• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle

    2021-04-06 10:24:42YaoLu
    CHINESE JOURNAL OF AERONAUTICS 2021年2期

    Yao Lu

    a Beijing Aerospace Automatic Control Institute, Beijing 100854, China

    b National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing 100854, China

    KEYWORDS Anti-saturation;Backstepping;Disturbance observer;Flight control;Hypersonic flight vehicle;State estimation

    Abstract In this paper a nonlinear control method is proposed for the tracking control of hypersonic flight vehicles.The designed control laws do not utilize the measured flight path angle due to its inferior accuracy in practical engineering.For this,an estimated flight path angle is designed via the measurements of the altitude and velocity.A tracking differentiator is designed for constructing nonlinear disturbance observer which is used to estimate the model uncertainties including the parameter indeterminacies and external disturbances in the channels of velocity and pitch rate. A robust high-order differentiator is introduced to avoid the employment of the measured flight path angle and estimate the lumped disturbance in dynamics of flight path angle.Meanwhile,the possible saturation of the control inputs is considered and compensated by the auxiliary states.The boundness of closed-loop signals is proved through the Lyapunov theory. Comparative simulations are carried out and the results demonstrate the effectiveness of the proposed method.

    1. Introduction

    The Hypersonic Flight Vehicles (HFVs) have attracted many scholars since they appeared due to their high civilian and military values.1–4Compared to the conventional flight vehicles,the HFVs have some salient characteristics such as high nonlinearity, strong coupling and complex uncertainty, which bring great challenges to their flight controller designs. Therefore,for simplification,most of existing investigations into this topic had only concentrated on the longitudinal channel.

    Due to the high nonlinearity of the longitudinal model of HFV, many scholars have designed multifarious flight controllers based on nonlinear methods for HFV.5–12Because the longitudinal model of HFV can be transformed into a strictfeedback form under some reasonable assumptions, the backstepping method is widely introduced to construct the flight controller of HFV. Ref. 13 presented an adaptive robust backstepping controller for the multi-input multi-output attitude control of a near-space hypersonic vehicle. This method combined dynamic surface control used to handle the problem of‘‘explosion of complexity”and radial basis function used to approximate the unknown compound disturbances. Ref. 14 proposed an online recorded data-based composite neural control method using backstepping framework and applied it to hypersonic flight control.This method constructed a prediction error signal to provide additional correction information for neural network weight update, which enhances the learning ability of neural network. A robust adaptive backstepping method based on neural approximation was presented in Ref.15 This method utilized neural networks to tackle unknown non-affine dynamics existed in the longitudinal dynamics of AHVs. An adaptive fuzzy fault-tolerant controller was proposed in Ref. 16 for HFVs including unknown inertial and aerodynamic parameters.This method designed a robust adaptive distributive law to tackle unknown faults. Ref. 17 investigated the finite-time tracking control problem of the HFV and presented a barrier Lyapunov function based controller.This method designed an adaptive scheme to guarantee the finite-time convergent property of HFV dynamics. Besides the flight stability, from a practical viewpoint, some scholars considered the saturation of control inputs further. An adaptive backstepping controller was developed to solve the control problem of HFVs subject to input saturation in Ref. 18 This method employed a modified smooth inverse of the deadzone to compensate for the dead-zone effects and reduce the computational burden.Ref.19 proposed an adaptive nonlinear fault-tolerant control scheme based on backstepping for tackling unknown time-varying actuator faults and control input constraints. This method introduced some smooth functions and a linear time-varying model and estimated the bounds of the time-varying uncertainties to achieve the desired objective.A disturbance observer-based dynamic surface control scheme was presented in Ref. 20 for a flexible HFV under input constraint and aerodynamic uncertainty. This method employed some additional systems to tackle input constraints. Ref. 21 proposed an effective Nussbaum-based control method for addressing the control problem of the HFVs subject to input constraints. This method designed some hyperbolic tangent functions to approximate the non-smooth saturation functions.

