• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evolution of convex structure during counter-rotating electrochemical machining based on kinematic modeling

    2021-04-06 02:14:54WenjianCAODengyongWANGZhiyuanRENDiZHU
    CHINESE JOURNAL OF AERONAUTICS 2021年3期

    Wenjian CAO, Dengyong WANG,*, Zhiyuan REN, Di ZHU

    a College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

    b Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016, China

    KEYWORDS Convex structure;Counter-rotating electrochemical machining;Current density;Equivalent kinematic model;Material removal

    Abstract Counter-rotating electrochemical machining (CRECM) is a novel electrochemical machining (ECM) method, which can be used to machine convex structures with complex shapes on the outer surface of casings.In this study,the evolution of the convex structure during CRECM is studied.The complex motion form of CRECM is replaced by an equivalent kinematic model,in which the movement of the cathode tool is realized by matrix equations.The trajectory of the cathode tool center satisfies the Archimedes spiral equation, and the feed depth in adjacent cycles is a constant. The simulation results show that the variations of five quality indexes for the convex structure:as machining time increases,the height increases linearly,and the width reduces linearly,the fillets at the top and root fit the rational function, and the inclination angle of the convex satisfies the exponential function. The current density distributions with different rotation angles is investigated.Owing to the differential distribution of current density on workpiece surface,the convex is manufactured with the cathode window transferring into and out of the processing area.Experimental results agree very well with the simulation, which indicates that the proposed model is effective for prediction the evolution of the convex structure in CRECM.

    1. Introduction

    Electrochemical machining(ECM)is a non-contact machining method, during which the material is removed based on electrochemical anodic dissolution in neutral solutions (e.g. aqueous sodium nitrates).1,2Owing to the advantages such as no relevant tool wear, absence of residual stress and machining deformation,ECM has been widely used in aviation and aerospace applications.3,4However,the ECM process is quite complicated, in which the machining precision is affected not only by the trajectory of the cathode but also by the distribution of the interelectrode gap.5In order to effectively control the processing accuracy in ECM,the prediction of the final shape of a workpiece is an important issue to be studied.6,7Researchers around the globe have optimized the parameters in order to achieve desired anode profile corresponding to a specific tool geometry, and different simulation models have been proposed. Schaarschmidt, et al.8showed a simulation model of electrochemical precision machining with oscillating cathode.The machining accuracy could be improved by optimizing machining parameters. Zhitnikov, et al.9applied the methods of the theory of functions of a complex variable for investigation of the electrochemical machining process. The stepwise function of current efficiency was used to obtain the modeling of the precision process of ECM. Chen, et al.10introduced a simplified algorithm based on the quasi steady state shortcut(QSSSC) to simulate the changes of workpiece shape in pulse electrochemical machining. The shape of the cathode could be optimized to improve the machining accuracy. Jain and Gehlot,11solved 2-D Laplace equation in the interelectrode gap to determine the potential and flux distribution for the anode shape prediction in through-mask electrochemical micromachining (TM-ECMM). Algorithm was developed and implemented in MATLAB to estimate surface corrosion of anode workpiece for finite time steps.Liu,et al.12developed a model to simulate electrochemical micro-machining(EMM).By optimizing the tool structure and machining parameters,the shape accuracy and surface quality in EMM could be effectively improved.

    Based on the literature survey, it is evident that simulation has played an important role in predicting the final shape of the anode workpiece and controlling precision of anode profile.However,the above literature is based on traditional sinking ECM, in which a pre-shaped cathode tool only linearly moves to complete the machining process. In this paper, the prediction of the evolution of the convex structure during counter-rotating electrochemical machining (CRECM) is focused. CRECM is a new electrochemical machining (ECM)method,which can be used to machine many convex structures with complex shapes on the outer surface of casings.13-15Fig.1 shows the principle of CRECM. The cathode tool and anode workpiece rotate at the same rotation speed in different directions, simultaneously, the cathode tool moves towards the anode workpiece at a constant feed rate. The cylindrical surface of the cathode tool has a window, whose interior is insulated. The anode material is dissolved rapidly, and the processed products are carried away by the high-feed electrolyte flowing through the machining area. The desired convex structures on the outer surface of anode workpiece can be obtained with time. In CRECM, electrodes movement are complex and special,which are quite different from traditional ECM.

