• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    lmage Classification with Superpixels and Feature Fusion Method

    2021-04-02 12:26:52

    Abstract—This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the original image,the proposed method first segments the input image into superpixels and,then,several different types of features are calculated according to these superpixels.To increase classification accuracy,the dimensions of these features are reduced using the principal component analysis (PCA) algorithm followed by a weighted serial feature fusion strategy.After constructing a coding dictionary using the nonnegative matrix factorization (NMF) algorithm,the input image is recognized by a support vector machine (SVM) model.The effectiveness of the proposed method was tested on the public Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method can effectively improve image classification accuracy.

    1.Introduction

    Image classification is an important artificial intelligence task[1]-[4].As the number of images from the Internet increases,it is becoming increasingly difficult to recognize the correct categories of input images due to their differences in scales,viewpoints,rotations,and cluttered background.To solve these problems,many studies have introduced various efficient algorithms and models,such as the bag-of-words (BOW) model[5],sparse coding (SC)algorithm[6],[7],support vector machine (SVM) model[8],and deep learning (DL)[9]-[12].

    Over the past ten years,the BOW model has been widely applied in image classification and many effective algorithms have been proposed.For example,Yanget al.introduced spatial pyramid matching using the sparse coding (ScSPM) model and applied the SC algorithm to calculate nonlinear codes[6].Yuet al.discussed a local coordinate coding (LCC) mechanism and localized SC[13],and Wanget al.changed the constraint from SC to locality,and feature vectors were mapped through linear coding[14].

    During the past five years,DL models have seen significant progress because of their powerful learning abilities,especially when dealing with large datasets[15].For example,Zhanget al.proposed an image classification method based on a deep SC network[9],and Barat and Ducottet introduced deep convolutional neural networks(CNNs) with string representations for classification[16].

    While BOW and DL models have unique limitations,other strategies have been introduced in recent years,e.g.,the heterogeneous structure fusion method[17]and multi-modal self-paced learning (MSPL) algorithm by Xuet al.[18].

    In this paper,we propose an image classification algorithm with superpixels and feature fusion.Our primary contributions are summarized as follows.

    1) Differing from most classical image classification algorithms that extract local features directly from the input image,the proposed method calculates the superpixels of the original image using the fast graph-based segmentation algorithm,and all features are extracted based on these superpixels.

    2) The final representation features are constructed using a strategy of weighted serial feature fusion of global,texture,and appearance features.

    3) Codebook is an important part in the BOW model.In most of the algorithms,the codebook is learned by one specific feature,such as the local feature of the scale-invariant feature transform (SIFT) and the global feature of GIST.In this paper,the codebook is learned using fused SIFT,GIST,and color thumbnail features.

    The effectiveness of the proposed method was tested on the public Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method can effectively improve image classification accuracy.

    The remainder of this paper is organized as follows.Section 2 discusses the proposed image classification method in detail,and Section 3 discusses experiments conducted to evaluate the effectiveness of our algorithm.Finally,Section 4 concludes the paper.

    2.Proposed Method

    An outline of the proposed image classification method based on superpixels and feature fusion is shown in Fig.1.In the proposed method,the input image is first segmented into superpixels using a fast graph-based segmentation algorithm.Then,three different types of features are applied to these superpixels to extract the global,appearance,and texture features.To increase classification accuracy,the principal component analysis (PCA) dimension reduction method is applied to the calculated features,and the final feature descriptors of each superpixel are constructed via weighted feature fusion.According to the learned hybrid features,a codebook is constructed using the nonnegative matrix factorization (NMF)algorithm,and the input image is recognized using an SVM model after SC.

    In the following,we will describe the proposed image classification method in detail.

    Fig.1.Outline of proposed image classification algorithm.

    2.1.Superpixel Extraction

    The features in most image classification algorithms are extracted from the pixels of the input image.In the proposed method,the input images are recognized based on superpixels.