    The above-mentioned existing methods acquired better control performances in theory. However, for applying them in engineering, some practical problems should be considered.Firstly,the calculations of on-line control commands need the data of flight states which can be obtained via miscellaneous onboard sensors, like pitot, altimeter, inertial measurement unit and so on. Generally, most required flight states can be measured accurately in practical engineering except the flight path angle and angle of attack. This is because hypersonic flight will cause strong influence of aerodynamic heating,which degrades the performance of the air data sensor severely. Utilizing the measured flight path angle or angle of attack to construct the flight controller will cause larger tracking errors, or even instability.22For HFVs, the flush air data sensing system is a possible solution to the measurements of the flight path angle and angle of attack. However, it needs arrange many pressure ports and sensors on the fuselage and increases the costs evidently.23Secondly,besides the uncertainties of the general and aerodynamic parameters of the established model, some unknown external disturbances also influence the dynamics of HFV. For these lumped uncertainties, many scholars proposed many anti-disturbance control methods, such as Disturbance Observer-Based Control(DOBC).24,25Active Disturbance Rejection Control(ADRC).26,27Elegant Anti-Disturbance Control (EADC)28,29and so on, for tackling them. In the study of the controller designs of HFVs,many scholars usually utilized DOBC to estimate the lumped uncertainties and compensate them in control laws.18,20,21,30,31However, in most cases, the disturbance observers were designed under the assumption that the flight state can be obtained accurately and utilized directly. Therefore, if the measured flight path angle is prohibited in controller design, the design of disturbance observer in flight path angle channel will become a difficult problem.Moreover,the possible saturation of control inputs need be considered because it is likely to influence the flight stability.

    The motivation of this paper is to propose an engineering oriented flight controller for HFV.For achieving this,the factors including the avoidance of measured angle of attack flight path angle, external disturbances and possible saturation of control inputs are considered. An estimated flight path angle is constructed via the assist of a high-order differentiator for avoiding the use of unreliable measured value. Two nonlinear disturbance observers are designed based on tracking differentiator to estimate the lumped disturbances and derivative of velocity signal. Some compensative variables are designed to ensure the flight stability when the saturation of control inputs occurs and the saturation time is controlled via appropriate choices of parameters. The stability of the closed-loop system is authenticated via Lyapunov theory. Finally, some contrastive simulative experiments are presented to verify the effectiveness of the proposed method. The main contributions of this paper include three points: (A) Only the flight states which are able to be measured precisely are employed to construct the flight controller, which makes the proposed controller more suitable for engineering application. (B)Avoiding the use of flight path angle, a novel method is proposed for estimating the lumped disturbance in flight path angle channel. (C) The proposed controller is able to ensure the flight stability even if the control inputs reach saturation.

    The remainder of this paper is organized as follows. The longitudinal dynamics of HFV is stated in the next section.Then, the nonlinear flight controller is developed based on backstepping method. The stability analysis of the closedloop system is performed and the comparative simulations are carried out for verifying the effectiveness of the proposed method. Some conclusions are given in the end.

    2. Longitudinal dynamics of HFV

    Without the consideration of flexible states, the longitudinal dynamics of HFV can be formulated as follows:

    3. Controller design

    Table 1 Ranges of some states and control inputs.32

    3.1. Controller design of velocity subsystem

    Fig. 1 Structure of the developed control strategy.

    where

    3.2. Controller design of altitude subsystem

    Observing the Eqs.(9)and(36)it can be found that the estimates of the first and second derivatives of altitude are required. This can be achieved via the following robust highorder differentiator35:

    4. Stability analysis

    5. Simulations

    In this section,a numerical fight simulation of HFV is made to verify the effectiveness of the developed control method. The initial flight condition is chosen as:

    Fig. 2 Three sub-signals for building the velocity reference.

    Table 2 Control parameters for simulation.

    Fig. 3 Tracking curves of velocity and altitude.

    Fig. 4 Tracking errors of velocity and altitude.

    Fig. 5 Curves of control inputs.

    Fig. 6 Curves of other flight states under proposed method.

    Fig. 7 Curves of flight path angle and estimated error μγ under proposed method.

    In order to further show the advantage of the proposed control method, the existing backstepping-based and disturbance-observer-based control method employing measured flight path angle presented in Ref.18 is introduced as the contrastive method. The control parameters of the proposed and contrastive methods are shown in Table 2.

    Table 3 Settings of ka1 andkV.

    Fig.9 Tracking curves of velocity error and control inputs fuelto-air ratio.

