吳 波,王 輝,劉曉珠
(華南理工大學(xué)亞熱帶建筑科學(xué)國家重點(diǎn)實(shí)驗(yàn)室,廣東廣州 510640)
鋼管混凝土柱承載力高,延性好,施工簡便[1],國內(nèi)外學(xué)者對(duì)其開展了大量研究[2-7],已廣泛應(yīng)用于高層建筑和大跨橋梁[8],并形成了一系列設(shè)計(jì)標(biāo)準(zhǔn)[9-12]。鋼管外露導(dǎo)致該類柱的耐火性能通常較差,為此前人提出了各種增強(qiáng)措施(如在鋼管內(nèi)部設(shè)置雙鋼管[13]、縱向加勁肋[14]、工字型鋼[15]、鋼筋籠[16]等),以求有效提升鋼管混凝土柱的耐火性能。然而這些措施幾乎都是在已有鋼管基礎(chǔ)上額外增加鋼材用量,不但造價(jià)增加,其中一些措施還會(huì)造成梁-柱節(jié)點(diǎn)區(qū)的復(fù)雜程度與施工難度加大。為解決此問題,文獻(xiàn)[17]中提出了內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱,即在總用鋼量保持不變的前提下,將鋼管壁適當(dāng)減薄并在管內(nèi)設(shè)置Q690高強(qiáng)角鋼,且鋼管與角鋼之間預(yù)留一定凈距。對(duì)該類柱開展的明火試驗(yàn)和軸壓試驗(yàn)表明,總用鋼量基本相同時(shí),內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱比傳統(tǒng)無內(nèi)置角鋼柱的耐火極限提升幅度超過200%,且軸壓承載力與延性系數(shù)也有所提高。鋼管減薄是否會(huì)對(duì)該類柱的偏壓性能產(chǎn)生明顯不利影響尚待進(jìn)一步明確。若果真如此,必然會(huì)對(duì)該類柱的工程應(yīng)用產(chǎn)生限制。
因此,本文開展了8根內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱和2根傳統(tǒng)方鋼管混凝土柱的偏壓試驗(yàn),考察了主要參數(shù)對(duì)前者偏壓性能的影響規(guī)律,提出了改進(jìn)的偏壓承載力實(shí)用計(jì)算方法。
本試驗(yàn)共設(shè)計(jì)了10個(gè)試件,其中包括8根內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱及2根傳統(tǒng)方鋼管混凝土柱,各試件的總用鋼量基本相同。所有試件的高度均為1 120 mm,加上頂板、底板及加載時(shí)所用鉸支座之后,上、下鉸支點(diǎn)間的距離為1 440 mm。試件外邊長為240 mm,高寬比為6,屬于中長柱[18]。角鋼肢長有25 mm和45 mm兩種類型,肢厚和高度都只有一種類型,分別為5 mm和1 130 mm。為方便角鋼上應(yīng)變片引線的導(dǎo)出,所有內(nèi)置角鋼試件均需要在頂板上鉆孔開槽,槽深度為10 mm。此外,為了使角鋼順利伸出進(jìn)而與頂板牢固焊接,在頂板上角鋼對(duì)應(yīng)位置處設(shè)置通縫,縫寬度為10 mm,大于角鋼厚度。圖1為典型試件示意圖。
試驗(yàn)參數(shù)包括:①鋼管壁厚t為4,5,6 mm;②取鋼率γ(角鋼質(zhì)量與鋼管+角鋼總質(zhì)量之比)為16.3%,30.7%;③角鋼到鋼管內(nèi)壁凈距S為10,30 mm;④試件偏心距e為60,120 mm。
試件編號(hào)及具體參數(shù)見表1,其中T6-E60,T6-E120為傳統(tǒng)方鋼管混凝土柱,B和L分別為方鋼管的外邊長與高度,w和t1分別為角鋼的肢長和肢厚。