    Superpixels are the sets of neighboring pixels with a homogeneous property in remote sense images.It is highly likely that all pixels in the same superpixel belong to an identical class in an image classification task.Therefore,superpixels well express the spatial contextual information of the original image.Superpixels can be obtained using a segmentation algorithm,e.g.,graph-based,normalized cut (NCut),Turbopixel,quick-shift,and simple linear iterative clustering (SLIC) algorithms.In the proposed method,superpixels are calculated based on the fast graph-based segmentation algorithm introduced by Felzenszwalb and Huttenlocher[19].

    2.2.Feature Extraction

    Feature extraction is a significant step in the BOW model,and many features have been widely used in different studies,e.g.,local features,histogram features,texton features,curvature features,SIFT features,and histogram of oriented gradient (HOG)features.In the proposed algorithm,we select three types of features to describe superpixels,i.e.,global,appearance,and texture features.The details of the selected features are shown in Table 1.As shown,the GIST feature is employed as the global feature,the dilated SIFT histogram feature is the texture feature,and the color thumbnail is the appearance feature.The GIST feature comprises three-channel red,green,blue (RGB) and three scales.The size of the color thumbnail is 8 × 8 pixels.The dimensions of the global,texture,and appearance features are 960,100,and 192,respectively.

    Table 1:Superpixel features in proposed algorithm

    2.3.Dimension Reduction

    After features extraction,the calculated features contain useful information with strong representations and redundant information.Selecting a meaningful description of the input data and eliminating redundant components to achieve a compact expression of the data is a specific task in classification problems,and PCA is a common dimension reduction technique.The main idea of PCA is performing orthogonal transformation to the basis of correlation eigenvectors and projecting them into the subspace expanded by the eigenvectors corresponding to the largest eigenvalues[20].

    We employ the PCA algorithm proposed by Kambhatla and Leen[20]to reduce the dimensionality of image features.

    2.4.Feature Fusion

    The feature fusion technique is widely used in many areas,e.g.,image processing and classification.Feature fusion attempts to extract the most discriminative information from several input features and eliminate redundant information.Feature fusion algorithms in the image classification area can be categorized into two basic classes,i.e.,serial feature fusion and parallel feature fusion.

    Here,letX,Y,andZbe three feature spaces,Ωbe the pattern sample space,andξbe a randomly selected sample inΩ.In addition,α,β,and γ are the feature vectors ofξ,where α∈X,β∈Y,and γ∈Z,respectively.

    According to the serial feature fusion strategy,the definition of a combined feature is given in (1),whereηis the serial combined feature.If the dimensions of α,β,and γ aren1,n2,andn3,respectively,then the dimension of η is given as (n1+n2+n3).

    The parallel feature fusion strategy ofξcan be expressed by the complex vector given in (2),where i and j are imaginary units.If the dimensions of α,β,and γ are not equal,lower-dimensional features should be padded with zeros,so that all the features will have the same dimension prior to being combined.

    In the proposed method,we modify the serial feature fusion strategy and attempt to combine three feature vectors using a weighted serial feature fusion algorithm.Specifically,we define the feature vectors of the global,appearance,and texture features after normalization as f1,f2,and f3,respectively.Then,the fusion feature F can be obtained by (3),wherew1,w2,andw3are the weights of f1,f2,and f3,respectively.

    The values of weightsw1,w2,andw3are set by the single recognition rate of f1,f2,and f3,which are denoted byA1,A2,andA3,respectively.We calculatew1,w2,andw3using (4) to (6).

    2.5.Codebook Learning

    Codebook learning is an important step in the BOW model.It directly determines both the image representation quality and image classification accuracy.In the proposed method,we employ a relaxedk-means clustering algorithm,i.e.,the NMF algorithm according to the formulation defined in (7),where U is the collection of fusion feature descriptors,V=[v1,v2,…,vM]is the learned dictionary withMitems,B=[b1,b2,…,bN],biis anMdimensional binary vector,and ||?||Fis the Frobenius norm[21].

    To reduce the information loss of SC,the NMF algorithm is an SC algorithm with a special constraint that makes all the decomposed components nonnegative[21].

    2.6.Linear ScSPM Model for Classification

    After feature fusion and codebook learning,the final feature vectors are obtained by using the SC algorithm and multi-scale spatial max pooling.Finally,the images are recognized using a linear SVM model[21].Here,we adopt the linear ScSPM model introduced by Yanget al.[6]to solve the optimization problem in (8):

    Here,C=[c1,c2,…,cN]is the cluster membership indicator,andis the sparsity regularization term to obtain a unique solution and significant less quantization error than the spatial pyramid matching (SPM)model[22].