    For simulating the measured error of the flight path angle γ,we add a constant 0.005°to its actual value and use it as feedback. Meanwhile, for better verification, two cases that the measured error of the flight path angle exists and does not exist in the closed-loop system are considered when employing the contrastive method. The case in which the measured error of the flight path angle does not exist in the closed-loop system is labeled ‘‘Mode 1”and the other one is labeled ‘‘Mode 2”.The simulation results are illustrated in Figs. 3–8.zero, there also exists a difference caused by measured error between the actual flight path angle and γcmd.Due to the avoidance of the measured flight path angle, this practical problem does not influence the control performance of the proposed method. Fig. 6 illustrates the other flight states under the proposed method. It can be observed that the flight states are stable even though the saturation of control inputs occurs.Fig. 7 illustrates the curves of real and estimated flight path angles γ,^γ and the estimated error μγunder the proposed method.It can be observed that the estimated error μγis small.This means the proposed strategy for estimation of the flight path angle utilizing the robust high-order differentiator is effective. Moreover, compared to the altitude tracking error under the mode 2 illustrated in Fig. 4, it can be observed that the estimated error μγis convergent when the altitude is smooth but the measured error of the flight path angle always exists in the flight process. Fig. 8 illustrates the estimated values and errors of the three lumped disturbances under the proposed method. It can be observed that the proposed method acquires better effects on the estimations of the lumped disturbances. The estimated errors are adjustive when the flight states turn sharply and they are balanced when the flight states change smoothly. This is because the NDOs utilized the flight states to calculate their inner variables and they are sensitive to the flight states (see Table 3).

    Fig. 8 Estimated values and errors of lumped disturbances under proposed method.

    Fig. 10 Local images of tracking curves of velocity and control inputs fuel-to-air ratio.

    Next, the effectiveness of the anti-saturation strategy is investigated. The theoretical analysis is given in Remark 2.The former experiment shows the result under ka1kVlabeled by Case 3,are studied.The specific settings of ka1and kVare given as follows. The other parameters are chosen from Table 2.

    The simulation result is illustrated as follows.

    Fig.9 illustrates the tracking curves of velocity and control inputs fuel-to-air ratio and Fig. 10 illustrates their local images. It can be observed that Case 1 acquires shorter duration of saturation and Case 3 acquires superior tracking error. This result verifies the aforementioned explanation in Remark 2.

    6. Conclusions

    (1) A backstepping-based control method for the tracking control of HFVs is developed with the considerations of the inaccuracy of measured flight path angle,external disturbances and saturation of control inputs.

    (2) An estimated flight path angle is designed based on a robust high-order differentiator and utilized to construct the control laws.Meanwhile,two auxiliary variables are introduced and added into the control laws for ensuring the stability of the closed-loop when the saturation of the control inputs occurs.

    (3) An NDO based on tracking differentiator is established to tackle the lumped uncertainties in the dynamics of velocity and pitch rate including model parameters uncertainties and external disturbances, and a method based on the robust high-order differentiator is designed to estimate the lumped uncertainty in the dynamics of flight path angle avoiding the use of the measured flight path angle.

    (4) The comparative simulation results show that the control performance of the proposed method is superior to the contrastive method when the measured error of flight path angle exists. Moreover, the proposed method can ensure the flight stability even though the parameters of the model are unknown and the saturation of the control inputs occurs. The proposed method is independent of the measuring accuracy of the flight path angle, which makes the proposed method more adaptive to engineering application.

    (5) Besides the imprecise measurement of flight path angle,sensor noise is also a common and practical factor influencing the performance of flight controller. This is the next phase of our work.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This study was supported by the National Natural Science Foundation of China (No. 61803357).

