ocean heat content anomaly in 2020 relative to 1981?2010 baseline.(b)difference of OHC at upper 2000 m between 2020 and 2019.Units:109 J m?2.[Data updated from Cheng et al.(2017)].

    Fig.4.Regional observed upper 2000 m OHC change from 1955 through 2020 relative to 1981?2010 baseline.The time series(black) are smoothed by LOWESS (locally weighted scatterplot smoothing) with span width of 24 months.The blue shadings are the 95% confidence interval.[Data updated from Cheng et al.(2017)].

    In the North Indian Ocean,relevant to the Middle East and India,OHC started to rise after around 2000 (Fig.4a).This warming is partially caused by increased heat input from the Pacific Ocean (Li et al.,2018).The Northwest Pacific Ocean is the most active basin for tropical storms on the planet,accounting for one-third of all tropical cyclones.Changes are directly relevant to the weather conditions and societies in East Asia.There (Fig.4b),OHC shows strong inter-annual and decadal fluctuations,which are predominantly associated with internal climate variability (Cheng et al.,2019b;Wu et al.,2020;Xiao et al.,2020).Nevertheless,the mean OHC in the recent decade (2011?20) is higher than the 1981?2010 average.

    In the tropical North Atlantic Ocean,where hurricanes generate and develop,OHC increases have been persistent since at least 1958 (Fig.4c).The ocean heating supercharges these storms and exacerbates the risk of major flooding and damage(Trenberth et al.,2018).The Mediterranean Sea,surrounded by 22 countries,and an important waterway linking Europe,the Middle East and Asia,is a hotspot of climate change impacts because of the high density of coastal population.Its OHC has a robust increase from the 1990s and a steep increase in the last decade (Fig.4d) (Storto et al.,2019;von Schuckmann et al.,2020b).The Mediterranean OHC positive anomalies are the largest reported in Fig.4.The OHC in the North Atlantic Ocean also indicates an upward OHC trend since 1958 (Fig.4e).However,in the subpolar regions south of Greenland,a long-term cooling trend in the upper 2000 m OHC is evident (the so-called the cold blob or North Atlantic warming hole,Fig.3a).The cooling continued through 2020 compared with 2019 (Fig.3b).This cooling is likely linked to changes in Atlantic currents and possibly a weakening Atlantic meridional overturning circulation (AMOC) (Caesar et al.,2018).

    A series of marine heat waves developed in the northeast Pacific Ocean within the past decade.The whole ocean food web was severely impacted during these extremes (Cornwall,2019).For example,according to stock assessment data,the level of mature,spawning cod was halved in the Gulf of Alaska from 2014 to 2017 (Barbeaux et al.,2019).The return of the northeast Pacific warm“blob”is another noticeable ocean condition that was observed in 2020 (Fig.3b).The marine heat waves have been supported by significant ocean heating since the 1990s (Fig.4f) and other local anomalies (Scannell et al.,2020).Persistent weather patterns,such as ENSO,lead to regional hot spots and marine heat waves that may last up to a year or so (e.g.,in the Tasman Sea,Oliver et al.,2017,2018),with huge impacts on marine ecosystems and subsequent weather,such as hurricanes (Trenberth et al.,2018;Trenberth and Zhang 2019).The Southern Ocean absorbed the majority of anthropogenic heat in the past century according to model simulations (Fr?licher et al.,2015),contemporaneous with a significant ocean warming since 1958 (Fig.4g).

    The thermal expansion due to ocean warming is the major contributor of sea level rise (SLR) since 1900 (Frederikse et al.,2020).A 380 ± 81 ZJ full-depth ocean warming since 1960 corresponds to about~47 mm global SLR (thermosteric sea level).With the unequivocal worldwide sea level rise and the projections of unabated rise continuing into the foreseeable future,governments and infrastructure planning must adapt (Oppenheimer et al.,2019).This is particularly important for coastal communities,and is increasingly reflected by changes to engineering design,building codes,and modifications to coastal development plans (Abraham et al.,2015,2017;Scambos and Abraham,2015).

    Fig.5.Global 0?2000 m Salinity-Contrast (upper,Units:g kg?1) and stratification (below,units:s?2) stripes from 1958 to 2020.The black lines show the monthly means and the black dotted sticks show the annual anomalies with the 95% confidence interval.[Data updated from Cheng et al.(2020b) and Li et al.(2020)].