    3.Experimental Evaluation

    We conducted image classification experiments on three widely tested public datasets,i.e.,the Scene-15,Caltech-101,and Caltech-256 datasets.

    To evaluate the effectiveness of the proposed algorithm,we first tested the impact of each feature in Table 1,as well as the influence of the dimension reduction algorithm on the Scene-15 dataset.We also performed comparative evaluations with some state-of-the-art image classification methods on the Scene-15,Caltech-101,and Caltech-256 datasets.In order to achieve reliable and replicable results,experiments for all three datasets were tested 10 times by a random selection strategy.

    3.1.Scene-15 Dataset

    The Scene-15 dataset contains 4485 images in 15 categories.The average image size is 300 × 250 pixels,and the number of images in each category ranges from 200 to 400.Some examples of this dataset are shown in Fig.2 (a).

    We first tested the impact of the features listed in Table 1,and then we investigated the influence of the dimension reduction algorithm.Finally,we compared the proposed method with existing methods on the Scene-15 dataset.

    1) Impact of superpixel features.As shown in Table 1,three different types of features (global,appearance,and texture features) are used in the fusion.The classification accuracy of these features is listed in Table 2,where G,T,and A denote the global,texture,and appearance features,respectively.Note that the classification accuracy was obtained after applying dimension reduction using PCA.

    2) Influence of dimension reduction.Additional experiments were conducted to test the efficiency of dimension reduction using PCA.The experimental results of models with and without PCA obtained on the Scene-15 dataset are shown in Table 3,where G+T+A denotes the proposed method without PCA,and G+T+A+PCA denotes the proposed method with PCA.

    Fig.2.Example images from (a) Scene-15:(a1) bedroom,(a2) highway,and (a3) kitchen;(b) Caltech-101:(b1)airplane,(b2) brain,and (b3) ferry;(c) Caltech-256 datasets:(c1) bathtub,(c2) bulldozer,and (c3) grandpiano.

    Table 2:Classification accuracy of superpixel features on Scene-15 dataset

    Table 3:Experimental results of models with and without PCA on Scene-15 dataset

    3) Comparison with different methods.To demonstrate the effectiveness of the proposed method,comparative tests were performed on the Scene-15 dataset.

    Here,according to common experimental settings,the training set was constructed by randomly selecting 100 images from each category,and the remaining images were used as the testing set.The classification accuracy obtained by several classical image classification models on the Scene-15 dataset is shown in Table 4.Note that all algorithms were executed under the same experimental settings.As shown in Table 4,the proposed method outperformed the kernel spatial pyramid matching (KSPM) method by more than 7% and the baseline ScSPM by approximately 4.5%.In addition,the proposed method outperformed deep network methods,e.g.,the principal component analysis network (PCANet) and deep sparse coding network (DeepSCNet).However,we consider that there is room to improve the proposed method because the heterogeneous structure fusion method[17]outperformed the proposed method by 2.5%.

    Table 4:Comparison with different methods on Scene-15 dataset

    3.2.Caltech-101 Dataset

    The Caltech-101 dataset contains 9144 images from 102 classes (one background class and 101 object classes).The classes in this dataset include leopards,wheelchairs,ferries,and pizza (examples are shown in Fig.2 (b)),and these categories exhibit significant variance in shape.The image resolution in this dataset is 300 × 300 pixels,and the minimum number of images in each class is 31.According to the classical experimental setup for Caltech-101[6],we performed training on 5,10,15,20,25,and 30 images per class,respectively,and the remaining images were used for testing.The final performance was obtained by calculating the average recognition rate of 102 classes[25].

    The classification accuracy obtained by the proposed and existing methods is shown in Table 5.Note that all results were obtained with a codebook trained on 1024 bases.As seen in Table 5,the proposed method outperformed the ScSPM,locality-constrained linear coding (LLC),and parallel key SIFT analysis (PKSA) methods on most test results.The classification accuracy of two label consistentk-means singular value decomposition (LCKSVD) methods was greater than that obtained by the proposed method,when five training images were used per class.However,the proposed method outperformed these LC-KSVD methods when training was performed on 25 and 30 training images per class.