    久久天躁狠狠躁夜夜2o2o| 国产精品一区二区在线不卡| 亚洲自偷自拍图片 自拍| 午夜精品国产一区二区电影| 国产三级黄色录像| 久久久国产成人免费| 久久久久精品国产欧美久久久| 91在线观看av| 精品久久久久久,| 啦啦啦 在线观看视频| 1024视频免费在线观看| 日本在线视频免费播放| 免费在线观看视频国产中文字幕亚洲| 国产成人欧美| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片 | 国产av又大| 黄色丝袜av网址大全| 美女国产高潮福利片在线看| 精品人妻在线不人妻| 少妇裸体淫交视频免费看高清 | 亚洲无线在线观看| 女警被强在线播放| 国产成人免费无遮挡视频| 激情视频va一区二区三区| 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| 女人被狂操c到高潮| 精品国产国语对白av| 久久人人97超碰香蕉20202| 岛国视频午夜一区免费看| 中国美女看黄片| 午夜成年电影在线免费观看| 一边摸一边做爽爽视频免费| 久久婷婷人人爽人人干人人爱 | 一区二区三区激情视频| 国产一卡二卡三卡精品| 一边摸一边抽搐一进一小说| 久久久久精品国产欧美久久久| 国产精品98久久久久久宅男小说| 国产一卡二卡三卡精品| 国产亚洲av嫩草精品影院| 亚洲天堂国产精品一区在线| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| a级毛片在线看网站| 校园春色视频在线观看| 九色亚洲精品在线播放| 免费av毛片视频| 亚洲国产欧美一区二区综合| 黑人欧美特级aaaaaa片| 丝袜在线中文字幕| 国产精品九九99| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 1024香蕉在线观看| 十八禁人妻一区二区| 日韩欧美国产在线观看| 激情视频va一区二区三区| 99热只有精品国产| 麻豆国产av国片精品| 久久久久久久久免费视频了| 天天躁夜夜躁狠狠躁躁| 俄罗斯特黄特色一大片| 男女之事视频高清在线观看| 久久久国产成人精品二区| 91老司机精品| 国产1区2区3区精品| 性少妇av在线| 国产亚洲欧美精品永久| 国产精品一区二区在线不卡| 中文字幕高清在线视频| 亚洲国产精品合色在线| 老司机靠b影院| 涩涩av久久男人的天堂| 亚洲精品一区av在线观看| 日韩 欧美 亚洲 中文字幕| 午夜福利一区二区在线看| 欧美激情极品国产一区二区三区| 国产精品精品国产色婷婷| 日本 欧美在线| 午夜精品久久久久久毛片777| 午夜老司机福利片| 欧美另类亚洲清纯唯美| 亚洲国产欧美网| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久男人| 女人精品久久久久毛片| 岛国在线观看网站| 他把我摸到了高潮在线观看| av福利片在线| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 99riav亚洲国产免费| 国产成人av激情在线播放| 国产精品综合久久久久久久免费 | 伦理电影免费视频| 亚洲一区二区三区色噜噜| 十八禁网站免费在线| tocl精华| 一本综合久久免费| 国产高清激情床上av| 欧美成人一区二区免费高清观看 | 国产精品爽爽va在线观看网站 | √禁漫天堂资源中文www| 亚洲专区国产一区二区| 长腿黑丝高跟| 99久久国产精品久久久| 一本大道久久a久久精品| 丁香欧美五月| 男人的好看免费观看在线视频 | 高清在线国产一区| 免费在线观看影片大全网站| 久久久久久久午夜电影| 少妇的丰满在线观看| 国产精品国产高清国产av| 国产精品久久久久久精品电影 | 啦啦啦韩国在线观看视频| 18禁观看日本| 男女下面插进去视频免费观看| 成人18禁在线播放| 每晚都被弄得嗷嗷叫到高潮| 日日干狠狠操夜夜爽| √禁漫天堂资源中文www| 中文亚洲av片在线观看爽| 男女床上黄色一级片免费看| e午夜精品久久久久久久| 成人永久免费在线观看视频| 国产精品,欧美在线| 国产精华一区二区三区| 亚洲国产欧美网| 国产xxxxx性猛交| 精品福利观看| 一进一出抽搐动态| 国产亚洲精品一区二区www| 欧美精品啪啪一区二区三区| av超薄肉色丝袜交足视频| 老熟妇仑乱视频hdxx| 亚洲精品国产一区二区精华液| 免费高清视频大片| 日韩免费av在线播放| 精品卡一卡二卡四卡免费| 久久久水蜜桃国产精品网| 纯流量卡能插随身wifi吗| 一二三四在线观看免费中文在| 一区福利在线观看| 大型黄色视频在线免费观看| 老熟妇乱子伦视频在线观看| 亚洲精品av麻豆狂野| 精品欧美一区二区三区在线| 精品无人区乱码1区二区| 真人一进一出gif抽搐免费| 美女 人体艺术 gogo| 熟女少妇亚洲综合色aaa.