    In order to realistically simulate the movement process, a geometric motion model of the CRECM is simplified, and mathematical matrix equations for an equivalent kinematic model are established. According to the equivalent kinematic model,the real-time anodic shape evolution is obtained by displacing the boundary proportional to and in the direction of the local current density,and the variations of the current density on the surface of the convex structure are analyzed at different rotation angles. The evolutions of the convex structure at different machining times are obtained, and five quality indexes are used to evaluate the machining accuracy of the convex. A series of CRECM experiments are completed to compare simulation and experimental values. The results fit very well,which verifies the correctness of the proposed model.

    2. Methods

    2.1. Equivalent kinematic model

    In CRECM process, the electrodes rotate and feed linearly,resulting in a complex form of motion, as shown in Fig. 1.In order to simplify the motion model of CRECM, the geometric movement of workpiece and tool are represented in a two-dimensional space as illustrated in Fig. 2. The workpiece is assumed to be stationary, and the cathode tool equivalent kinematic model is built for three steps16: (1) the revolution of the cathode tool around the center O1of the workpiece;(2) the rotation of the cathode tool around its own center O2; (3) the linear feed of the cathode tool towards the anode workpiece. In present study, the matrix equations of submotion are given, and an equivalent kinematic model is established.

    Based on the equivalent kinematic model of CRECM, the coordinate A′X′i,Y′i) can be obtained for any point A(Xi,Yi)on the tool surface after the motion t seconds. The coordinate system is established with the center of the workpiece as the origin O1(0,0), and the starting coordinate of the center of the tool is O2(Xc,Yc).The equivalent kinematic model is classified into three steps:

    Fig. 1 Principle of CRECM.

    Fig. 2 Schematic diagram of equivalent kinematic model for CRECM.

    (1) The first step: revolution

    The revolution of the tool around the center O1of the workpiece at rotation speed w for t seconds, and the coordinate O2(X′c, Y′c) of the tool center is determined as follows:

    (2) The second step: rotation

    (3) The third step: linear feed

    2.2. Material removal model

    Based on Faraday’s law,17the material removal model for CRECM is proposed. For the simplification of the model, it can be considered that the bubble content is fixed, so the conductivity of the electrolyte is treated as a constant.18-20In addition, real-time anodic shape evolution can be achieved by controlling the movement of coordinate points on the anode surface, and the geometry of the convex structure can be predicted.

    The electrode surfaces are regarded as equipotential surfaces, and the potential obeys Laplace equation21:

    2.3. Preset conditions

    According to the modeling of tool motion and the evolution process for the convex structure,necessary domain and boundaries for CRECM are built up, as shown in Fig. 3. A twodimensional simulation model includes an electrolyte domain Ω, anode boundary (Γ1), cathode boundaries (Γ2, Γ3, Γ4, Γ5),and tank boundary (Γ6). Γ6is the boundary of the inner wall of the electrolyte tank, as shown in Fig. 1. The movement of the cathode boundary conforms to Eq.(5),and the movement of Γ6satisfies the revolution equation around O1.

    Fig. 3 Domain and boundaries for CRECM.

    The applied voltage at the anode boundary (Γ1):

    The cathode boundaries include arc boundary (Γ2) and window boundary (Γ3, Γ4, Γ5):

    Based on the modeling of equivalent motion and material removal, the real-time anode boundary evolution can be obtained by displacing the boundary proportional to and in the direction of the local current density. The electrolyte domain is divided by a triangular mesh, which is refined in a small interelectrode gap. For all cases, simulation software(Ansys 19.0)is applied to calculate the evolution of the convex structure during CRECM.

    3. Simulation results and discussion

    3.1. Trajectory of the cathode tool

    With the model of CRECM given above, the variation of the equivalent movement of the tool is obtained. The simulated parameters are particularly chosen: the applied voltage is 25 V, the tool feed rate is 0.08 mm/min, the initial interelectrode gap is 0.2 mm, the rotating speed is 0.5 r/min, the diameters of the workpiece and the tool are 50 mm. In Fig. 4, the trajectory of the center O2of the cathode tool in each cycle(T) is a spiral, and the tool feed depth in adjacent cycles is a constant (L), which can be determined as follows:

    Based on the movement characteristics of the cathode tool,the trajectory of the center O2is isometric spiral, which satisfies the Archimedes spiral equation25:

    Fig. 4 Trajectory of center O1 of cathode tool for 5T.

