• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pseudo-linear inertial navigation algorithm

    2021-04-06 10:23:52HabibGHANBARPOURASL
    CHINESE JOURNAL OF AERONAUTICS 2021年2期

    Habib GHANBARPOURASL

    Department of Mechatronics, University of Turkish Aeronautical Association, Ankara 06790, Turkey

    KEYWORDS Inertial navigation algorithm;Integrating algorithm;Position quaternion;Pseudo-linear inertial navigation equation;Quaternions;Velocity quaternion

    Abstract A new method is illustrated for processing the output of a set of triad orthogonal rate gyros and accelerometers to reconstruct vehicle navigation parameters(attitude,velocity,and position).The paper introduces two vectors with dimensions 4×1 as velocity and position quaternions.The navigation equations for strapdown systems are nonlinear but after using these parameters,the navigation equations are converted into a pseudo-linear system. The new set of navigation equations has an analytical solution and the state transition matrix is used to solve the linear timevarying differential equations through time series. The navigation parameters are updated using the new formulation for strapdown navigation equations. Finally, the quaternions of velocity and position are converted into the original position and velocity vectors. The combination of the coning motion and a translational oscillatory trajectory is used to evaluate the accuracy of the proposed algorithm.The simulations show significant improvement in the accuracy of the inertial navigation system, which is achieved through the mentioned algorithm.

    1. Introduction

    In the Inertial Navigation Systems(INSs),there are four categories of the sources of errors,including sensors’errors,initial condition errors, gravity modeling errors, and digital integrating errors, which are the main sources of error in the INS.1,2Sensor errors are linked to the quality of sensors, but repeatable errors can be reduced by a calibrating process and the compensating errors of sensors.2,3Initial condition errors are another source of errors and they can be divided into initial attitude,velocity, and position errors.Many of the navigation grad systems can automatically align themselves on the ground but their initial position is provided by external measurements,which cause errors in the INS.4The INS needs to have a model of gravity because the accelerometers measure only the specific accelerations but not the total accelerations, and it is another source of error.1–3Originally, the strapdown navigation equations were formulated in the 1950s,which are continuous-time differential equations, but for programming the navigation systems,we need to discretize this type of equations,3but then,it will become another source of error in the INS. The digitalization of the navigation equations first focuses on attitude algorithms.5Between 1950 and 1960, there were two popular methods, which include applying first-order algorithms with high-speed updates (10–20 kHz), and using higher-order algorithms with low-frequency updates (50–100 Hz).5Wilcox6and McKern7introduced Picard-type successive integration8using savage and third-order algorithms. Some researchers focused on updating the rotation vector. Gilmore updated the high-frequency rotation vector,9Miller worked on the seconddegree fitting polynomial on gyros data and then updated the rotation vector10while Lee et al. followed Miller’s works with more data.11

    In recent years,another round of attitude algorithms’optimization has been started. Savage introduced an optimal explicitly matching approach to obtain the desired response of conning input amplitude, which is a function of its frequency.12Wang et al.proposed a higher-order rotation vector that was updated by considering the third13and fourth14order approaches to Picard’s component solution to a rotation vector. Wu et al.15,16worked on the attitude integration applying different methods. These methods are using Chebyshev polynomials, Rodrigues vector, and functional iterations. Iterative integration of the quaternions using Chebyshev polynomials has been filed in Ref.,17and that using a higher-order polynomial approach is given in Ref.18The application of Taylor’s series approach and comparison with functional iteration integration for quaternions is given in Ref.19

    A two-speed updating algorithm for velocity and position integrating with inspiration of attitude algorithms is introduced by Savage in Ref.20He presented his analytical approach to sculling motion in two forms and used the algorithm with scrolling terminology while Litmanovich used his algorithm with more data; hence, his algorithm continued to be an accepted algorithm by various navigation communities.21Sculling integral is a critical part of updating velocity and position. Ref.22adapted sculling integral with different sensor inputs like angular rate/specific force increments’ input and the incremental angle/specific force input.Ref.23shows a new algorithm based on the sculling-error compensation approach, which was proposed for vibrating environments.Instead of polynomial models, it uses a singular perturbation model. Wu proposed a functional iterative integration-based method applying Chebyshev polynomials and named it iNavFIter.24