    Warming of the oceans causes an amplification of the global hydrological cycle (Trenberth et al.,2003;Held and Soden,2006;Min et al.,2011),which has a strong fingerprint in the ocean salinity field.Evaporation takes freshwater from the ocean and puts it into the atmosphere,increasing ocean salinity.Precipitation returns freshwater to the ocean,reducing the salinity.The ocean salinity shows a“fresh gets fresher,and salty gets saltier”pattern of change in the ocean’s upper 2000 m (Cheng et al.,2020b),which is quantified by a Salinity-Contrast metric (Fig.5,upper panel).Added thermal energy to ocean waters also provides energy for storms,thereby increasing their precipitation,wind speed,and physical size (Karl and Knight,1998;Trenberth et al.,2003,2018;Groisman et al.,2005,2012;Karl et al.,2009;Kunkel et al.,2013).

    The stronger ocean warming within upper layers versus deep water has caused an increase of ocean stratification in the past half century (Li et al.,2020) (Fig.5,bottom panel).With increased stratification,heat from climate warming less effectively penetrates into the deep ocean,which contributes to further surface warming.It also reduces the capability of the ocean to store carbon,exacerbating global surface warming (Kuhlbrodt and Gregory,2012).Furthermore,climate warming prevents the vertical exchanges of nutrients and oxygen,thus impacting the food supply of whole marine ecosystems(Schmidtko et al.,2017).

    By uptaking~90% of anthropogenic heat and~30% of the carbon emissions,the ocean buffers global warming (IPCC,2019).However,the associated ocean response also poses a severe risk to human and natural systems.In 2020,as more countries pledge to achieve“carbon neutrality”or“zero carbon”in the coming decades,the ocean should receive special attention.Any activities or agreements to address global warming must be coupled with the understanding that the ocean has already absorbed an immense amount of heat,and will continue to absorb excess energy in the Earth’s system until atmospheric carbon levels are significantly lowered.In other words,the excess heat already in the ocean,and heat likely to enter the ocean in the coming years,will continue to affect weather patterns,sea level,and ocean biota for some time,even under zero carbon emission conditions (Cheng et al.,2019b;IPCC,2019;von Schuckmann et al.,2020a).Reasoned decisions regarding mitigation and adaptation strategies for climate change,in addition to social,political,and economic constraints,must consider the current and future states of the world’s oceans.

    Data and methods

    The method used here,developed at the IAP/CAS,involves calculating ocean temperatures and salinity in upper 2000 m layer using all available observations from various measurement devices held in the World Ocean Database (WOD) of the National Oceanic and Atmospheric Administration/National Center for Environmental Information (NOAA/NCEI).The data are available at http://159.226.119.60/cheng/ and http://msdc.qdio.ac.cn/data/special/1339915934294355970.The primary input data are bias-corrected XBT and other available measurements (i.e.Argo,moorings,gliders,CTD,bottle,MBT etc.) from WOD (Boyer et al.,2018).Model simulations are used to guide the gap-filling method from point measurements to the grid,while sampling error is estimated by sub-sampling the Argo data at the locations of the earlier observations (a full description of the method can be found in Cheng et al.,2017,2020a,b).Beginning,approximately,in 2005,the Argo observing network was deployed on a global scale,which significantly improved the ocean-measurement capabilities(Argo,2020).Since then,Argo data have been collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu;http://argo.jcommops.org).The Argo Program is part of the Global Ocean Observing System.

    Acknowledgements.

    The IAP analysis is supported by the National Key R&D Program of China (Grant No.2017YFA0603202),the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB42040402),and Key Deployment Project of Centre for Ocean Mega-Research of Science,CAS (Grant No.COMS2019Q01).NCAR is sponsored by the US National Science Foundation.The efforts of Dr.FASULLO in this work were supported by NASA Award 80NSSC17K0565,and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S.Department of Energy's Office of Biological &Environmental Research (BER) via National Science Foundation IA 1844590.The efforts of Dr.MISHONOV and Mr.REAGAN were partially supported by NOAA (grant NA14NES4320003 to CISESS-MD at the University of Maryland).