    3.2. Quality indexes for convex structure

    Fig.5(a)shows the evolution of the convex structure at different machining times. As the machining time increases, the material is continuously dissolved under electrolysis, and the convex is getting slimmer and higher. In the same machining time, the amount (S) of material dissolved on the anode surface gradually decreases linearly, as shown in Fig. 5(b). This is because the tool feed depth in adjacent cycles is a constant in Section 3.1.Based on the characteristics of the convex structure, the machining accuracy of the convex structure can be evaluated from five quality indexes: the height H, the width D,the fillet RTat the top,the fillet RRat the root,and the inclination angles β of the sidewall, as shown in Fig. 6.

    3.2.1. Height

    As the cathode tool feeds at a constant speed, the height increases linearly in Fig. 7(a). Due to the stray corrosion, the height growth rate of the convex structure is less than the tool feed rate. Stray corrosion is caused by the existence of stray current during material electrochemical dissolution, and it plays an important role in affecting the machining accuracy.Fig. 7(b) shows the thickness of stray corrosion in the height direction increases linearly with the increase of machining time.

    Fig. 5 Simulation results of convex structure.

    Fig. 6 Five quality indexes of convex.

    Fig. 7 Simulation results of height.

    Fig. 8 Simulation results of width.

    Fig. 9 Variation of fillet radius.

    Fig. 10 Variation of inclination angle.

    The height of the convex can be estimated as follow:

    where R4is the radius of the finial workpiece.

    The thickness (Hs) of stray corrosion can be calculated as:

    where R1is the radius of the initial workpiece,R2is the radius at the top of the convex structure,F=vt,which is the cathode tool feed depth.

    3.2.2. Width

    According to Fig. 6, the width of the structure can be defined as the chord length of the circle,whose radius is R3,it is calculated as follows:

    As the machining time increases, the width of the convex decreases linearly,which gradually moves away from the cathode window width in Fig. 8(a). This is because the material in the width direction is linearly removed, as shown in Fig. 8(b).

    The width (D) of the convex can be estimates as follow:

    The material removal thickness (Dt) in the width direction can be obtained:

    3.2.3. Fillet radius at the top and root

    In order to obtain the top and root fillet radius,the simulation data is fitted by using least squares, and the constraints to be met are as follows:

    In Fig. 9, the top and root fillet radius show a trend of decreasing first and then increasing with time. The minimum top fillets radius is 1.43 mm at 15 min, and the minimum root fillets radius is 0.99 mm at 21 min.The top and root fillets radius can be expressed,and both of them fit the rational function:

    3.2.4. Inclination angle

    Based on the characteristics of the convex structure, it has an inclination angle β,which can be defined as the angle between the sidewall of the convex and the vertical direction, as shown in Fig. 6. According to the data fitting, the least squares method is used to solve the coefficients p, q of the regression line equation:

    Fig. 11 Current density on surface of convex structure at different rotation angles.

    Fig. 10. shows the variation of the inclination angle. The results indicate that the inclination angle decreases with the increase of the machining time. When the machining time is 80.2 min, the inclination angle is zero. The closer the inclination angle is to zero degrees,the higher the machining accuracy of the convex is. When the machining time exceeds 80.2 minutes,the inclination angle is negative.In addition,the variation of the inclination angle satisfies the exponential function as follows:

    3.3. Discussion

    Based on the mathematical model for CRECM in Section 2,the variation of the current density on the anode surface at different rotation angles during the 30th rotation is investigated,as shown in Fig. 11. The different rotation angles can be divided into three parts. The first part is that the cathode window transfers into the processing area at rotation angles -20°and -10°, as shown in Fig. 11(a) and (b). The current density has inflection points (B, E) at the minimum gap, which decreases as the cathode window gradually transfers into the machining zone. This means that electrochemical dissolution is reduced in here. The high points (C, G) of stray current is on the convex top, which aggravates the stray corrosion in here.

    The second part is that the cathode window faces the convex structure at rotation angle 0°, as shown in Fig. 11(c). Due to the current density on the convex surface is more than zero in Fig. 11, it can cause stray corrosion, and the thickness of stray corrosion increases with time in Fig. 6(b). The currents on the convex sidewall completes the material removal in the width direction, and the width of the structure decreases linearly with time in Fig.7(a).The current density on the sidewall region of the convex is steeply changed, this means that the position of the different height on the side wall causes uneven electrochemical dissolution, which produces an inclination angle β in Fig. 10. In addition, the current density between the sidewall and the top of the convex is arc transition, and the current density between the sidewall and the root of the convex holds three inflection points (I, K, M) on one side, in where the fillet corrosion occurs, and the variation of the fillet is shown in Fig. 9.