    This paper introduces two new parameters including velocity and position quaternions. The mentioned parameters are different from dual quaternions, which are used in a previous research work.25The new parameters help us reduce the nonlinearities that emerge from the transformation of specific forces from the body frame to the inertial frame. Quaternions helped to introduce a new formulation for INS differential equations; however, the number of states increased from 10 to 12. The new equations behave as a linear time-varying system, so the problem can be solved using different methods. In this paper, a time series approach is used to find a solution to linear time-varying differential equations. For comparison of the proposed algorithm,a well-known algorithm called Savage algorithm has been used,5,20which operates in the navigation frame. The inertial frame version of Savage algorithm is filed in Ref.26The application of careful implementation of inertial navigation algorithm and its application in transfer alignment are given in Ref.27

    2. Inertial navigation equation

    Some important reference frames have to be defined to come up with navigation equations.The inertial frame is represented by i,and it is centered at the Earth’s center,the x-y plane is on the equatorial plane,the z axis coincides with the Earth’s rotation vector, and the x axis coincides with the vernal equinox axis 2. The body frame is represented by b, which is located in the aircraft’s center of gravity while all the mentioned axes are respectively heading in the longitudinal, right-wing, and downward directions.1All reference frames are considered as right-hand frames.

    Most of the inertial navigation algorithms use quaternions for attitude computation. Quaternions are four parameters and they have some advantages for other attitude representation methods like Euler’s angles, rotation vector, and Direction Cosine Matrix (DCM). In this paper, we will show a quaternion in vector formation, which is given as

    3. New formulation of navigation equation

    Multiplying two sides of the differential equations of velocity, and position, which are given in Eq. (6), we can write

    All terms in the two equations (see Eq. (13)) are pseudolinear except for the g′?q term. Here, g is a non-linear function of the position vector. For its compatibility with other terms to diminish the non-linearity problem with the new model, we have rearranged the gravity vector as

    where β is a scalar function of r,and d has the remaining terms of the model (7), which are not in the term given above (14),and it is a vector in the inertial frame. Here β and d are represented in the model by Eq. (7), so it will become

    where α is a scalar parameter and a function of position vector. Finally, using Eqs. (13) and (14), and the first part of Eq.(6), the navigation equations in the inertial frame are summarized as

    where I is a 4×4 unit matrix, and d is a small disturbance input. This form of equations in this paper are termed as pseudo-linear navigation equations. In the state space (Eq.(16)), there are 12 states and the system matrix is a function of IMU’s output, but it still has nonlinearities connected to the gravity vector. One way to surpass this problem (avoiding nonlinearities)is by evaluating the gravity’s parameters at time zero, but they will cause more errors. The system matrix is a function of position but in short time, we can suppose that it is a linear function of position. To completely remove this error, a time-varying linear model has been provided for β and d in Appendix A. Using that process, we are trying to remove any existing non-linearity in the system. It is given in the matrix form in Eq. (16). We wish that the model shows good numerical properties because of linear behavior of the dynamic system.

    4. Approximation of state transition matrix

    Now, we are representing Eq. (16) as a linear time-varying system:

    5. Error analysis

    For error analysis, we will use the Taylor series expansion of the state transition matrix.Using Leibniz formula,we can calculate the time derivative of Eq. (20) as29

    Table 1 INS procedure.

    Recursively using Eq.(28)and initializing with Eq.(32),we can calculate the maximum error of the state transition matrix.Using Eq. (5), we can see, when Nit→∞;Rmax→0. Using Eqs. (24) and (31), we can calculate the maximum state error at time τ for Nitterms in Eq.(21),and we consider the following state error at time τ:

    6. Savage algorithm

    For comparison of the proposed algorithm’s performance, we are considering the Savage’s algorithm,5,20which is accepted as a standard algorithm by the navigation community. The original algorithm is implemented in the navigation frame but the inertial frame implementation version is given in Ref.28The incremental angle and velocity are defined as

    where Δθkand Δvkare incremental angle and velocity respectively.Incremental rotation vector between times tk-1and tkis given in Ref.28as

    The Savage algorithm uses Eqs. (36), (37) and (41) for navigation.