    Table 5:Experimental results on Caltech-101 dataset

    3.3.Caltech-256 Dataset

    The Caltech-256 dataset is a more challenging dataset that contains 30607 images and 257 classes.Compared with the Scene-15 and Caltech-101 datasets,the Caltech-256 dataset comprises more images with greater variabilities in the object size,location,and pose.The number of images in each category is from 80 to 827,and the image size is less than 300 × 300 pixels.

    Following the experimental settings in [6],the proposed method was compared with some classical image classification models under the codebook size of 2048.Here,15,30,45,and 60 training images were used per class,respectively.The results are shown in Table 6.

    Table 6:Comparison results on Caltech-256 dataset

    3.4.Performance Comparison

    The classification performance of the proposed method and the baseline ScSPM method on the three datasets is shown in Fig.3.As can be seen,the proposed method enhanced the baseline method on all three experimental datasets between 1.5% and 4.5% in classification accuracy.

    Fig.3.Comparison of classification accuracy obtained by the proposed and ScSPM methods.

    4.Conclusion

    In this paper,we proposed an image recognition method based on superpixels and feature fusion.In the proposed method,the input image is first segmented into superpixels,and then global,texture,and appearance features are extracted from the calculated superpixels.To improve the classification accuracy,the PCA dimension reduction method is applied to the features,followed by a weighted serial feature fusion algorithm.According to the learned fusion feature,a codebook is constructed using the NMF algorithm,and the input image is recognized using the ScSPM model.Experiments were performed on the Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method outperformed the baseline method on all three databases.In addition,the experimental results also imply that further progress is required to improve the classification accuracy.

    Disclosures

    The authors declare no conflicts of interest.