    The third part is that the cathode window transfers out of the processing area at rotation angles 10° and 20°, as shown in Fig. 11(d) and (e). The stray current at the high points (N,U)is reduced,and the stray corrosion is weakened on the convex surface. The current density at the inflection points (P, Q)away from the convex surface becomes stronger,which means that the electrochemical dissolution increases in here.Based on the tool window continuously transferring into and out of the processing area, the convex structure is manufactured.

    4. Experimental validation

    4.1. Experimental procedure

    Following the above simulations, a self-designed machining tool was used to study the evolution of the convex structureduring CRECM,as shown in Fig.12.The workpiece and tool rotated and fed linearly,which were controlled by shafts.10wt% NaCl was used as the electrolyte, which was cleaned through a filter. The electrical energy required during processing was provided by a DC power supply.In order to manufacture the convex structure on the workpiece surface, the tool surface was machined with a rectangular window, whose interior was insulated by ceramic. Experimental tests for different heights of the convex were conducted with different machining time:25,50,75 min and 90 min,and the machined surface profile was obtained by a coordinate measuring machine(CMM).The height H,the width D,the fillet RTat the top,the fillet RRat the root, and the inclination angles β of the convex were obtained by fitting the data points through Matrix Laboratory(MATLAB 2016a). Table 1 summarized the experimental parameters used for the CRECM.

    Table 1 Machining parameters for CRECM.

    Fig. 12 Schematic of machining tool.

    Fig. 13 Top-view of convex at different machining time.

    Fig. 14 Comparison of simulated and experimental results for convex profile at different machining time.

    Fig. 15 Comparison of simulated and experimental quality indexes.

    4.2. Experimental results

    A series of machining tests are performed to validate the effectiveness of the proposed simulation model in CRECM at different machining time. Fig. 13 exhibits top-view profiles of the convex obtained at different machining time: 25, 50, 75,and 90 min. The results indicated that the cross-sectional profile of the convex is getting slimmer and higher with time, and the inclination angles of the sidewall gradually decrease. This fact is in good agreement with the simulated results, as shown in Fig. 14. As illustrated in Fig. 15, the five quality indexes were measured.With the increase of time,the height H,the fillet RTand RRshow an upward trend, the width D and the inclination angles β show a downward trend. The variations of these quality indexes are consistent with the Section 3.2.Based on consideration of the smaller inclination angle(-0.51°), the machining performance obtained at machining time of 90 min is found to be acceptable for the industrial applications.

    5. Conclusions

    (1) In this paper, the evolution of the convex structure is investigated based on kinematic modeling, which is verified by CRECM experiments.The main conclusions are as follows:

    (2) The mathematical matrix equation for an equivalent kinematic model during CRECM is established, and the trajectory of the tool center satisfies the Archimedes spiral equation.

    (3) The variations of the five quality indexes for the convex structure are obtained: as machining time increases, the height increases linearly, the width reduced linearly, the fillets at the top and root fit the rational function, and the inclination angle of the convex satisfies the exponential function.

    (4) The simulation results indicate that stray current is the cause of stray corrosion on the top, and the inflection points and arc transition of the current density cause rounded corrosion at the root and top of the convex.The steep drop and uneven distribution of the current density on the sidewall of the convex produces an inclination angle,which can be obtained range from positive to negative.

    (5) Experimental observations show a good correlation with the simulated values, and it can provide theoretical guidance to obtain desired convex structure during CRECM.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors wish to acknowledge the financial support provided by National Natural Science Foundation of China(51805259), Natural Science Foundation of Jiangsu Province of China(No.BK20180431),Postdoctoral Science Foundation of China(No.2019M661833),Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology and Young Elite Scientists Sponsorship Program by CAST.