鋼管和角鋼分別采用Q345和Q690鋼材,其力學(xué)性能指標(biāo)按照《金屬材料拉伸試驗(yàn)第1部分:室溫試驗(yàn)方法》[19]測(cè)取,具體見表2和圖2。由于拉伸試樣上粘貼的應(yīng)變片的測(cè)量范圍有限,圖2只給出了Q690鋼材的部分應(yīng)力-應(yīng)變曲線。名義壁厚為6,5,4 mm的方鋼管,其實(shí)測(cè)壁厚分別為5.84,4.86,3.88 mm; 名義肢厚為5 mm的角鋼,其實(shí)測(cè)肢厚為4.94 mm。
圖3為試件的制備過程。首先在底板上劃線來定位角鋼和鋼管,隨后將4根角鋼和鋼管依次焊接于底板上。所有試件均采用立式澆筑,混凝土從頂部倒入,同時(shí)用振搗棒將其振搗密實(shí)。養(yǎng)護(hù)完成后,用高強(qiáng)石膏對(duì)所有試件上表面進(jìn)行找平,并把角鋼及鋼管依次與頂板焊接,同時(shí)在試件上、下兩端焊接三角形加勁肋,加勁肋的直角邊為110 mm,厚度為8 mm。本文試驗(yàn)采用C30商品混凝土,其配合比如表3所示。
圖1 試件T4-R31-S10-E60示意圖(單位:mm)
試件澆筑時(shí),用同批次商品混凝土澆筑一定數(shù)量邊長為150 mm的立方體試塊和φ150×300的圓柱體試塊。試驗(yàn)前一天,依照GB/T 50081—2019規(guī)范[20]測(cè)得的混凝土立方體抗壓強(qiáng)度fcu和混凝土軸心抗壓強(qiáng)度fc分別為49.6 MPa和40.2 MPa,彈性模量為33.4 GPa。
圖4所示為試件的變形和應(yīng)變測(cè)量方案。試件豎向變形由上加載板處沿豎向設(shè)置的1個(gè)位移傳感器來測(cè)取。按照相同方式在試件頂板處布置2個(gè)位移傳感器,分別測(cè)取試件受拉側(cè)、受壓側(cè)豎向變形,利用所測(cè)數(shù)據(jù)可推算出上鉸支點(diǎn)的豎向變形,對(duì)比結(jié)果表明該處豎向變形和上加載板的豎向變形基本相同。另外,沿試件高度等間距水平設(shè)置了7個(gè)位移傳感器,以測(cè)量試件的側(cè)向撓度。
表1 試件具體參數(shù)Tab.1 Details of Specimens
表2 鋼材力學(xué)性能Tab.2 Mechanical Properties of Steel
圖2 Q690鋼材的實(shí)測(cè)應(yīng)力-應(yīng)變曲線
圖3 試件制備
在方鋼管半高處的受壓與受拉側(cè)分別設(shè)有3對(duì)縱、橫向應(yīng)變片,另有5對(duì)縱、橫向應(yīng)變片在鋼管半高處沿偏心方向一側(cè)間隔60 mm布置。對(duì)每根高強(qiáng)角鋼,在其半高處肢長中心點(diǎn)的外側(cè)表面布置1對(duì)縱、橫向應(yīng)變片。
試驗(yàn)在華南理工大學(xué)結(jié)構(gòu)實(shí)驗(yàn)室的1 500 t長柱壓力機(jī)上進(jìn)行,試件上、下兩端通過鉸支座與壓力機(jī)相連。
本文試驗(yàn)中加載方式選用位移控制方式,峰值荷載前后加載速率分別設(shè)置為0.003 mm·s-1和0.005 mm·s-1。為防止試件側(cè)向撓度過大而引發(fā)安全事故,當(dāng)荷載下降至80%峰值荷載或試件豎向變形大于35 mm時(shí),終止試驗(yàn)[21]。
表3 混凝土的配合比Tab.3 Mix Proportion of Concrete
圖4 加載裝置和測(cè)點(diǎn)布置
圖5給出了各試件的破壞形態(tài)。從圖5可以看出,與傳統(tǒng)方鋼管混凝土試件(1號(hào))相比,2~5號(hào)試件的破壞形態(tài)無明顯差異,均呈現(xiàn)出受壓區(qū)鋼管局部鼓曲的破壞形態(tài)。這說明偏心距相同時(shí),試件是否內(nèi)置角鋼以及取鋼率、角鋼至鋼管內(nèi)壁凈距變化均不會(huì)對(duì)試件的破壞形態(tài)產(chǎn)生趨勢(shì)性影響。