| 国内久久婷婷六月综合欲色啪| 看片在线看免费视频| 久久午夜综合久久蜜桃| 精品国产一区二区久久| 很黄的视频免费| 欧美中文日本在线观看视频| 日韩中文字幕欧美一区二区| 亚洲精品美女久久av网站| 热99re8久久精品国产| 午夜福利影视在线免费观看| 精品乱码久久久久久99久播| 成人国语在线视频| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 美女 人体艺术 gogo| 天天一区二区日本电影三级 | 啦啦啦观看免费观看视频高清 | 老司机福利观看| 又紧又爽又黄一区二区| 亚洲成av片中文字幕在线观看| 99香蕉大伊视频| 丁香六月欧美| 国产精品久久久人人做人人爽| 如日韩欧美国产精品一区二区三区| 九色国产91popny在线| 欧美一区二区精品小视频在线| 啦啦啦 在线观看视频| 非洲黑人性xxxx精品又粗又长| 黑人操中国人逼视频| 免费看a级黄色片| 久久久久久大精品| 成人亚洲精品av一区二区| 动漫黄色视频在线观看| 俄罗斯特黄特色一大片| 正在播放国产对白刺激| 成人国产一区最新在线观看| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| 丁香欧美五月| 午夜精品久久久久久毛片777| 香蕉久久夜色| 91麻豆精品激情在线观看国产| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| 精品午夜福利视频在线观看一区| 伊人久久大香线蕉亚洲五| 91av网站免费观看| 国产97色在线日韩免费| 男男h啪啪无遮挡| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 午夜免费鲁丝| 好男人电影高清在线观看| 99热只有精品国产| 性欧美人与动物交配| 日日摸夜夜添夜夜添小说| 自线自在国产av| 日本免费a在线| 国产片内射在线| 亚洲 国产 在线| av视频在线观看入口| 亚洲第一电影网av| 亚洲av成人不卡在线观看播放网| 一区二区三区精品91| 国产亚洲精品一区二区www| 免费av毛片视频| 国产麻豆成人av免费视频| 岛国在线观看网站| 精品国产美女av久久久久小说| 国产极品粉嫩免费观看在线| 亚洲 欧美 日韩 在线 免费| 日日干狠狠操夜夜爽| 黄色a级毛片大全视频| 国产av在哪里看| 视频在线观看一区二区三区| 无限看片的www在线观看| 久久婷婷人人爽人人干人人爱 | 日本 av在线| 欧美人与性动交α欧美精品济南到| 99国产精品99久久久久| 亚洲视频免费观看视频| 久久久久久亚洲精品国产蜜桃av| 丝袜在线中文字幕| 电影成人av| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 啦啦啦韩国在线观看视频| 亚洲国产精品sss在线观看| 中国美女看黄片| 女人爽到高潮嗷嗷叫在线视频| 欧美老熟妇乱子伦牲交| 午夜福利18| 99riav亚洲国产免费| 91在线观看av| 久久香蕉国产精品| www.熟女人妻精品国产| 欧美av亚洲av综合av国产av| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人| 国产私拍福利视频在线观看| 国产亚洲欧美精品永久| 精品电影一区二区在线| 桃红色精品国产亚洲av| 午夜激情av网站| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| 99re在线观看精品视频| 国内精品久久久久久久电影| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 亚洲午夜精品一区,二区,三区| 久久久久久国产a免费观看| 91麻豆av在线| 午夜影院日韩av| 久9热在线精品视频| 国产精品国产高清国产av| 久久久久久久午夜电影| 亚洲精品国产色婷婷电影| 国产精品久久久久久亚洲av鲁大| 制服诱惑二区| 中文亚洲av片在线观看爽| 久久久国产精品麻豆| 麻豆国产av国片精品| 最新在线观看一区二区三区| 欧美成人免费av一区二区三区| 精品第一国产精品| 女人爽到高潮嗷嗷叫在线视频| 午夜两性在线视频| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 亚洲一区高清亚洲精品| 国产成人精品久久二区二区免费| 久久香蕉精品热| 久久婷婷人人爽人人干人人爱 | 免费无遮挡裸体视频| 午夜福利18| 免费搜索国产男女视频| 婷婷丁香在线五月| 国产免费男女视频| 黑人巨大精品欧美一区二区蜜桃| 色综合站精品国产| 一进一出抽搐动态| 久久精品91蜜桃| cao死你这个sao货| 欧美精品啪啪一区二区三区| 一夜夜www| 九色国产91popny在线| avwww免费| 