    亚洲精品国产av成人精品| 国产主播在线观看一区二区| 亚洲精品一区蜜桃| 日韩欧美一区视频在线观看| 国产伦理片在线播放av一区| 午夜福利免费观看在线| 99国产综合亚洲精品| 日韩,欧美,国产一区二区三区| 亚洲精品国产精品久久久不卡| 精品亚洲成国产av| 好男人电影高清在线观看| 嫩草影视91久久| 十八禁高潮呻吟视频| 亚洲国产毛片av蜜桃av| 久久久久久久国产电影| 国产精品一二三区在线看| 啦啦啦视频在线资源免费观看| 午夜91福利影院| 午夜日韩欧美国产| 一级片'在线观看视频| 国产精品亚洲av一区麻豆| 亚洲av男天堂| 国产区一区二久久| 熟女少妇亚洲综合色aaa.| 男女免费视频国产| 亚洲精品中文字幕一二三四区 | 九色亚洲精品在线播放| 麻豆乱淫一区二区| 成年av动漫网址| 国产亚洲av片在线观看秒播厂| 精品国产一区二区三区四区第35| 久久精品国产亚洲av香蕉五月 | 午夜老司机福利片| 久9热在线精品视频| 亚洲国产精品一区二区三区在线| 亚洲精华国产精华精| 国产精品久久久久久人妻精品电影 | 中国美女看黄片| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 午夜福利一区二区在线看| 久久99一区二区三区| 久久久久视频综合| 一边摸一边抽搐一进一出视频| videos熟女内射| 黑丝袜美女国产一区| 人人妻人人澡人人看| 国产成人av激情在线播放| 国产精品一二三区在线看| 久久中文看片网| 亚洲精华国产精华精| 夫妻午夜视频| 精品少妇一区二区三区视频日本电影| 在线精品无人区一区二区三| 国产一区二区三区av在线| av天堂久久9| 国产精品国产三级国产专区5o| 美女午夜性视频免费| 男女之事视频高清在线观看| 各种免费的搞黄视频| 我的亚洲天堂| 免费久久久久久久精品成人欧美视频| 一本一本久久a久久精品综合妖精| 99精国产麻豆久久婷婷| 亚洲人成电影观看| 一本色道久久久久久精品综合| 真人做人爱边吃奶动态| 国产精品免费视频内射| 亚洲中文字幕日韩| 十八禁高潮呻吟视频| 国产欧美亚洲国产| 亚洲精华国产精华精| 亚洲国产中文字幕在线视频| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 人人妻,人人澡人人爽秒播| 99re6热这里在线精品视频| 亚洲国产欧美一区二区综合| 日韩大码丰满熟妇| 久久精品亚洲av国产电影网| 亚洲av男天堂| 999久久久国产精品视频| 午夜福利视频在线观看免费| 亚洲视频免费观看视频| 久久女婷五月综合色啪小说| 亚洲激情五月婷婷啪啪| 国产一区二区在线观看av| 丰满迷人的少妇在线观看| 亚洲精品国产av成人精品| 老熟妇仑乱视频hdxx| av欧美777| 欧美日韩亚洲综合一区二区三区_| 中文欧美无线码| 热99re8久久精品国产| 丰满迷人的少妇在线观看| 高潮久久久久久久久久久不卡| 欧美97在线视频| 国产高清视频在线播放一区 | 日本精品一区二区三区蜜桃| 岛国毛片在线播放| 大型av网站在线播放| 成人黄色视频免费在线看| 各种免费的搞黄视频| 天堂8中文在线网| 免费在线观看视频国产中文字幕亚洲 | av在线老鸭窝| 捣出白浆h1v1| 麻豆av在线久日| 免费不卡黄色视频| 亚洲国产精品一区三区| 99国产精品一区二区三区| 精品亚洲乱码少妇综合久久| 欧美日本中文国产一区发布| kizo精华| tocl精华| 我的亚洲天堂| 建设人人有责人人尽责人人享有的| 欧美日韩精品网址| 宅男免费午夜| 亚洲精品粉嫩美女一区| 俄罗斯特黄特色一大片| 久久久国产成人免费| 夜夜夜夜夜久久久久| 精品国内亚洲2022精品成人 | 18禁国产床啪视频网站| 亚洲精品日韩在线中文字幕| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 秋霞在线观看毛片| 欧美在线黄色| 亚洲av欧美aⅴ国产| 亚洲成国产人片在线观看| 真人做人爱边吃奶动态| 人妻人人澡人人爽人人| 在线观看www视频免费| 成年动漫av网址| 男女之事视频高清在线观看| 69av精品久久久久久 | 午夜久久久在线观看| 国产亚洲精品一区二区www | 精品久久久久久电影网| av一本久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 青春草亚洲视频在线观看| 国产成人a∨麻豆精品| 男人爽女人下面视频在线观看| 韩国精品一区二区三区| 国产一区二区三区综合在线观看| 一级片免费观看大全| 在线av久久热| 我的亚洲天堂| 777久久人妻少妇嫩草av网站| 国产亚洲精品第一综合不卡| 久久久久精品人妻al黑| 麻豆av在线久日| 大片电影免费在线观看免费| 一本大道久久a久久精品| 国产欧美日韩一区二区三区在线| 亚洲av美国av| 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 