    美女cb高潮喷水在线观看| 九色成人免费人妻av| 搞女人的毛片| 中文字幕制服av| 综合色丁香网| 18禁黄网站禁片免费观看直播| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久av不卡| 日韩三级伦理在线观看| 一进一出抽搐gif免费好疼| 18+在线观看网站| 亚洲国产精品久久男人天堂| a级毛片a级免费在线| 亚洲三级黄色毛片| 久久精品国产清高在天天线| 亚洲av免费高清在线观看| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 日产精品乱码卡一卡2卡三| 最好的美女福利视频网| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 午夜精品国产一区二区电影 | 亚洲欧美成人综合另类久久久 | 午夜激情福利司机影院| 啦啦啦韩国在线观看视频| 久久久久久久久久久免费av| 2021天堂中文幕一二区在线观| 国产成人精品婷婷| 国内精品宾馆在线| 久久久a久久爽久久v久久| 国产成人freesex在线| 日本免费一区二区三区高清不卡| 亚洲国产欧洲综合997久久,| 国产精品嫩草影院av在线观看| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 哪个播放器可以免费观看大片| 有码 亚洲区| 日韩欧美精品免费久久| 久久久久久久久久久丰满| 成人永久免费在线观看视频| 免费看a级黄色片| 长腿黑丝高跟| 国产片特级美女逼逼视频| 日本在线视频免费播放| 人人妻人人澡人人爽人人夜夜 | 伦精品一区二区三区| 1000部很黄的大片| 长腿黑丝高跟| 人妻少妇偷人精品九色| 中文字幕久久专区| 亚洲电影在线观看av| 一区福利在线观看| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 欧美色欧美亚洲另类二区| 啦啦啦韩国在线观看视频| 成人特级黄色片久久久久久久| 色噜噜av男人的天堂激情| av在线天堂中文字幕| 乱系列少妇在线播放| 国产高清三级在线| 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 午夜精品在线福利| 少妇的逼水好多| 天天躁夜夜躁狠狠久久av| 麻豆国产97在线/欧美| 好男人在线观看高清免费视频| 国产成人a区在线观看| 精品熟女少妇av免费看| a级毛片免费高清观看在线播放| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| av天堂在线播放| 中文字幕熟女人妻在线| 欧美3d第一页| 伦理电影大哥的女人| 黄片wwwwww| 女人十人毛片免费观看3o分钟| 91精品国产九色| 国产探花极品一区二区| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 97在线视频观看| 日韩 亚洲 欧美在线| 亚洲av中文字字幕乱码综合| 最好的美女福利视频网| 校园人妻丝袜中文字幕| 99久久成人亚洲精品观看| 一本一本综合久久| 亚洲av成人精品一区久久| 不卡一级毛片| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 欧美+日韩+精品| 国产一级毛片七仙女欲春2| 中文亚洲av片在线观看爽| 综合色丁香网| 欧美日韩乱码在线| 欧美性猛交╳xxx乱大交人| 69av精品久久久久久| 亚洲最大成人手机在线| 蜜桃亚洲精品一区二区三区| 国内精品久久久久精免费| 国产成人一区二区在线| 色哟哟哟哟哟哟| 精品久久久久久久久亚洲| 成年女人永久免费观看视频| 午夜福利在线观看吧| 国产中年淑女户外野战色| 内地一区二区视频在线| 永久网站在线| 日本免费a在线| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 国产一区二区三区在线臀色熟女| 欧洲精品卡2卡3卡4卡5卡区| 久久热精品热| 最近中文字幕高清免费大全6| 午夜福利成人在线免费观看| 欧美三级亚洲精品| 激情 狠狠 欧美| 特大巨黑吊av在线直播| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 舔av片在线| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 亚洲经典国产精华液单| 九色成人免费人妻av| 国产精品嫩草影院av在线观看| 亚洲人成网站高清观看| 久久人人精品亚洲av| av视频在线观看入口| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 免费大片18禁| 国产在线精品亚洲第一网站| 免费看a级黄色片| 免费人成视频x8x8入口观看| 免费人成在线观看视频色| 国产精品久久久久久亚洲av鲁大| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 