    7. Simulation study

    For evaluating the performance of the proposed algorithm,we need to design a reference trajectory with known attitude,position, and velocity such that the angular velocities and specific accelerations for motion are known. Here we are defining two reference trajectories, in which, both of them have analytical solutions. We used a combination of classic coning motion for the body with a straight line translational motion as a first reference trajectory. The second one is a combination of conning motion and oscillating translational motion. The classic coning motion has an analytical solution and simply, we can evaluate the performance of the attitude algorithms. The classic coning motion has a specific angular velocity,which is given below24:

    For evaluating the potential of new formulation,two examples have been solved to show the performance of the algorithm. The simulations are done for one-hour duration with an ideal IMU. The sampling frequency for IMU’s sensors is 1 kHz, and the navigation parameters are updated at 100 Hz frequency. An 8-degree polynomial has been used for interpolating angular velocity and specific acceleration vectors. The incremental angles and velocities are calculated using fitted polynomials on angular velocities and specific accelerations described by a system of equations (see Eq. (8), and Eq.(34)), and then they have 100 Hz updating frequencies. The simulations are started with 30° and 60° right ascension and declination (relative to the inertial axis) with 10000 km altitude. The parameters of gravity are approximately used in the second-order Eq.(A1).Table 2 shows the straight line simulation parameters.

    The left side of Fig. 1 illustrates the coning motion’s angular velocity, which is constant in the×axis and oscillates in y and z directions at π rad/s frequencies.The right side of Fig.1 shows the quaternion components.

    The period of ωyand ωzis 2 s with the magnitudes of 31.25°. and ωxhas constant value -2.734°. Fig. 2 shows the components of the nominal specific acceleration vector in three directions and its zoomed graphs for slight line trajectory.

    We can see that all the components of specific accelerations are oscillatory in short time due to coning motion and its magnitude reduces in long time because the altitude is increasing.Figs.3–5 represent position error ei(i=x,y,z),velocity error evi(i=x, y, z) and quaternion error error eqi(i=1, 2, 3, 4),respectively, for both proposed and Savage algorithms.

    It can be observed that the maximum position error in one hour for the proposed method is 0.16 mm, and for Savage algorithm, it is 1.01 km. The maximum velocity errors for the proposed and Savage algorithms are 0.2 mm/s and 1.25 m/s, respectively. Maximum attitude error for the proposed algorithm is 4×10-8arcsec, but for Savage algorithm,it is 0.61 arcsec.

    In the first example, the maximum magnitude of specific acceleration is 1g.In the second example, we want to examine the errors of algorithms when specific accelerations are highly oscillatory. The simulation parameters are represented in Table 3.

    The coning motion’s parameters are the same for both simulations. The specific accelerations for oscillatory motion in the body frame are represented in Fig. 6.

    Fig. 6 clearly shows that high-frequency oscillations in the specific accelerations originate from the coning motion but the low-frequency oscillations take place due to the oscillatory path. The maximum fx;fy, and fzare 97.08 m/s2, 60.38 m/s2,and 23.91 m/s2respectively. The oscillatory reference trajectory has different magnitudes in x, y, and z directions, such as 50 km,10 km, and 6 km in x, y, and z axes.

    For imagining the complexity of the reference path, the designed path is shown relative to the starting point in Fig.7.The total velocity is in an oscillating state.Its minimum value is 420 m/s and the maximum is 2192 m/s.The proposed and Savage algorithms are successfully implemented in the MATLAB environment and the error of the position vector is shown in Fig. 8.

    Fig. 8 shows that the maximum error of position exists in three directions within one hour, and it remains lower than 2 mm,but for Savage algorithm,it is 1.66 km.This is a significant improvement in the inertial navigation accuracy. Fig. 9 shows the velocity error in the inertial frame.

    Velocity error for the proposed algorithm remains less than 5×10-6m/s but maximum error of Savage algorithm for total velocity is 2.9 m/s. That is a ‘‘bit error” for the inertial navigation system.

    Table 2 Simulation parameters for straight line trajectory.

    Fig. 1 Nominal angular velocities and quaternions for coning motion.

    Fig. 2 Specific acceleration for straight line reference trajectory.

    Fig.3 Position error for straight line reference trajectory by two methods.