久久久精品免费免费高清| 国产欧美日韩一区二区精品| 女性被躁到高潮视频| 18禁国产床啪视频网站| 女警被强在线播放| 岛国在线观看网站| 日韩三级视频一区二区三区| 亚洲国产欧美在线一区| 另类精品久久| 男女免费视频国产| 国产免费视频播放在线视频| 国产一卡二卡三卡精品| 久久精品久久久久久噜噜老黄| 不卡av一区二区三区| 热99久久久久精品小说推荐| 操美女的视频在线观看| 另类精品久久| 在线看a的网站| 国产精品 欧美亚洲| 国产成人免费无遮挡视频| 精品第一国产精品| 99久久99久久久精品蜜桃| 我要看黄色一级片免费的| av天堂久久9| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩大片免费观看网站| 黑人操中国人逼视频| www.自偷自拍.com| 成人免费观看视频高清| 精品熟女少妇八av免费久了| 超色免费av| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 99香蕉大伊视频| 免费日韩欧美在线观看| 国产免费现黄频在线看| 青春草亚洲视频在线观看| 女人被躁到高潮嗷嗷叫费观| 免费观看av网站的网址| 中文字幕av电影在线播放| 欧美在线黄色| 亚洲国产av影院在线观看| 国产精品1区2区在线观看. | 欧美日韩黄片免| 狠狠婷婷综合久久久久久88av| av一本久久久久| 99久久人妻综合| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 欧美黄色片欧美黄色片| 老司机福利观看| 成人av一区二区三区在线看 | 动漫黄色视频在线观看| 99精国产麻豆久久婷婷| 久久青草综合色| 国产又爽黄色视频| 99久久国产精品久久久| 亚洲五月色婷婷综合| 国产精品自产拍在线观看55亚洲 | 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 黄片大片在线免费观看| 人妻人人澡人人爽人人| 国产一区二区三区综合在线观看| 亚洲精品国产色婷婷电影| 精品人妻1区二区| 亚洲精品久久久久久婷婷小说| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区 | 亚洲欧美清纯卡通| 一二三四社区在线视频社区8| 操美女的视频在线观看| 999精品在线视频| 69av精品久久久久久 | 欧美+亚洲+日韩+国产| 美女大奶头黄色视频| 国产成人精品久久二区二区免费| 人妻一区二区av| 少妇的丰满在线观看| 飞空精品影院首页| 又大又爽又粗| 在线 av 中文字幕| 国产男女超爽视频在线观看| 免费在线观看日本一区| 在线观看免费视频网站a站| 日韩有码中文字幕| 热re99久久精品国产66热6| 免费观看av网站的网址| 窝窝影院91人妻| 在线观看免费视频网站a站| 日韩有码中文字幕| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 啦啦啦在线免费观看视频4| 久久精品熟女亚洲av麻豆精品| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看 | 午夜视频精品福利| 久久精品成人免费网站| 超碰成人久久| 精品国产一区二区三区久久久樱花| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 久久99一区二区三区| 天堂8中文在线网| 亚洲少妇的诱惑av| 国产伦人伦偷精品视频| 国产片内射在线| 亚洲精品成人av观看孕妇| 亚洲九九香蕉| 精品高清国产在线一区| 国产在线免费精品| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 99热国产这里只有精品6| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 首页视频小说图片口味搜索| 欧美一级毛片孕妇| 性色av乱码一区二区三区2| 久久这里只有精品19| 亚洲欧美一区二区三区久久| videos熟女内射| 亚洲av日韩在线播放| 欧美少妇被猛烈插入视频| 在线观看www视频免费| 女人久久www免费人成看片| 欧美黄色淫秽网站| 成年人午夜在线观看视频| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 亚洲国产欧美网| 日韩视频在线欧美| 丝袜人妻中文字幕| 日日夜夜操网爽| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 日本91视频免费播放| 国产黄色免费在线视频| 精品高清国产在线一区| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 大片免费播放器 马上看| 日本精品一区二区三区蜜桃| 久久影院123| 日韩精品免费视频一区二区三区| 