圖5 試件破壞形態(tài)
試驗(yàn)進(jìn)行過程中,各試件鋼管都未出現(xiàn)焊縫撕裂。峰值荷載前試件無顯著變化,受壓側(cè)鋼管肉眼可見的局部屈曲基本都出現(xiàn)在峰值荷載附近。
各試件的實(shí)測(cè)荷載-豎向變形曲線及荷載-柱半高處側(cè)向撓度曲線分別如圖6,7所示。從圖6,7可以看出:
圖6 實(shí)測(cè)荷載-豎向變形曲線
圖7 荷載-柱半高處側(cè)向撓度曲線
(1)其余參數(shù)保持不變時(shí),取鋼率從16.3%變化到30.7%對(duì)試件偏壓性能的影響較為有限。這是因?yàn)楸M管外部鋼管鋼材用量的減少一定程度上會(huì)削弱試件的偏壓性能,但內(nèi)部高強(qiáng)角鋼用鋼量的提升(角鋼在鋼管混凝土的約束下不容易發(fā)生屈曲)又對(duì)試件的偏壓性能有所改善。試件受到上述2種因素的共同影響,因此總體上偏壓性能變化有限。
(2)其余參數(shù)保持不變時(shí),角鋼到鋼管內(nèi)壁凈距從30 mm減為10 mm,能夠提升相應(yīng)試件的偏壓性能。這是因?yàn)樵搩艟嘞鄬?duì)較小時(shí),角鋼到試件中性軸的距離變大,角鋼的抗彎貢獻(xiàn)隨之增大,進(jìn)而提升試件的偏壓性能。
(3)偏心距從60 mm增至120 mm會(huì)導(dǎo)致試件的剛度及承載能力大幅降低。
表4列出了所有試件的偏壓承載力、屈服荷載、等效剛度和延性系數(shù)。表4中除偏壓承載力外,其余三者的值都是基于試件的荷載-豎向變形曲線來確定的。屈服荷載的確定方法為[22]:延長原點(diǎn)和75%峰值荷載點(diǎn)的連線,并與經(jīng)過峰值荷載點(diǎn)的水平線交于一點(diǎn)F,過點(diǎn)F作垂線,該垂線與試件實(shí)測(cè)荷載-豎向變形曲線的交點(diǎn)定義為屈服點(diǎn),屈服點(diǎn)所對(duì)應(yīng)的縱坐標(biāo)視為屈服荷載值。等效剛度指原點(diǎn)與75%峰值荷載點(diǎn)之間連線的割線剛度[23]。延性系數(shù)μ=Δ0.85,2/Δ0.85,1,Δ0.85,1和Δ0.85,2分別為峰值荷載前后2個(gè)85%峰值荷載點(diǎn)相對(duì)應(yīng)的豎向變形。從表4可以看出:
(1)相比于傳統(tǒng)無內(nèi)置角鋼的鋼管混凝土試件,在總用鋼量基本不變的情況下,當(dāng)角鋼到鋼管內(nèi)壁凈距為10 mm時(shí),試件的偏壓承載力提升2.7%~14.9%;當(dāng)該凈距為30 mm時(shí),試件的偏壓承載力均降低,且降幅隨取鋼率增加近似呈比例增大(當(dāng)偏心距為60 mm時(shí),取鋼率16.3%和30.7%所對(duì)應(yīng)的承載力降幅分別為2.7%和5.2%;當(dāng)偏心距為120 mm時(shí),取鋼率16.3%和30.7%所對(duì)應(yīng)的承載力降幅分別為7.3%和12.9%)。表5給出了試件偏壓承載力提升幅度為0%時(shí)的假想工況,假想工況所對(duì)應(yīng)的參數(shù)取值(取鋼率、角鋼到鋼管內(nèi)壁凈距)是基于各試件的實(shí)測(cè)提升幅度,采用線性插值得到的。對(duì)表5所示假想工況利用最小二乘法進(jìn)行擬合(取鋼率-36.6%不切實(shí)際,在計(jì)算過程中已被剔除),得到偏壓承載力提升幅度為0%時(shí)所對(duì)應(yīng)的參數(shù)界線(圖8)。圖8中網(wǎng)格區(qū)域表示承載力有所提高,該區(qū)域以外代表承載力降低。實(shí)際工程中,通過合理選用取鋼率及角鋼到鋼管內(nèi)壁凈距,可使內(nèi)置高強(qiáng)角鋼試件的偏壓承載力與傳統(tǒng)無內(nèi)置角鋼試件近似相等。