国内精品久久久久精免费| 久久久午夜欧美精品| 一夜夜www| 国内久久婷婷六月综合欲色啪| 成年女人看的毛片在线观看| 超碰av人人做人人爽久久| 亚洲图色成人| 午夜福利在线观看免费完整高清在 | 国产极品天堂在线| 欧美xxxx黑人xx丫x性爽| 黄色欧美视频在线观看| 3wmmmm亚洲av在线观看| 亚洲欧美中文字幕日韩二区| 国产精品国产高清国产av| 亚洲精品色激情综合| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 少妇的逼好多水| 久久99热6这里只有精品| 99久久九九国产精品国产免费| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 搡老妇女老女人老熟妇| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 亚洲人与动物交配视频| .国产精品久久| АⅤ资源中文在线天堂| 日本三级黄在线观看| 不卡一级毛片| 免费搜索国产男女视频| 人人妻人人看人人澡| 久久精品久久久久久噜噜老黄 | 成人美女网站在线观看视频| 黄片wwwwww| 在现免费观看毛片| 国产毛片a区久久久久| 国产精品人妻久久久影院| 麻豆av噜噜一区二区三区| 亚洲av二区三区四区| 中文精品一卡2卡3卡4更新| 国产精品一二三区在线看| 免费av不卡在线播放| 亚洲精品粉嫩美女一区| av黄色大香蕉| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 国产在线男女| 日韩三级伦理在线观看| 蜜桃久久精品国产亚洲av| 国产爱豆传媒在线观看| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 亚洲国产日韩欧美精品在线观看| 亚州av有码| 99热这里只有是精品在线观看| 一级黄色大片毛片| 一个人免费在线观看电影| 久久久a久久爽久久v久久| 国产精品无大码| 午夜福利视频1000在线观看| 国产午夜精品论理片| 亚洲av男天堂| 晚上一个人看的免费电影| 不卡一级毛片| av视频在线观看入口| 美女被艹到高潮喷水动态| www日本黄色视频网| 精品一区二区三区视频在线| 亚洲人成网站在线播放欧美日韩| 69人妻影院| 国内精品久久久久精免费| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕精品亚洲无线码一区| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 久久国内精品自在自线图片| 日韩国内少妇激情av| 哪里可以看免费的av片| 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 日韩成人伦理影院| 日本与韩国留学比较| 国产精品一区二区三区四区久久| 欧美性猛交黑人性爽| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 最新中文字幕久久久久| 一个人观看的视频www高清免费观看| 亚洲国产精品久久男人天堂| 女同久久另类99精品国产91| 99久久中文字幕三级久久日本| 春色校园在线视频观看| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 天堂√8在线中文| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 国产午夜精品久久久久久一区二区三区| 亚洲七黄色美女视频| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| 日本成人三级电影网站| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 国产av不卡久久| 亚洲精品乱码久久久v下载方式| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 一个人看的www免费观看视频| 久久久久久大精品| 国产激情偷乱视频一区二区| 亚洲综合色惰| 91精品国产九色| 日韩精品青青久久久久久| 99久国产av精品国产电影| 国产毛片a区久久久久| 舔av片在线| 精品国内亚洲2022精品成人| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 少妇人妻一区二区三区视频| 国产日本99.