男人的好看免费观看在线视频 | 国产亚洲精品av在线| 亚洲男人天堂网一区| 美女扒开内裤让男人捅视频| 美女大奶头视频| 一进一出抽搐动态| 日本免费一区二区三区高清不卡 | 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 黄色 视频免费看| 麻豆av在线久日| av电影中文网址| 久久久水蜜桃国产精品网| 国产精品一区二区在线不卡| 亚洲激情在线av| 精品欧美一区二区三区在线| 色在线成人网| 国产成人av教育| 在线观看www视频免费| av超薄肉色丝袜交足视频| 欧美 亚洲 国产 日韩一| 成人免费观看视频高清| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| av天堂久久9| 一a级毛片在线观看| 亚洲一区高清亚洲精品| 色在线成人网| 欧美中文日本在线观看视频| 美女大奶头视频| 夜夜夜夜夜久久久久| 国产高清视频在线播放一区| 真人一进一出gif抽搐免费| 午夜两性在线视频| 一区二区三区精品91| 老司机在亚洲福利影院| 极品教师在线免费播放| 精品国产国语对白av| 亚洲中文av在线| 高潮久久久久久久久久久不卡| 亚洲激情在线av| www.熟女人妻精品国产| 亚洲视频免费观看视频| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 十分钟在线观看高清视频www| www.自偷自拍.com| 久久这里只有精品19| 亚洲国产欧美日韩在线播放| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 很黄的视频免费| 一进一出抽搐gif免费好疼| 久久精品91无色码中文字幕| 亚洲人成网站在线播放欧美日韩| 欧美成人性av电影在线观看| 国产免费男女视频| 亚洲一码二码三码区别大吗| www日本在线高清视频| 亚洲人成77777在线视频| 一级毛片高清免费大全| 视频区欧美日本亚洲| 久久伊人香网站| 激情视频va一区二区三区| 这个男人来自地球电影免费观看| 欧美成人午夜精品| 亚洲成av人片免费观看| 亚洲三区欧美一区| 99在线视频只有这里精品首页| 在线观看www视频免费| 久久性视频一级片| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 人人妻,人人澡人人爽秒播| 日本vs欧美在线观看视频| 神马国产精品三级电影在线观看 | 亚洲色图 男人天堂 中文字幕| 色哟哟哟哟哟哟| 69精品国产乱码久久久| 97碰自拍视频| 成人国语在线视频| avwww免费| 日本在线视频免费播放| 国产私拍福利视频在线观看| 啦啦啦观看免费观看视频高清 | 欧美精品啪啪一区二区三区| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 嫩草影院精品99| 咕卡用的链子| 久久人妻熟女aⅴ| 亚洲一区二区三区不卡视频| 人成视频在线观看免费观看| 麻豆成人av在线观看| 99riav亚洲国产免费| 妹子高潮喷水视频| 无人区码免费观看不卡| 波多野结衣av一区二区av| 亚洲成a人片在线一区二区| 波多野结衣av一区二区av| 人妻久久中文字幕网| 午夜a级毛片| 亚洲欧洲精品一区二区精品久久久| 日韩欧美三级三区| 国产精品野战在线观看| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影| 欧美色视频一区免费| 午夜视频精品福利| 亚洲成a人片在线一区二区| 美女免费视频网站| 久久久久精品国产欧美久久久| 欧美老熟妇乱子伦牲交| 免费一级毛片在线播放高清视频 | 国产精品1区2区在线观看.| 18美女黄网站色大片免费观看| 久久香蕉精品热| 麻豆国产av国片精品| 此物有八面人人有两片| 欧美中文日本在线观看视频| 亚洲精品久久成人aⅴ小说| 久久午夜综合久久蜜桃| av有码第一页| 熟妇人妻久久中文字幕3abv| 一级,二级,三级黄色视频| 精品一区二区三区视频在线观看免费| 操出白浆在线播放| 97人妻精品一区二区三区麻豆 | 高潮久久久久久久久久久不卡| 琪琪午夜伦伦电影理论片6080| 久久人人爽av亚洲精品天堂| 中文字幕人成人乱码亚洲影| 国产97色在线日韩免费| 身体一侧抽搐| 一级片免费观看大全| 成人永久免费在线观看视频| 亚洲男人天堂网一区| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 每晚都被弄得嗷嗷叫到高潮| 亚洲五月婷婷丁香| 成人国产综合亚洲| 国产亚洲精品久久久久5区| 日日夜夜操网爽| 欧美黑人欧美精品刺激| 免费不卡黄色视频| 黄色丝袜av网址大全| 亚洲欧美日韩高清在线视频| 日韩欧美三级三区| 国产高清videossex| 