夜夜夜夜夜久久久久| 男人舔女人的私密视频| 久9热在线精品视频| 欧美成人午夜精品| 丝袜人妻中文字幕| 亚洲欧美激情在线| 在线观看免费日韩欧美大片| 国产亚洲一区二区精品| 成年人黄色毛片网站| 一二三四在线观看免费中文在| 久久99一区二区三区| 又黄又粗又硬又大视频| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕精品免费在线观看视频| 少妇裸体淫交视频免费看高清 | 丝袜在线中文字幕| 国产有黄有色有爽视频| 操美女的视频在线观看| av福利片在线| 国产亚洲精品一区二区www | 多毛熟女@视频| 秋霞在线观看毛片| 精品国产乱码久久久久久男人| 搡老乐熟女国产| 亚洲av成人不卡在线观看播放网 | 一本大道久久a久久精品| 免费在线观看完整版高清| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 搡老乐熟女国产| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 日韩免费高清中文字幕av| 国产一区二区激情短视频 | 久久久久久久大尺度免费视频| 日本a在线网址| 午夜免费鲁丝| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| 9色porny在线观看| 国产精品影院久久| 男女边摸边吃奶| 亚洲成人手机| 久久亚洲精品不卡| bbb黄色大片| 男人爽女人下面视频在线观看| 国产精品二区激情视频| 日韩大片免费观看网站| 999精品在线视频| 满18在线观看网站| 啦啦啦在线免费观看视频4| 一区福利在线观看| 国产精品秋霞免费鲁丝片| 一级a爱视频在线免费观看| 天天添夜夜摸| 精品国产国语对白av| 成人免费观看视频高清| 精品少妇内射三级| 中文字幕另类日韩欧美亚洲嫩草| 在线 av 中文字幕| 亚洲精品自拍成人| 久久久久久免费高清国产稀缺| 久久九九热精品免费| 国产精品久久久久久精品古装| 欧美日韩视频精品一区| 成年av动漫网址| 三级毛片av免费| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 国产精品影院久久| 可以免费在线观看a视频的电影网站| 波多野结衣av一区二区av| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频| 久久天堂一区二区三区四区| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 亚洲国产欧美网| 叶爱在线成人免费视频播放| 久久久久网色| 最新的欧美精品一区二区| 亚洲欧美激情在线| 欧美日韩视频精品一区| 亚洲av成人不卡在线观看播放网 | av欧美777| 夫妻午夜视频| 99精品欧美一区二区三区四区| 国产日韩一区二区三区精品不卡| 国产欧美亚洲国产| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 国产1区2区3区精品| 午夜福利在线免费观看网站| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 久久人人爽人人片av| 欧美日韩成人在线一区二区| 久久久久久久大尺度免费视频| 热99re8久久精品国产| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| 欧美大码av| 黄片小视频在线播放| 我的亚洲天堂| 欧美日韩中文字幕国产精品一区二区三区 | 天堂中文最新版在线下载| 免费日韩欧美在线观看| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 亚洲人成电影免费在线| 日本五十路高清| 一本—道久久a久久精品蜜桃钙片| 日本欧美视频一区| 成人影院久久| 欧美日韩国产mv在线观看视频| 亚洲成人国产一区在线观看| 国产一区二区三区av在线| 一级毛片女人18水好多| 亚洲欧美日韩高清在线视频 | 日日摸夜夜添夜夜添小说| 日韩电影二区| 免费在线观看黄色视频的| 国产精品一二三区在线看| 免费女性裸体啪啪无遮挡网站| www.