表4 試件的偏壓承載力、屈服荷載、等效剛度和延性系數(shù)Tab.4 Eccentric Load Bearing Capacity, Yielding Load, Equivalent Stiffness, and Ductility Coefficient of Specimens
表5 偏壓承載力提升幅度為0%時(shí)所對(duì)應(yīng)的假想工況Tab.5 Hypothetical Situations Related to Increase of Eccentric Load Bearing Capacity Being 0%
圖8 偏壓承載能力的提升區(qū)域預(yù)測(cè)
(2)與取鋼率相比,角鋼到鋼管內(nèi)壁凈距對(duì)試件偏壓承載力的影響更為顯著。這是因?yàn)楹笳叩淖兓瘯?huì)改變角鋼到試件中性軸的距離,進(jìn)而對(duì)試件的截面抗彎能力產(chǎn)生影響;取鋼率增加和外部鋼管鋼材用量降低對(duì)偏壓性能產(chǎn)生的不利影響可以通過受拉區(qū)及受壓區(qū)面積的適當(dāng)擴(kuò)大得到一定彌補(bǔ)。
(3)對(duì)于2種偏心距,都有部分內(nèi)置高強(qiáng)角鋼試件的偏壓承載力高于傳統(tǒng)無內(nèi)置角鋼試件。這是因?yàn)榭傆娩摿炕静蛔兊那闆r下,當(dāng)角鋼至鋼管內(nèi)壁凈距相對(duì)較小時(shí),盡管外圍鋼材減少,但可通過受拉區(qū)及受壓區(qū)面積的適當(dāng)擴(kuò)大而得到一定補(bǔ)償;另一方面,受壓區(qū)高強(qiáng)角鋼因受到鋼管混凝土的約束,其受壓屈曲得到緩解,也對(duì)受壓區(qū)鋼管屈曲所造成的負(fù)面效應(yīng)起到了一定對(duì)沖。
(4)內(nèi)置高強(qiáng)角鋼的鋼管混凝土試件屈服荷載與峰值荷載之比和傳統(tǒng)無內(nèi)置角鋼試件大致相當(dāng)。
(5)相比于傳統(tǒng)無內(nèi)置角鋼試件,內(nèi)置高強(qiáng)角鋼試件的等效剛度在±10%范圍內(nèi)波動(dòng)??傮w來看,取鋼率在16.3%~30.7%范圍內(nèi)變化及角鋼到鋼管內(nèi)壁凈距在10~30 mm范圍內(nèi)變化,都不會(huì)對(duì)試件的等效剛度產(chǎn)生顯著影響。
(6)相比于傳統(tǒng)無內(nèi)置角鋼試件,內(nèi)置高強(qiáng)角鋼試件的延性系數(shù)變化幅度在-10.1%~7.8%之間。由于試件的變形量通常具有較大隨機(jī)性,可近似認(rèn)為這2種試件的延性總體相當(dāng)。這是因?yàn)楸M管外圍鋼材用量減少會(huì)導(dǎo)致試件延性有一定程度的劣化,但內(nèi)部高強(qiáng)角鋼由于受到四周混凝土和鋼管的共同約束,其受壓屈曲得到明顯緩解,又對(duì)該弱化效應(yīng)帶來一定對(duì)沖。這2種因素的共同作用使得2類試件的延性總體上差別有限。
圖9給出了不同試件的荷載比-鋼管縱向應(yīng)變比曲線,其中荷載比指試件所受荷載與其峰值荷載之比,鋼管縱向應(yīng)變比為試件實(shí)測(cè)縱向應(yīng)變與鋼管鋼材的單軸屈服應(yīng)變之比。從圖9可以得到:①在偏心距保持不變的情況下,內(nèi)置高強(qiáng)角鋼試件的曲線上升段和傳統(tǒng)無內(nèi)置角鋼試件近乎一致;②當(dāng)試件偏心距為120 mm時(shí),其鋼材受拉屈服大多發(fā)生在峰值荷載附近;當(dāng)試件偏心距為60 mm時(shí),其鋼材受拉屈服均發(fā)生在峰值荷載之后。