免费观看| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 尾随美女入室| 色哟哟·www| 免费大片18禁| 国产一级毛片在线| 最好的美女福利视频网| 国产黄色视频一区二区在线观看 | 国产精品一及| 级片在线观看| 九九久久精品国产亚洲av麻豆| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 国产真实乱freesex| 亚洲中文字幕日韩| 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 日日干狠狠操夜夜爽| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 午夜视频国产福利| 欧美性猛交黑人性爽| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 日本一本二区三区精品| 菩萨蛮人人尽说江南好唐韦庄 | 十八禁国产超污无遮挡网站| 美女国产视频在线观看| 精品久久久久久久久久久久久| 免费观看a级毛片全部| 国产视频内射| 人人妻人人澡欧美一区二区| 麻豆乱淫一区二区| 久久99精品国语久久久| 亚洲成人久久爱视频| 身体一侧抽搐| 在线免费十八禁| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看| 国语自产精品视频在线第100页| 综合色丁香网| 久久久久免费精品人妻一区二区| 超碰av人人做人人爽久久| kizo精华| 久久综合国产亚洲精品| 国产探花极品一区二区| 一夜夜www| 国产午夜精品论理片| 激情 狠狠 欧美| 免费观看精品视频网站| 有码 亚洲区| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 国产精品一及| 国产成人a区在线观看| 国产精品免费一区二区三区在线| 精品久久久久久久久久免费视频| 国产精品人妻久久久影院| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 中文字幕制服av| 深夜a级毛片| 美女高潮的动态| 最好的美女福利视频网| 国产单亲对白刺激| 国产三级在线视频| 久久草成人影院| 国产精品福利在线免费观看| 日本黄色片子视频| av国产免费在线观看| 国产69精品久久久久777片| 国产av在哪里看| 国产日本99.免费观看| av天堂在线播放| a级毛色黄片| 自拍偷自拍亚洲精品老妇| 热99re8久久精品国产| 男女啪啪激烈高潮av片| 青春草国产在线视频 | 国产真实乱freesex| 欧美精品一区二区大全| 非洲黑人性xxxx精品又粗又长| 又粗又爽又猛毛片免费看| 日韩 亚洲 欧美在线| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产| 午夜福利高清视频| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区| 国产精品一二三区在线看| 欧美日本亚洲视频在线播放| 欧美成人精品欧美一级黄| 成人三级黄色视频| 蜜桃久久精品国产亚洲av| 亚洲欧洲国产日韩| 国产乱人偷精品视频| 亚洲av男天堂| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 波多野结衣巨乳人妻| 国产一区二区三区在线臀色熟女| 国产探花极品一区二区| 天天躁日日操中文字幕| 国产老妇女一区| 男人的好看免费观看在线视频| 欧美三级亚洲精品| 亚洲成人久久爱视频| 欧美+亚洲+日韩+国产| 久久久久性生活片| 国产一区二区三区av在线 | 亚州av有码| 国产探花在线观看一区二区| 狂野欧美激情性xxxx在线观看| 亚洲丝袜综合中文字幕| 久久中文看片网| 亚洲国产色片| 日本欧美国产在线视频| 精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 日韩 亚洲 欧美在线| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 国产色婷婷99| 久久精品国产亚洲av香蕉五月| 午夜福利成人在线免费观看| 22中文网久久字幕| 丝袜美腿在线中文| 亚洲,欧美,日韩| 欧美性猛交黑人性爽| 成人一区二区视频在线观看| 久久中文看片网| 欧美成人精品欧美一级黄| 大香蕉久久网| 国产成人精品婷婷| 亚洲欧美精品综合久久99| 亚洲精品亚洲一区二区| 高清毛片免费观看视频网站| 亚洲国产精品合色在线| 中文字幕熟女人妻在线| 免费观看精品视频网站| 日日撸夜夜添| 成熟少妇高潮喷水视频| 国产av在哪里看| 亚洲国产精品成人久久小说 | 久久久精品94久久精品| 观看免费一级毛片| 少妇被粗大猛烈的视频| 中文字幕精品亚洲无线码一区| 亚洲欧美精品自产自拍| 国产精品久久视频播放| 黄色配什么色好看| 国产一区二区在线av高清观看| 亚洲国产精品国产精品| 久久国产乱子免费精品| 在线播放国产精品三级| 99在线人妻在线中文字幕| 97超碰精品成人国产| 日本av手机在线免费观看| 欧美不卡视频在线免费观看| 99久国产av精品国产电影| 欧美+亚洲+日韩+国产| 观看免费一级毛片| 一区二区三区免费毛片| 久久精品91蜜桃| 亚洲国产精品成人久久小说 | 九九爱精品视频在线观看| 久久久成人免费电影| av黄色大香蕉| АⅤ资源中文在线天堂| 亚洲性久久影院| 久久韩国三级中文字幕| 国产免费一级a男人的天堂| 热99re8久久精品国产| 91av网一区二区| 尤物成人国产欧美一区二区三区| 精品久久久久久久久av| 国产免费男女视频| 高清毛片免费观看视频网站| 国产三级中文精品| 如何舔出高潮| 深夜精品福利| 亚洲无线观看免费| 国模一区二区三区四区视频| ponron亚洲| 一级av片app| 91麻豆精品激情在线观看国产| av专区在线播放| 偷拍熟女少妇极品色| 国产精品1区2区在线观看.