    欧美激情在线99| 亚洲精品日韩在线中文字幕| 一级爰片在线观看| 久99久视频精品免费| 久久久精品94久久精品| 久久99蜜桃精品久久| 老司机福利观看| 国产精品人妻久久久影院| 久久精品人妻少妇| 国产探花极品一区二区| 亚洲国产精品国产精品| 99在线视频只有这里精品首页| 国产高清国产精品国产三级 | 啦啦啦韩国在线观看视频| 中文字幕精品亚洲无线码一区| 一夜夜www| 美女国产视频在线观看| 日韩欧美 国产精品| 久久久久久久久久成人| 99热这里只有精品一区| 一本久久精品| 熟女人妻精品中文字幕| 最近2019中文字幕mv第一页| 能在线免费看毛片的网站| 国产老妇伦熟女老妇高清| 免费黄色在线免费观看| 成年av动漫网址| 亚洲人成网站高清观看| 联通29元200g的流量卡| 看片在线看免费视频| 国产欧美日韩精品一区二区| 色视频www国产| 精品人妻熟女av久视频| 岛国在线免费视频观看| 麻豆国产97在线/欧美| 亚洲成人中文字幕在线播放| 边亲边吃奶的免费视频| 看十八女毛片水多多多| 国产精品人妻久久久久久| 国产一区有黄有色的免费视频 | 久久精品夜夜夜夜夜久久蜜豆| 国产熟女欧美一区二区| 中国美白少妇内射xxxbb| 久久久久久久久久久丰满| 久久久久性生活片| 日韩欧美精品免费久久| 欧美性猛交╳xxx乱大交人| 日韩中字成人| 在线观看av片永久免费下载| 亚洲经典国产精华液单| 久久久欧美国产精品| 久久精品国产鲁丝片午夜精品| 在线免费观看不下载黄p国产| 一区二区三区免费毛片| 国产精品日韩av在线免费观看| 九九久久精品国产亚洲av麻豆| 一区二区三区高清视频在线| 人人妻人人澡人人爽人人夜夜 | 免费观看性生交大片5| 国产私拍福利视频在线观看| 精华霜和精华液先用哪个| 身体一侧抽搐| 女人久久www免费人成看片 | 99久久中文字幕三级久久日本| 久久久亚洲精品成人影院| 波野结衣二区三区在线| 尾随美女入室| 国产亚洲av片在线观看秒播厂 | 亚洲国产欧美人成| 99久久精品热视频| 只有这里有精品99| 99视频精品全部免费 在线| 18+在线观看网站| 久久久久久久久久久丰满| 欧美3d第一页| 毛片女人毛片| 免费观看人在逋| 国产黄a三级三级三级人| 日韩精品有码人妻一区| 免费看a级黄色片| 日韩人妻高清精品专区| av在线蜜桃| 在线观看66精品国产| 国产又色又爽无遮挡免| 日本一本二区三区精品| 中文字幕免费在线视频6| 国产精品美女特级片免费视频播放器| 国产精品熟女久久久久浪| 久久精品久久精品一区二区三区| 午夜亚洲福利在线播放| 亚洲精品影视一区二区三区av| 一个人免费在线观看电影| 国产视频首页在线观看| 国产亚洲午夜精品一区二区久久 | 美女高潮的动态| 午夜激情欧美在线| 国产精品久久久久久精品电影小说 | 女人久久www免费人成看片 | 色综合站精品国产| av又黄又爽大尺度在线免费看 | 免费看美女性在线毛片视频| 有码 亚洲区| 五月玫瑰六月丁香| 久久人人爽人人爽人人片va| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲5aaaaa淫片| 亚洲精品aⅴ在线观看| 九九在线视频观看精品| 人妻制服诱惑在线中文字幕| 欧美日本视频| 午夜精品一区二区三区免费看| 蜜桃亚洲精品一区二区三区| 韩国高清视频一区二区三区| 久久99热6这里只有精品| 桃色一区二区三区在线观看| 99热全是精品| 国产麻豆成人av免费视频| 亚洲国产精品成人久久小说| 大香蕉97超碰在线| 禁无遮挡网站| 男人的好看免费观看在线视频| 国产在视频线精品| 亚洲五月天丁香| 亚洲高清免费不卡视频| 亚洲国产精品成人综合色| 青青草视频在线视频观看| 国产精品爽爽va在线观看网站| 高清av免费在线| 国产精品一区二区三区四区久久| 亚洲国产欧美在线一区| 久久99热这里只有精品18| www日本黄色视频网| 日日啪夜夜撸| 汤姆久久久久久久影院中文字幕 | 99热这里只有是精品50| 黄色欧美视频在线观看| 波多野结衣巨乳人妻| 日韩一区二区视频免费看| 黄色欧美视频在线观看| 中文字幕久久专区| 成人午夜精彩视频在线观看| 日韩欧美在线乱码| 赤兔流量卡办理| 国产伦精品一区二区三区四那| 99热精品在线国产| 免费一级毛片在线播放高清视频| 免费人成在线观看视频色| 亚洲三级黄色毛片| 真实男女啪啪啪动态图| 国产高清三级在线| 精品久久久久久成人av| 久久久久久久国产电影| 午夜精品国产一区二区电影 | 国产伦在线观看视频一区| 亚洲在久久综合| 一个人看视频在线观看www免费| 日本熟妇午夜| 三级男女做爰猛烈吃奶摸视频| 免费av不卡在线播放| 色网站视频免费| 天堂中文最新版在线下载 | 