圖9 荷載比-鋼管縱向應(yīng)變比曲線
圖10給出了不同荷載P水平下典型試件的橫向應(yīng)變沿截面高度的分布情況。由圖10可知:①加載到70%峰值荷載之前,試件橫向應(yīng)變沿截面高度近似呈線性分布,之后受壓區(qū)橫向應(yīng)變迅速增長,受拉區(qū)橫向應(yīng)變相對(duì)而言變化甚微;②達(dá)到峰值荷載時(shí),越靠近受壓區(qū)邊緣,橫向應(yīng)變?cè)酱?,說明鋼管對(duì)混凝土的約束作用越強(qiáng),所以在計(jì)算分析時(shí)有必要將該約束作用的空間分布予以適當(dāng)考慮。
圖10 橫向應(yīng)變沿截面高度的分布
圖11給出了典型試件的角鋼Mises應(yīng)力-豎向變形曲線,其中角鋼Mises應(yīng)力由式(1)[24]計(jì)算得到,虛線代表峰值荷載時(shí)試件的豎向變形,即峰值變形。由圖11可知:①偏心距為60 mm的試件達(dá)到其峰值變形時(shí),受壓側(cè)角鋼的Mises應(yīng)力分別為756 MPa和851 MPa,已超過其屈服強(qiáng)度(735 MPa);
圖11 角鋼Mises應(yīng)力-豎向變形曲線
②偏心距為120 mm的試件達(dá)到其峰值變形時(shí),受壓側(cè)與受拉側(cè)角鋼的Mises應(yīng)力均已達(dá)到屈服強(qiáng)度。這說明本文試件達(dá)到偏壓承載力時(shí),受拉區(qū)或受壓區(qū)高強(qiáng)角鋼的強(qiáng)度已充分發(fā)揮。
(1)
式中:σMises為角鋼Mises應(yīng)力;E為角鋼的鋼材彈性模量;εx和εy分別為角鋼的橫向和豎向?qū)崪y(cè)應(yīng)變。
在前人研究成果的基礎(chǔ)上,下面對(duì)內(nèi)置角鋼的方鋼管混凝土柱偏壓承載力計(jì)算進(jìn)行初步探討。共考慮3種計(jì)算方法。
計(jì)算方法1。按照極限平衡理論的疊加原則,把柱截面分為方鋼管、混凝土和角鋼3部分,同時(shí)考慮外側(cè)鋼管對(duì)混凝土的約束效應(yīng)及鋼管橫向受拉導(dǎo)致的軸向承載力折減,經(jīng)過簡化得到相應(yīng)短柱的軸壓承載力計(jì)算公式[25]。在此基礎(chǔ)上,從大量試驗(yàn)數(shù)據(jù)中得出長細(xì)比對(duì)極限承載力的影響系數(shù)φ1的經(jīng)驗(yàn)計(jì)算公式,再近似利用雙曲線描述偏心距對(duì)柱偏壓承載力的影響,最終得到偏壓承載力計(jì)算公式[18]
Nu=φlφeN0
(2)
N0=Acfc+1.2Atfyt+Asfys
(3)
(4)
(5)
式中:Nu為偏壓承載力;N0為軸壓承載力;φl和φe分別為考慮長細(xì)比和偏心率影響的折減系數(shù);At,Ac,As分別為方鋼管、核心混凝土及角鋼的橫截面面積;fys,fyt分別為內(nèi)部角鋼的屈服強(qiáng)度和方鋼管的屈服強(qiáng)度;L0為柱的計(jì)算長度。
計(jì)算方法2。通過考慮鋼管對(duì)混凝土的約束效應(yīng),對(duì)核心混凝土應(yīng)力-應(yīng)變關(guān)系中的下降段參數(shù)及峰值應(yīng)變進(jìn)行了修正,再對(duì)有限元計(jì)算結(jié)果進(jìn)行回歸分析,得到軸壓承載力實(shí)用計(jì)算公式[26]。在此基礎(chǔ)上,考慮試件截面在偏壓作用下的塑性發(fā)展?fàn)顟B(tài),采用條帶法迭代求出偏壓承載力和N-M(軸力-彎矩)關(guān)系,再利用三折線近似描述該N-M關(guān)系,最終提出偏壓承載力的實(shí)用計(jì)算方法。此方法相對(duì)繁瑣,詳細(xì)過程見文獻(xiàn)[26],在此不再贅述。需指出的是,本文計(jì)算時(shí)該文獻(xiàn)所提鋼骨已被替換為高強(qiáng)角鋼。