| 1024手机看黄色片| 此物有八面人人有两片| 精品日产1卡2卡| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那| 观看美女的网站| 在线观看免费视频日本深夜| 午夜激情福利司机影院| 国产高清激情床上av| 午夜精品一区二区三区免费看| or卡值多少钱| av福利片在线观看| 国产人妻一区二区三区在| 村上凉子中文字幕在线| 高清在线视频一区二区三区 | 嫩草影院新地址| 亚洲成人av在线免费| av女优亚洲男人天堂| 日产精品乱码卡一卡2卡三| 九九爱精品视频在线观看| 国产亚洲91精品色在线| 日韩国内少妇激情av| 一本久久精品| 只有这里有精品99| 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 国产毛片a区久久久久| 在现免费观看毛片| 亚洲精品日韩av片在线观看| 国产日韩欧美在线精品| 观看美女的网站| 成人特级黄色片久久久久久久| 久久久久性生活片| 亚洲av男天堂| 亚洲国产日韩欧美精品在线观看| videossex国产| 日韩av不卡免费在线播放| 三级毛片av免费| 99国产极品粉嫩在线观看| 久久久久性生活片| 国产伦在线观看视频一区| 国产成人午夜福利电影在线观看| 久久综合国产亚洲精品| 亚洲国产精品合色在线| 卡戴珊不雅视频在线播放| 亚洲色图av天堂| 亚洲七黄色美女视频| 网址你懂的国产日韩在线| 亚洲精品国产av成人精品| 日韩欧美 国产精品| 在线免费观看不下载黄p国产| 欧美日韩在线观看h| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 精品人妻视频免费看| 国产片特级美女逼逼视频| 国产三级中文精品| 亚洲aⅴ乱码一区二区在线播放| 九草在线视频观看| 69av精品久久久久久| 熟妇人妻久久中文字幕3abv| 国产高清有码在线观看视频| 国产毛片a区久久久久| 亚洲五月天丁香| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 国内精品美女久久久久久| 亚洲国产色片| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 看非洲黑人一级黄片| 美女被艹到高潮喷水动态| 一个人观看的视频www高清免费观看| 午夜福利高清视频| 色尼玛亚洲综合影院| 色综合站精品国产| 国产精品1区2区在线观看.| 少妇熟女欧美另类| 丰满人妻一区二区三区视频av| 麻豆成人av视频| 99久国产av精品国产电影| av免费观看日本| 一级毛片aaaaaa免费看小| 久久6这里有精品| 在线观看av片永久免费下载| 亚洲不卡免费看| 亚洲精品国产成人久久av| 女同久久另类99精品国产91| 免费看av在线观看网站| 天堂√8在线中文| 白带黄色成豆腐渣| 久久精品国产亚洲网站| 日韩三级伦理在线观看| 久久久久国产网址| 可以在线观看的亚洲视频| 日韩欧美一区二区三区在线观看| 国产精品人妻久久久久久| 欧美zozozo另类| 欧美区成人在线视频| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 午夜激情欧美在线| 欧美精品一区二区大全| 国产美女午夜福利| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 亚洲国产精品合色在线| 免费观看的影片在线观看| 日韩欧美 国产精品| 久久精品久久久久久久性| 男人舔女人下体高潮全视频| 国产 一区 欧美 日韩| 舔av片在线| 色综合色国产| 成人无遮挡网站| 99久久久亚洲精品蜜臀av| 99热全是精品| 美女大奶头视频| 亚洲第一电影网av| 日韩欧美三级三区| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 变态另类成人亚洲欧美熟女| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 日本三级黄在线观看| 国产国拍精品亚洲av在线观看| 91精品一卡2卡3卡4卡| 毛片一级片免费看久久久久| 国产极品精品免费视频能看的| 中文字幕精品亚洲无线码一区| 精品久久久久久久久亚洲| av在线老鸭窝| 久久久久久大精品| 成年版毛片免费区| 男人和女人高潮做爰伦理| 自拍偷自拍亚洲精品老妇| 日本三级黄在线观看|