国产精品人妻久久久影院| 亚洲内射少妇av| 久久久久久久午夜电影| 国产精品爽爽va在线观看网站| 免费大片18禁| 亚洲精品影视一区二区三区av| 丰满少妇做爰视频| 国产精华一区二区三区| 男人和女人高潮做爰伦理| 最近2019中文字幕mv第一页| 免费在线观看成人毛片| 欧美3d第一页| 99热这里只有精品一区| 男女那种视频在线观看| 少妇的逼水好多| 久久99热这里只频精品6学生 | 欧美zozozo另类| 99久久无色码亚洲精品果冻| 日韩av在线大香蕉| 亚洲国产最新在线播放| 国产精品一区www在线观看| 成年免费大片在线观看| 亚洲欧美精品综合久久99| 能在线免费看毛片的网站| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区久久| 国产高清视频在线观看网站| 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性xxxx在线观看| 午夜福利在线观看吧| 人妻系列 视频| 老司机福利观看| 美女被艹到高潮喷水动态| 少妇熟女aⅴ在线视频| av在线观看视频网站免费| 国产一级毛片在线| 亚洲在久久综合| 精品熟女少妇av免费看| 日本与韩国留学比较| 高清日韩中文字幕在线| 国产av不卡久久| 日韩成人av中文字幕在线观看| 97热精品久久久久久| 乱系列少妇在线播放| 中文字幕亚洲精品专区| 丝袜喷水一区| 成人高潮视频无遮挡免费网站| 国产精品一区二区在线观看99 | 精品酒店卫生间| 精品不卡国产一区二区三区| 国产精品一区二区性色av| 久久欧美精品欧美久久欧美| 亚洲av男天堂| 国产亚洲最大av| 女人十人毛片免费观看3o分钟| 国产精品久久久久久精品电影小说 | 久久久久久伊人网av| 免费电影在线观看免费观看| 高清av免费在线| 日本免费a在线| 99久久无色码亚洲精品果冻| 亚洲欧美日韩高清专用| 青春草国产在线视频| 日韩欧美国产在线观看| 久久久久久久久中文| 熟女电影av网| 2022亚洲国产成人精品| 1000部很黄的大片| 国产精品无大码| 草草在线视频免费看| 97超视频在线观看视频| 久久久久久久久大av| 国产精品三级大全| 一区二区三区四区激情视频| 日韩亚洲欧美综合| 欧美丝袜亚洲另类| 99久久人妻综合| 99久久精品一区二区三区| 国语自产精品视频在线第100页| 亚洲中文字幕一区二区三区有码在线看| 波多野结衣高清无吗| 久久久久久伊人网av| 欧美性猛交黑人性爽| 久久久色成人| av在线亚洲专区| 自拍偷自拍亚洲精品老妇| 九九热线精品视视频播放| 一边摸一边抽搐一进一小说| 午夜爱爱视频在线播放| 亚洲国产成人一精品久久久| 亚洲天堂国产精品一区在线| 日韩欧美在线乱码| av天堂中文字幕网| 久久久亚洲精品成人影院| 国产一区二区在线观看日韩| 国产高清视频在线观看网站| 乱人视频在线观看| 18禁在线无遮挡免费观看视频| 少妇人妻精品综合一区二区| 久久久久久久国产电影| 小蜜桃在线观看免费完整版高清| 国产精品一区二区在线观看99 | 国产黄片视频在线免费观看| 国产精品国产三级国产专区5o | 99久久精品热视频| 日韩强制内射视频| 在现免费观看毛片| 99热这里只有精品一区| 亚洲成av人片在线播放无| 三级国产精品欧美在线观看| 最近最新中文字幕免费大全7| 亚洲高清免费不卡视频| 欧美另类亚洲清纯唯美| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 国产乱来视频区| 国产精品麻豆人妻色哟哟久久 | 少妇高潮的动态图| 91av网一区二区| 亚洲av一区综合| 亚洲成人久久爱视频| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 日本色播在线视频| 国国产精品蜜臀av免费| 欧美色视频一区免费| 最近最新中文字幕大全电影3| 内射极品少妇av片p| 日日啪夜夜撸| 91久久精品国产一区二区三区| 亚洲国产精品成人久久小说| 观看免费一级毛片| 欧美激情久久久久久爽电影| 黄片无遮挡物在线观看| a级毛片免费高清观看在线播放| 午夜免费激情av| 国产久久久一区二区三区| 国产探花极品一区二区| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看 | 国产白丝娇喘喷水9色精品| 村上凉子中文字幕在线| 狂野欧美激情性xxxx在线观看| 国产人妻一区二区三区在| 男女那种视频在线观看| 高清午夜精品一区二区三区| 久久久久久久久大av| 久久韩国三级中文字幕| 精品99又大又爽又粗少妇毛片| 人妻制服诱惑在线中文字幕| 国产不卡一卡二| 免费观看人在逋| 成人二区视频| 日本熟妇午夜| 