熟女人妻精品国产| 在线观看一区二区三区激情| 国产麻豆69| 一边摸一边做爽爽视频免费| 69av精品久久久久久 | 日韩三级视频一区二区三区| 国产欧美日韩一区二区精品| 一级a爱视频在线免费观看| 国产精品自产拍在线观看55亚洲 | 国产精品自产拍在线观看55亚洲 | 日本五十路高清| 久久香蕉激情| 亚洲精品第二区| 最近最新中文字幕大全免费视频| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 一级毛片电影观看| 男人添女人高潮全过程视频| 欧美日韩亚洲国产一区二区在线观看 | 麻豆av在线久日| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 搡老岳熟女国产| 正在播放国产对白刺激| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 亚洲精品自拍成人| 久久久久久久国产电影| 久久久久国产一级毛片高清牌| 国产精品国产av在线观看| 我的亚洲天堂| 久久人妻福利社区极品人妻图片| 午夜激情av网站| 男人操女人黄网站| 99久久人妻综合| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 黑人操中国人逼视频| 精品福利永久在线观看| 每晚都被弄得嗷嗷叫到高潮| 中文字幕色久视频| 亚洲av美国av| av电影中文网址| 男女边摸边吃奶| 纯流量卡能插随身wifi吗| 日韩中文字幕视频在线看片| 亚洲av美国av| 国产亚洲精品一区二区www | 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品电影小说| 日韩大码丰满熟妇| av天堂在线播放| 亚洲综合色网址| 日韩视频在线欧美| 亚洲精品久久午夜乱码| 91av网站免费观看| 岛国在线观看网站| 久久久国产成人免费| 一个人免费看片子| 欧美大码av| 一个人免费在线观看的高清视频 | 在线观看免费视频网站a站| 亚洲情色 制服丝袜| 老司机影院毛片| 国产精品1区2区在线观看. | av有码第一页| av不卡在线播放| 青草久久国产| 国产野战对白在线观看| 久久久久精品国产欧美久久久 | 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 丰满迷人的少妇在线观看| 国产精品自产拍在线观看55亚洲 | 我要看黄色一级片免费的| 超色免费av| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产中文字幕在线视频| 国产三级黄色录像| 国产老妇伦熟女老妇高清| 男人操女人黄网站| 久久国产精品男人的天堂亚洲| 91老司机精品| 亚洲欧美精品自产自拍| 黄色 视频免费看| 亚洲国产欧美在线一区| 久久精品熟女亚洲av麻豆精品| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕一二三四区 | 十八禁网站免费在线| 超碰成人久久| 一区在线观看完整版| 日本欧美视频一区| 看免费av毛片| 久久99一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 熟女少妇亚洲综合色aaa.| www.av在线官网国产| 下体分泌物呈黄色| 日韩有码中文字幕| 日韩欧美一区视频在线观看| 精品少妇内射三级| 最新的欧美精品一区二区| 亚洲少妇的诱惑av| 两个人看的免费小视频| 欧美日韩亚洲综合一区二区三区_| 热99国产精品久久久久久7| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区mp4| 少妇人妻久久综合中文| 国产一卡二卡三卡精品| 夜夜骑夜夜射夜夜干| 国产一区二区三区av在线| 巨乳人妻的诱惑在线观看| 一区二区三区四区激情视频| 电影成人av| 国产在线一区二区三区精| 正在播放国产对白刺激| 国产精品av久久久久免费| 性色av一级| 国产熟女午夜一区二区三区| 精品一区二区三卡| 久久99热这里只频精品6学生| 亚洲精品中文字幕一二三四区 | 国产av一区二区精品久久| 99国产精品99久久久久| 最新的欧美精品一区二区| 丝袜喷水一区| 亚洲 欧美一区二区三区| 久久久久久久久久久久大奶| 亚洲精品一区蜜桃| 黑人欧美特级aaaaaa片| 天堂中文最新版在线下载| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 90打野战视频偷拍视频| 一级a爱视频在线免费观看| 精品一区二区三区四区五区乱码| h视频一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区欧美精品| 精品亚洲成a人片在线观看| 成人影院久久| 中文字幕另类日韩欧美亚洲嫩草| 悠悠久久av| 一级毛片电影观看| 久久人妻福利社区极品人妻图片| 国产成人欧美| 美女扒开内裤让男人捅视频| 日韩视频一区二区在线观看| 精品国产超薄肉色丝袜足j| 人妻久久中文字幕网| videosex国产| 久久久精品区二区三区| 2018国产大陆天天弄谢| 天天添夜夜摸| 美女视频免费永久观看网站| 欧美国产精品一级二级三级| 日韩欧美免费精品| 美女视频免费永久观看网站| 一级毛片电影观看| 肉色欧美久久久久久久蜜桃| 三上悠亚av全集在线观看| 欧美另类一区| 免费观看av网站的网址| 18禁观看日本| av天堂久久9| 国产成人精品无人区| 国产成人精品在线电影| 欧美成人午夜精品| 老司机福利观看| 国产精品自产拍在线观看55亚洲 | 我要看黄色一级片免费的| 免费在线观看黄色视频的|