    In Fig.10,we can see that the errors of the quaternions are very close to zero. In that case, the rotation angle’s error is 8×10-8arcsec but the maximum error of rotation angle for Savage algorithm is 1.15 arcsec.We know that the first components of v′and r′are zero. After converting the quaternions’velocity and position, errors are accumulated in the first element of estimated v′and r′using mathematical equations(see Eq.(25)).These errors are represented in Fig.11 and they show unstable behavior of these parameters.

    Fig.4 Velocity error for straight line reference trajectory by two methods.

    Fig. 5 Quaternion error for straight line reference trajectory by two methods.

    Table 3 Simulation parameters for oscillatory trajectory.

    Fig. 6 Specific acceleration of oscillatory reference trajectory.

    Fig. 7 Oscillatory reference path.

    Fig. 9 Components of velocity error for oscillatory reference path by two methods.

    Fig. 10 Components of quaternions’ error for oscillatory reference path by two methods.

    Fig. 8 Position error for oscillatory reference path by two methods.

    For all simulations,we use a PC with an Intel(R)Core(TM)i5-2450 M CPU @ 2.50 GHz, 4 GB RAM, and MATLAB-2017b.

    Fig. 11 First element of velocity and position quaternions.

    8. Conclusions

    In this paper, we design a new method for an ultra-accurate algorithm for application in the inertial navigation systems.This new algorithm uses some newly-defined parameters including velocity and position quaternions. These parameters transform the nonlinear navigation state equations into linear time-varying equations,which are further solved using the time series approach. A trajectory is designed for evaluating the algorithm, which has an analytical solution keeping in view specific forces and angular rates. The designed trajectory is a smooth oscillatory trajectory and it is generated by a combination of classic coning motion and a translational oscillatory trajectory. By tuning the parameters, it is possible to generate a path with different frequencies and amplitudes. Simulations show that the algorithm can be significantly improved in terms of numerical integration of the inertial navigation systems.It is shown that, for a difficult trajectory, the proposed algorithm has almost 100 m/s2specific acceleration,1800 m/s amplitude of the oscillatory velocity, and almost 42 angular velocity within one hour with less than 2 mm errors.

    Appendix A.

    One of the error sources in the velocity integration algorithms is integrating gravitational acceleration,which is a function of position. Savage used the middle point to calculate the integration of gravity vector.20This paper uses a special representation of the gravity vector. It is completely fitted with the model, which is used in this paper. As it is represented in Eq.(14), there are two functionsand. They are not the explicit functions of time. Here, we are considering an approximated polynomial with n degree, such as

    Here all the time derivatives are evaluated at time zero. In the above equations, the total acceleration ˙v has to be evaluated at time zero, and we can calculate it using the second equation of the two equations (see Eq. (6)) mentioned earlier.