日本午夜av视频| 久久久精品94久久精品| 亚洲国产最新在线播放| 精品99又大又爽又粗少妇毛片| 亚洲欧美成人精品一区二区| 美女脱内裤让男人舔精品视频| 精品久久久久久久久亚洲| 观看美女的网站| 久久人妻av系列| 天天躁夜夜躁狠狠久久av| 噜噜噜噜噜久久久久久91| 精品无人区乱码1区二区| 久久久久久久久久成人| 黄片无遮挡物在线观看| 日本av手机在线免费观看| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 我要看日韩黄色一级片| 久久精品国产99精品国产亚洲性色| 国产探花极品一区二区| 成人三级黄色视频| 69av精品久久久久久| 日本黄色片子视频| 久久久欧美国产精品| 日韩人妻高清精品专区| 久久精品影院6| 2021少妇久久久久久久久久久| 久久精品国产鲁丝片午夜精品| 黄色日韩在线| 亚洲精品日韩在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲真实伦在线观看| 久久人人爽人人爽人人片va| 亚洲国产精品成人综合色| 久久精品久久久久久久性| 久久这里有精品视频免费| 永久网站在线| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 亚洲国产精品久久男人天堂| 免费av不卡在线播放| 26uuu在线亚洲综合色| 久久6这里有精品| 欧美极品一区二区三区四区| 少妇熟女aⅴ在线视频| 日本五十路高清| 国产高清视频在线观看网站| 亚洲综合精品二区| 欧美成人精品欧美一级黄| 日韩成人伦理影院| 亚洲欧美精品专区久久| 久久99热这里只频精品6学生 | 亚洲在线自拍视频| 天天躁夜夜躁狠狠久久av| 激情 狠狠 欧美| 成年免费大片在线观看| 国产毛片a区久久久久| 免费不卡的大黄色大毛片视频在线观看 | 少妇丰满av| 亚洲精品影视一区二区三区av| 久久精品国产99精品国产亚洲性色| 国产精品.久久久| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 成年免费大片在线观看| 大香蕉久久网| 热99在线观看视频| 男插女下体视频免费在线播放| av专区在线播放| 亚洲欧美日韩无卡精品| 一二三四中文在线观看免费高清| 久久精品国产亚洲av天美| 全区人妻精品视频| 久久精品综合一区二区三区| 在线免费观看不下载黄p国产| 日韩一区二区视频免费看| 亚洲欧美精品专区久久| 欧美一区二区亚洲| 国产91av在线免费观看| 国产极品精品免费视频能看的| 我要看日韩黄色一级片| 午夜福利成人在线免费观看| 日本-黄色视频高清免费观看| 免费看美女性在线毛片视频| 99久久人妻综合| 久久99热这里只有精品18| 亚洲综合精品二区| 国产午夜精品一二区理论片| 亚洲国产精品sss在线观看| 国产在视频线精品| av专区在线播放| 只有这里有精品99| 久久韩国三级中文字幕| 国产探花在线观看一区二区| 亚洲自拍偷在线| 卡戴珊不雅视频在线播放| 国产又黄又爽又无遮挡在线| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 直男gayav资源| 亚洲欧美精品自产自拍| 国产精品三级大全| 国产一级毛片在线| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 99久久成人亚洲精品观看| 日本黄大片高清| 成人漫画全彩无遮挡| 直男gayav资源| ponron亚洲| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式| 永久免费av网站大全| 久久久精品欧美日韩精品| 亚洲精品一区蜜桃| 久久久午夜欧美精品| 亚洲av熟女| 日韩成人伦理影院| 日本wwww免费看| 三级毛片av免费| 一级黄色大片毛片| a级毛片免费高清观看在线播放| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 亚洲婷婷狠狠爱综合网| 国产伦精品一区二区三区四那| 少妇被粗大猛烈的视频| 人妻夜夜爽99麻豆av| 亚洲成色77777| 最新中文字幕久久久久| 一区二区三区四区激情视频| 免费看av在线观看网站| 亚洲欧美精品自产自拍| av在线播放精品| 美女被艹到高潮喷水动态| 26uuu在线亚洲综合色| 99热6这里只有精品| 国产熟女欧美一区二区| 欧美一区二区亚洲| 联通29元200g的流量卡| 国产精品av视频在线免费观看| 久99久视频精品免费| 国产毛片a区久久久久| 欧美一区二区国产精品久久精品| 亚洲国产精品久久男人天堂| 日韩人妻高清精品专区| 一本久久精品| 