計(jì)算方法3。將方法2的軸壓承載力按式(6)進(jìn)行計(jì)算[27]。方法2在確定截面塑性發(fā)展系數(shù)時(shí),盡管套箍系數(shù)和配骨指標(biāo)已體現(xiàn)了鋼材截面面積的影響,但對(duì)鋼管與鋼骨(本文高強(qiáng)角鋼)之間的空間位置考慮不足。為此,本文借鑒文獻(xiàn)[26],引入系數(shù)γ1對(duì)方法2的截面塑性發(fā)展系數(shù)進(jìn)行修正,并利用回歸分析得到γ1的計(jì)算公式[式(7)]。除上述變動(dòng)外,方法3的計(jì)算過程與方法2相同。
N0=αAcfc+βAtfyt+Asfys
(6)
(7)
(8)
(9)
(10)
式中:α和β分別體現(xiàn)方鋼管對(duì)核心混凝土的約束作用和鋼管橫向受拉對(duì)軸向承載力的削弱作用;ζ為截面塑性發(fā)展系數(shù);It,Is,Ic分別為鋼管、角鋼和混凝土的截面慣性矩;θ和ρ分別為套箍系數(shù)和配骨指標(biāo),按文獻(xiàn)[25]計(jì)算。
運(yùn)用上述3種方法,分別對(duì)本文試件的偏壓承載力進(jìn)行計(jì)算。表6給出了偏壓承載力計(jì)算值與試驗(yàn)值的對(duì)比,其中Nu,1,Nu,2,Nu,3分別代表方法1、方法2和方法3偏壓承載力的計(jì)算結(jié)果。由表6可知:采用方法1所得計(jì)算值與試驗(yàn)值之間的相對(duì)誤差較大,達(dá)到-52.1%~-37.5%;方法2的精度比方法1有一定改善,相對(duì)誤差縮減至-29.4%~-6.4%;相比于前2種方法,本文改進(jìn)提出的方法3精度有明顯提升,相對(duì)誤差為-11.3%~11.3%。
表6 偏壓承載力計(jì)算值與試驗(yàn)值的對(duì)比Tab.6 Comparison Between Calculated and Measured Values of Eccentric Load Bearing Capacity
(1)相比于傳統(tǒng)無內(nèi)置角鋼的方鋼管混凝土柱,當(dāng)總用鋼量基本保持不變且角鋼到鋼管內(nèi)壁凈距相對(duì)較小時(shí),內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱偏壓承載力有一定提升,而當(dāng)該凈距相對(duì)較大時(shí),后者的偏壓承載力會(huì)有所降低。實(shí)際工程中,只要合理確定取鋼率及角鋼到鋼管內(nèi)壁凈距,可使2類柱的偏壓承載力總體相當(dāng)。
(2)相比于取鋼率,角鋼到鋼管內(nèi)壁凈距對(duì)內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱偏壓承載力的影響更為顯著。
(3)總用鋼量相同時(shí),相比于傳統(tǒng)無內(nèi)置角鋼試件,內(nèi)置高強(qiáng)角鋼試件的等效剛度及延性總體上改變有限。適當(dāng)減薄鋼管并在管內(nèi)設(shè)置高強(qiáng)角鋼不會(huì)對(duì)柱的偏壓性能造成明顯不利影響。
(4)對(duì)于內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱,在偏壓峰值荷載時(shí),受壓區(qū)或(和)受拉區(qū)的高強(qiáng)角鋼已充分發(fā)揮其強(qiáng)度。
(5)總體來看,本文提出的改進(jìn)內(nèi)置高強(qiáng)角鋼的方鋼管混凝土柱偏壓承載力實(shí)用計(jì)算方法(方法3)具有較好精度。