    如日韩欧美国产精品一区二区三区| 妹子高潮喷水视频| 极品人妻少妇av视频| 黄频高清免费视频| 少妇被粗大的猛进出69影院| 免费看a级黄色片| 黄色a级毛片大全视频| 性色av乱码一区二区三区2| 亚洲美女黄片视频| 最新美女视频免费是黄的| 操出白浆在线播放| 免费观看人在逋| 18禁国产床啪视频网站| 亚洲精品一区av在线观看| 一区二区三区激情视频| 亚洲自偷自拍图片 自拍| 丰满迷人的少妇在线观看| 日本wwww免费看| 久久精品亚洲av国产电影网| 久久99一区二区三区| 露出奶头的视频| 亚洲片人在线观看| 午夜91福利影院| 99久久综合精品五月天人人| 中文欧美无线码| 国产精品av久久久久免费| 国产xxxxx性猛交| 热re99久久精品国产66热6| 中文字幕精品免费在线观看视频| xxx96com| 欧美日韩亚洲国产一区二区在线观看| 18美女黄网站色大片免费观看| 欧美午夜高清在线| 免费少妇av软件| 国产又色又爽无遮挡免费看| 99国产精品免费福利视频| 久久久久久大精品| 午夜福利免费观看在线| 免费人成视频x8x8入口观看| 十分钟在线观看高清视频www| 久久影院123| 欧美久久黑人一区二区| 日韩国内少妇激情av| 欧美日韩av久久| 每晚都被弄得嗷嗷叫到高潮| 纯流量卡能插随身wifi吗| 天天影视国产精品| 国产男靠女视频免费网站| 高清欧美精品videossex| 大香蕉久久成人网| 女性生殖器流出的白浆| 亚洲成人精品中文字幕电影 | 18禁裸乳无遮挡免费网站照片 | 97超级碰碰碰精品色视频在线观看| 欧美乱妇无乱码| 日韩人妻精品一区2区三区| 欧美激情极品国产一区二区三区| 看黄色毛片网站| 日韩精品免费视频一区二区三区| 欧美精品啪啪一区二区三区| 看黄色毛片网站| 丝袜美足系列| 国产1区2区3区精品| 欧美一级毛片孕妇| 国产精品亚洲av一区麻豆| aaaaa片日本免费| 嫩草影视91久久| 国产亚洲欧美98| 免费不卡黄色视频| 男人操女人黄网站| 18美女黄网站色大片免费观看| 久久精品成人免费网站| 一级,二级,三级黄色视频| 久久亚洲真实| 国产无遮挡羞羞视频在线观看| 精品国产乱子伦一区二区三区| 一级作爱视频免费观看| 久久九九热精品免费| cao死你这个sao货| 欧美黑人欧美精品刺激| av欧美777| 国产高清激情床上av| 国产精品久久电影中文字幕| 在线看a的网站| 午夜福利免费观看在线| 老汉色av国产亚洲站长工具| 一二三四社区在线视频社区8| 国产精品免费一区二区三区在线| 久久精品国产亚洲av香蕉五月| 国产xxxxx性猛交| 亚洲国产精品999在线| 久久婷婷成人综合色麻豆| 欧美精品亚洲一区二区| 曰老女人黄片| 国产免费男女视频| 精品久久蜜臀av无| 在线看a的网站| 巨乳人妻的诱惑在线观看| 一级黄色大片毛片| 一级a爱视频在线免费观看| 老熟妇乱子伦视频在线观看| 久久久久国产精品人妻aⅴ院| 欧美性长视频在线观看| 高潮久久久久久久久久久不卡| 成年女人毛片免费观看观看9| www国产在线视频色| 亚洲成国产人片在线观看| 国产单亲对白刺激| 亚洲成国产人片在线观看| tocl精华| 波多野结衣一区麻豆| 国产av又大| 香蕉丝袜av| 在线视频色国产色| 亚洲 欧美 日韩 在线 免费| 不卡av一区二区三区| 久久 成人 亚洲| 国产主播在线观看一区二区| 激情在线观看视频在线高清| 日本一区二区免费在线视频| 免费高清在线观看日韩| 深夜精品福利| 日韩欧美一区二区三区在线观看| 国产主播在线观看一区二区| 国产av在哪里看| 久久久久国产精品人妻aⅴ院| 美女扒开内裤让男人捅视频| 日韩一卡2卡3卡4卡2021年| 久9热在线精品视频| 美女 人体艺术 gogo| 国产精品美女特级片免费视频播放器 | 正在播放国产对白刺激| 午夜福利一区二区在线看| av欧美777| 叶爱在线成人免费视频播放| 欧美黄色淫秽网站| 69精品国产乱码久久久| 国产精品 国内视频| 中文字幕人妻丝袜制服| 国产亚洲av高清不卡| 国产精品av久久久久免费| 欧美成人午夜精品| 女同久久另类99精品国产91| 成年版毛片免费区| 一边摸一边抽搐一进一出视频| 久久久久精品国产欧美久久久| 女人精品久久久久毛片| 69精品国产乱码久久久| 久久久国产成人免费| 免费高清在线观看日韩| 欧美激情高清一区二区三区| 少妇裸体淫交视频免费看高清 | a在线观看视频网站| 欧美激情极品国产一区二区三区| 免费在线观看亚洲国产| 91在线观看av| 午夜视频精品福利| 欧美激情高清一区二区三区| 成人亚洲精品av一区二区 | 亚洲国产看品久久| 免费女性裸体啪啪无遮挡网站| 99久久国产精品久久久| 午夜91福利影院| 午夜两性在线视频| 男人舔女人下体高潮全视频| 18美女黄网站色大片免费观看| 亚洲男人的天堂狠狠| 国产精品免费视频内射| 久久狼人影院| а√天堂www在线а√下载| 日韩有码中文字幕| 国产亚洲欧美98| 欧美最黄视频在线播放免费 | 欧美性长视频在线观看| 在线观看一区二区三区激情| 午夜福利欧美成人| 国产激情欧美一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲aⅴ乱码一区二区在线播放 | www.