亚洲欧美日韩无卡精品| 国产97色在线日韩免费| 亚洲伊人色综图| 免费在线观看亚洲国产| 亚洲国产高清在线一区二区三 | 日本欧美视频一区| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看| 国产成人av激情在线播放| 亚洲男人天堂网一区| 我的亚洲天堂| av视频免费观看在线观看| 99久久综合精品五月天人人| 亚洲精品在线观看二区| 国产成人影院久久av| 精品福利观看| 久久久久久久精品吃奶| 好看av亚洲va欧美ⅴa在| 精品久久久久久久毛片微露脸| 丝袜美足系列| 亚洲熟妇中文字幕五十中出| 99久久综合精品五月天人人| 亚洲国产精品sss在线观看| x7x7x7水蜜桃| 午夜影院日韩av| 亚洲一区高清亚洲精品| 成人国产一区最新在线观看| 波多野结衣一区麻豆| 国产午夜福利久久久久久| 又大又爽又粗| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 欧美性长视频在线观看| 久久久精品欧美日韩精品| 99久久99久久久精品蜜桃| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美日韩高清在线视频| 黄色女人牲交| 亚洲avbb在线观看| 国产在线观看jvid| 在线av久久热| 嫩草影视91久久| bbb黄色大片| 91字幕亚洲| 99香蕉大伊视频| 亚洲全国av大片| 一区在线观看完整版| 不卡一级毛片| 久久久国产成人免费| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 亚洲一区二区三区色噜噜| 黄片大片在线免费观看| 一级黄色大片毛片| 桃红色精品国产亚洲av| 亚洲精品在线美女| 黄片大片在线免费观看| 亚洲成人免费电影在线观看| 18美女黄网站色大片免费观看| 手机成人av网站| 国产成人精品无人区| av免费在线观看网站| 中亚洲国语对白在线视频| 久久国产精品影院| 一本久久中文字幕| 亚洲三区欧美一区| 成年人黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 又大又爽又粗| 亚洲精品中文字幕在线视频| 在线观看日韩欧美| 一进一出抽搐gif免费好疼| 一边摸一边抽搐一进一小说| 免费无遮挡裸体视频| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看 | 免费看a级黄色片| www国产在线视频色| avwww免费| 色尼玛亚洲综合影院| 国产一卡二卡三卡精品| 国产高清videossex| 美女高潮喷水抽搐中文字幕| 久久久久久久久免费视频了| 亚洲熟妇中文字幕五十中出| 人人澡人人妻人| 在线天堂中文资源库| 精品高清国产在线一区| 男女下面插进去视频免费观看| 亚洲成人免费电影在线观看| 一区在线观看完整版| 无遮挡黄片免费观看| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av| 欧美丝袜亚洲另类 | 999久久久国产精品视频| 免费在线观看亚洲国产| 乱人伦中国视频| 亚洲第一欧美日韩一区二区三区| 日本 av在线| 日日夜夜操网爽| 国产精品av久久久久免费| 日韩精品中文字幕看吧| 国产成人精品久久二区二区91| 亚洲欧美激情在线| 欧美日韩福利视频一区二区| 亚洲国产毛片av蜜桃av| 亚洲欧美精品综合久久99| 精品一品国产午夜福利视频| 日韩欧美国产在线观看| 岛国视频午夜一区免费看| 亚洲欧美日韩高清在线视频| www.999成人在线观看| 久久久久久久久中文| 亚洲av第一区精品v没综合| 美女国产高潮福利片在线看| 日韩高清综合在线| 亚洲国产高清在线一区二区三 | 一个人观看的视频www高清免费观看 | 嫩草影院精品99| 超碰成人久久| 黄频高清免费视频| 亚洲精品一卡2卡三卡4卡5卡| 丝袜人妻中文字幕| 久久婷婷成人综合色麻豆| 国产亚洲av嫩草精品影院| 不卡一级毛片| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 在线视频色国产色| 老司机福利观看| 欧美日韩亚洲综合一区二区三区_| 久久人人爽av亚洲精品天堂| 成人免费观看视频高清| 琪琪午夜伦伦电影理论片6080| 日日摸夜夜添夜夜添小说| 黑丝袜美女国产一区| 欧美乱码精品一区二区三区| or卡值多少钱| 真人做人爱边吃奶动态| 极品教师在线免费播放| 日韩大尺度精品在线看网址 | 制服丝袜大香蕉在线| 757午夜福利合集在线观看| 69av精品久久久久久| 国产一区二区三区视频了| 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 中文字幕人妻熟女乱码| 制服诱惑二区| 亚洲伊人色综图| 日韩欧美在线二视频|