亚洲最大成人中文| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片| 欧美高清成人免费视频www| 菩萨蛮人人尽说江南好唐韦庄 | 观看免费一级毛片| 国产真实伦视频高清在线观看| 好男人在线观看高清免费视频| 亚洲经典国产精华液单| 久久久精品94久久精品| 国产色婷婷99| 最近最新中文字幕免费大全7| 国产单亲对白刺激| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 大香蕉久久网| 美女xxoo啪啪120秒动态图| 可以在线观看毛片的网站| 美女国产视频在线观看| 建设人人有责人人尽责人人享有的 | videossex国产| 国产精品乱码一区二三区的特点| 丰满乱子伦码专区| 99热这里只有是精品50| 热99在线观看视频| 女的被弄到高潮叫床怎么办| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 国产一区二区在线av高清观看| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 色视频www国产| 久久久午夜欧美精品| 一本一本综合久久| 国产黄片美女视频| 一个人免费在线观看电影| 99热精品在线国产| 美女国产视频在线观看| 青春草国产在线视频| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品av在线| 九色成人免费人妻av| 一级爰片在线观看| 热99在线观看视频| 91精品国产九色| 2021天堂中文幕一二区在线观| 国产精品美女特级片免费视频播放器| 99视频精品全部免费 在线| 精品免费久久久久久久清纯| 国产精品不卡视频一区二区| 国产精品三级大全| 青春草视频在线免费观看| 免费电影在线观看免费观看| 精品久久久久久成人av| 深夜a级毛片| 国产中年淑女户外野战色| 日本免费在线观看一区| 性插视频无遮挡在线免费观看| 人妻制服诱惑在线中文字幕| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 爱豆传媒免费全集在线观看| 直男gayav资源| 国产成人精品婷婷| 久久精品夜色国产| 亚洲经典国产精华液单| 搡老妇女老女人老熟妇| 搞女人的毛片| 美女xxoo啪啪120秒动态图| 麻豆一二三区av精品| 变态另类丝袜制服| 青春草视频在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 国产乱来视频区| 久久久午夜欧美精品| 三级毛片av免费| ponron亚洲| 99在线视频只有这里精品首页| av.在线天堂| 国产精华一区二区三区| 国产精品久久久久久久电影| 午夜老司机福利剧场| 小说图片视频综合网站| videossex国产| 黄色日韩在线| videossex国产| 精品不卡国产一区二区三区| 日韩欧美精品免费久久| 在线观看66精品国产| 97热精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 男人的好看免费观看在线视频| 免费av不卡在线播放| 91精品伊人久久大香线蕉| 大香蕉久久网| 91久久精品国产一区二区成人| 看十八女毛片水多多多| 丝袜美腿在线中文| 伦理电影大哥的女人| 91精品伊人久久大香线蕉| 成年版毛片免费区| 嫩草影院入口| 国产av码专区亚洲av| 日本一二三区视频观看| 免费观看在线日韩| 欧美xxxx黑人xx丫x性爽| 亚洲av二区三区四区| 一区二区三区免费毛片| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 久久精品夜色国产| 波多野结衣高清无吗| 麻豆av噜噜一区二区三区| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 天堂√8在线中文| 中文字幕av在线有码专区| 成人特级av手机在线观看| 少妇的逼水好多| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 嫩草影院入口| 大话2 男鬼变身卡| 久久精品夜色国产| 亚洲精品成人久久久久久| 九九爱精品视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近中文字幕2019免费版| 一本久久精品| 两个人的视频大全免费| 1024手机看黄色片| 国产三级中文精品| 一级黄片播放器| 精品人妻视频免费看| 色尼玛亚洲综合影院| 亚洲熟妇中文字幕五十中出| 欧美变态另类bdsm刘玥| 亚洲av一区综合| 国语自产精品视频在线第100页| 丰满少妇做爰视频| 国产成人精品久久久久久|