熟女人妻精品国产| 变态另类成人亚洲欧美熟女 | 色老头精品视频在线观看| 新久久久久国产一级毛片| 国产精品一区二区三区四区久久 | 午夜精品在线福利| 欧美中文日本在线观看视频| 免费观看精品视频网站| 国产熟女xx| 女性被躁到高潮视频| 久久人人97超碰香蕉20202| 国产主播在线观看一区二区| 久久人妻熟女aⅴ| 久久精品亚洲av国产电影网| 人妻久久中文字幕网| 91老司机精品| 亚洲欧洲精品一区二区精品久久久| 国产精品久久电影中文字幕| 成年版毛片免费区| 欧美一区二区精品小视频在线| 天堂√8在线中文| 又大又爽又粗| 级片在线观看| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 9热在线视频观看99| 无遮挡黄片免费观看| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品sss在线观看 | 精品久久久久久久毛片微露脸| av网站免费在线观看视频| 99久久精品国产亚洲精品| 国产亚洲精品综合一区在线观看 | 成人18禁在线播放| 国产精品99久久99久久久不卡| 久热这里只有精品99| 日本a在线网址| 亚洲一区二区三区欧美精品| 夫妻午夜视频| 在线观看www视频免费| 天天影视国产精品| 国产成人精品久久二区二区91| 性欧美人与动物交配| 精品久久久精品久久久| 亚洲av成人一区二区三| 亚洲一区二区三区色噜噜 | 免费在线观看亚洲国产| www日本在线高清视频| 亚洲欧美精品综合久久99| 超碰成人久久| 午夜福利一区二区在线看| 欧美在线黄色| 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| www.精华液| 欧美最黄视频在线播放免费 | 亚洲人成电影观看| 国产高清videossex| 国产亚洲av高清不卡| 午夜福利一区二区在线看| 一夜夜www| 日韩有码中文字幕| 中文字幕最新亚洲高清| 国产成人免费无遮挡视频| av天堂在线播放| 日本精品一区二区三区蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 免费观看精品视频网站| 涩涩av久久男人的天堂| 18禁美女被吸乳视频| 桃色一区二区三区在线观看| 美女福利国产在线| 国产又爽黄色视频| 亚洲精华国产精华精| 免费在线观看亚洲国产| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区激情| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 老司机深夜福利视频在线观看| 国产视频一区二区在线看| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 人成视频在线观看免费观看| 老司机午夜福利在线观看视频| 国产精品国产高清国产av| 一边摸一边做爽爽视频免费| 另类亚洲欧美激情| 黑丝袜美女国产一区| av网站免费在线观看视频| 欧美日韩黄片免| 国产99久久九九免费精品| 九色亚洲精品在线播放| 国产男靠女视频免费网站| 精品欧美一区二区三区在线| 亚洲三区欧美一区| 亚洲欧美精品综合久久99| 动漫黄色视频在线观看| 十八禁网站免费在线| 国产一卡二卡三卡精品| 男人舔女人下体高潮全视频| av中文乱码字幕在线| 国产99白浆流出| 亚洲精品国产色婷婷电影| 国产国语露脸激情在线看| 国产三级黄色录像| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 久久久久久大精品| 五月开心婷婷网| 午夜亚洲福利在线播放| 在线观看日韩欧美| 亚洲一区高清亚洲精品| 大码成人一级视频| www.www免费av| 亚洲免费av在线视频| 可以在线观看毛片的网站| 精品国产乱子伦一区二区三区| 成人精品一区二区免费| 好看av亚洲va欧美ⅴa在| av电影中文网址| 国产精品野战在线观看 | 一边摸一边抽搐一进一出视频| 丰满人妻熟妇乱又伦精品不卡| 色尼玛亚洲综合影院| 成年人免费黄色播放视频| 亚洲精品一区av在线观看| 午夜两性在线视频| www日本在线高清视频| 日本wwww免费看| 后天国语完整版免费观看| 国产欧美日韩一区二区精品| 国产麻豆69| 黑人欧美特级aaaaaa片| 黄色丝袜av网址大全| 久久精品国产99精品国产亚洲性色 | 久久人妻福利社区极品人妻图片| 免费观看人在逋| 国产成人影院久久av| 美女 人体艺术 gogo| 黄色丝袜av网址大全| 精品卡一卡二卡四卡免费| 变态另类成人亚洲欧美熟女 | 夜夜爽天天搞| 久久久久久久久久久久大奶| 国产精品美女特级片免费视频播放器 | 国产男靠女视频免费网站| 在线观看午夜福利视频| 国产av一区在线观看免费| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 国产有黄有色有爽视频| 91老司机精品| 免费少妇av软件| 欧美乱妇无乱码| 天堂影院成人在线观看| 亚洲国产欧美日韩在线播放| 精品一区二区三卡| 亚洲欧美日韩无卡精品| 香蕉久久夜色| 亚洲 欧美一区二区三区| 欧美最黄视频在线播放免费 | 成年人黄色毛片网站| 青草久久国产| 久久久久国产一级毛片高清牌| 久久人人爽av亚洲精品天堂| 欧美国产精品va在线观看不卡| 水蜜桃什么品种好| 日本五十路高清| 黄色女人牲交| 最近最新免费中文字幕在线| 一级片'在线观看视频| 亚洲色图av天堂| 久久人人精品亚洲av| 色综合站精品国产| 精品久久久久久久毛片微露脸| 男人操女人黄网站| 国产精品亚洲av一区麻豆| 国产亚洲精品一区二区www| 亚洲伊人色综图| 黄片播放在线免费| 99精品在免费线老司机午夜| 欧美 亚洲 国产 日韩一| 国产无遮挡羞羞视频在线观看| 国产又爽黄色视频| 免费高清视频大片| 视频区图区小说| 丰满迷人的少妇在线观看| 日日爽夜夜爽网站| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 国产av又大| 法律面前人人平等表现在哪些方面| 法律面前人人平等表现在哪些方面| 日日爽夜夜爽网站| 亚洲人成网站在线播放欧美日韩| 免费av毛片视频| 久久性视频一级片| 丰满迷人的少妇在线观看| 超碰97精品在线观看| 国产成人精品在线电影| 久久九九热精品免费| 啦啦啦在线免费观看视频4| 精品电影一区二区在线| 久久精品aⅴ一区二区三区四区| 亚洲精品国产精品久久久不卡| 成人手机av| 脱女人内裤的视频| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 免费在线观看亚洲国产| 麻豆一二三区av精品| 久久人人精品亚洲av| 精品福利永久在线观看| 黄片播放在线免费| 精品国产亚洲在线| 色老头精品视频在线观看| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看| 91麻豆av在线| 精品少妇一区二区三区视频日本电影| 在线免费观看的www视频| 一夜夜www| 色婷婷av一区二区三区视频| 欧美中文日本在线观看视频| 欧美久久黑人一区二区| 亚洲精品在线观看二区| 视频区欧美日本亚洲| www日本在线高清视频| 亚洲专区国产一区二区| 国产精品爽爽va在线观看网站 | 国产精品野战在线观看 | 757午夜福利合集在线观看| 亚洲 欧美一区二区三区| 国产高清videossex| 午夜日韩欧美国产| 国产av精品麻豆| xxxhd国产人妻xxx| 天堂动漫精品| 精品国产一区二区久久| 午夜精品国产一区二区电影| 欧美黄色淫秽网站| 日本免费一区二区三区高清不卡 | 久久久国产成人免费| 女同久久另类99精品国产91| 在线观看午夜福利视频| 国产视频一区二区在线看| 天堂中文最新版在线下载| 香蕉久久夜色| 久久久精品欧美日韩精品| 久久青草综合色| 少妇粗大呻吟视频| 久久精品91无色码中文字幕| 精品熟女少妇八av免费久了| 亚洲色图综合在线观看| 日日摸夜夜添夜夜添小说| 精品人妻在线不人妻| 久久香蕉激情| 国产精品久久久久成人av| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 亚洲免费av在线视频| 国产亚洲av高清不卡| 午夜福利免费观看在线| 精品久久久久久成人av| 黄色 视频免费看| 视频区欧美日本亚洲| 黄色丝袜av网址大全| 嫩草影视91久久| 日韩 欧美 亚洲 中文字幕| 国产av又大| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 精品一区二区三区四区五区乱码| 国产精品99久久99久久久不卡| 欧美成人性av电影在线观看| 亚洲熟妇熟女久久| 正在播放国产对白刺激| av天堂在线播放| 后天国语完整版免费观看| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 精品高清国产在线一区| 一二三四社区在线视频社区8| 老司机午夜十八禁免费视频| 欧美精品啪啪一区二区三区| 男人舔女人下体高潮全视频| 一边摸一边抽搐一进一小说| 看免费av毛片| 亚洲伊人色综图| 国产精品 国内视频| 美女福利国产在线| 一区福利在线观看| 又大又爽又粗| netflix在线观看网站| 亚洲激情在线av| 欧美日韩福利视频一区二区| 九色亚洲精品在线播放| 女生性感内裤真人,穿戴方法视频| www.精华液| 一进一出抽搐gif免费好疼 | 国产精品久久久久久人妻精品电影| xxxhd国产人妻xxx| 变态另类成人亚洲欧美熟女 | 亚洲激情在线av| 如日韩欧美国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 一a级毛片在线观看| 久久精品国产亚洲av高清一级| 夜夜躁狠狠躁天天躁| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 亚洲欧美日韩高清在线视频| 午夜免费成人在线视频| 夜夜爽天天搞| 高清在线国产一区| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 欧美最黄视频在线播放免费 | 亚洲国产精品sss在线观看 | 亚洲片人在线观看| 大香蕉久久成人网| 美国免费a级毛片| 中文字幕人妻丝袜一区二区| 女人精品久久久久毛片| 免费在线观看视频国产中文字幕亚洲| 99久久人妻综合| 久久精品国产亚洲av高清一级| 国产日韩一区二区三区精品不卡| 身体一侧抽搐| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 欧美中文日本在线观看视频| 韩国av一区二区三区四区| 国产蜜桃级精品一区二区三区| 欧美日韩一级在线毛片| 咕卡用的链子| 亚洲久久久国产精品| 成年女人毛片免费观看观看9| 亚洲精品在线美女| 免费搜索国产男女视频| 午夜91福利影院| 欧美激情极品国产一区二区三区| 久久伊人香网站| 国产男靠女视频免费网站| 69精品国产乱码久久久| 女性被躁到高潮视频| 国产精品野战在线观看 | 波多野结衣高清无吗| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲| 一二三四社区在线视频社区8| 日韩欧美在线二视频| 最好的美女福利视频网| 国产精品久久视频播放| av天堂久久9| 美女大奶头视频| 性少妇av在线| 又黄又爽又免费观看的视频| 国产精品日韩av在线免费观看 | 视频在线观看一区二区三区| 一区二区三区国产精品乱码| 欧美激情 高清一区二区三区| 老司机午夜福利在线观看视频| 亚洲国产精品合色在线| 亚洲av日韩精品久久久久久密| 久久热在线av| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品国产区一区二| 精品国产乱码久久久久久男人| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三| 少妇的丰满在线观看| 大型黄色视频在线免费观看| 99riav亚洲国产免费| 亚洲自偷自拍图片 自拍| 80岁老熟妇乱子伦牲交| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 国产av精品麻豆| 亚洲在线自拍视频| av中文乱码字幕在线| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 久久久久久久久久久久大奶| 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产 | 国产精品永久免费网站| 最新在线观看一区二区三区| 黑人操中国人逼视频| 国产精品二区激情视频| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 国产成人精品在线电影| 国产亚洲欧美精品永久| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 人妻丰满熟妇av一区二区三区| 精品一品国产午夜福利视频| 久久久精品国产亚洲av高清涩受| 亚洲人成网站在线播放欧美日韩| 精品国产美女av久久久久小说| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| av有码第一页| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 国产激情欧美一区二区| 一区二区日韩欧美中文字幕| 桃色一区二区三区在线观看| 亚洲五月色婷婷综合| av网站免费在线观看视频| 搡老熟女国产l中国老女人| 亚洲精品美女久久av网站| 久久精品国产综合久久久| 五月开心婷婷网| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 国产精品二区激情视频| 精品国产乱子伦一区二区三区| 国产精品二区激情视频| 黄色a级毛片大全视频| 亚洲激情在线av| 丁香六月欧美| 国产午夜精品久久久久久| 一级毛片女人18水好多|