• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma:diagnostic challenges and strategies

    2021-03-25 14:50:19YanHuiChenRuiHuaWeiYanNianHui

    Yan-Hui Chen, Rui-Hua Wei, Yan-Nian Hui

    1Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300070, China 2Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China

    3Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710023, Shaanxi Province,China

    Abstract

    ● KEYWORDS: high myopia; open angle glaucoma;parapapillary atrophy; parapapillary microvasculature; optic disc; lamina cribrosa; optical coherence tomography

    INTRODUCTION

    Cross-sectional, population-based studies have demonstrated a relatively high incidence of open angle glaucoma(OAG) in individuals with myopia, compared with nonmyopic individuals[1-2]. The Blue Mountains Eye Study demonstrated a two-fold to three-fold increased risk of glaucoma in individuals with myopia[1]. The Beijing Eye Study reported that ≤-6 diopters of myopia may be a risk factor for glaucomatous optic neuropathy[2]. Considering the aging population and concurrent rapid increase in the number of individuals with myopia, particularly in Asia[3], the risk of visual defects caused by highly myopic OAG is likely to increase dramatically over the next few decades[4-5]. Timely diagnosis of OAG in highly myopic eyes in the early stage of the disease is essential for the proper management and prevention of visual loss.

    STRUCTURAL CHALLENGES INVOLVING THE MYOPIC DISC

    Characteristic thinning of both neuroretinal rim and peripapillary retinal nerve fiber layer thickness (RNFLT) are hallmarks of glaucomatous optic neuropathy. The identification of glaucomatous damages is challenging in eyes with high myopia[6-8]because it is difficult to distinguish myopia-related structural and functional defects from defects caused by glaucoma[9]. Progressive axial elongation may cause deviations in nerve fiber bundle trajectories[1]. Bedggood et al[10]found low concordance with the ISNT rule (i.e., for peripapillary RNFLT, inferior quadrant ≥ superior quadrant ≥ nasal quadrant≥ temporal quadrant) in myopia. Qiu et al[11]reported that 88.4% and 37% of eyes with healthy myopia did not follow the ISNT rule with respect to RNFLT and rim area, respectively,in a cross-sectional population study in Shantou, China. Thus,application of the ISNT rule to the RNFLT and rim area has limited utility in distinguishing OAG from high myopia[11].Structural evaluation of eyes with high myopia is complicated by unusually large or skewed sclera canal shape, optic disc tilt and rotation, and extensive β-zone parapapillary atrophy(βPPA)[9,12-13].

    RELATIONSHIP BETWEEN STRUCTURAL AND FUNCTIONAL DAMAGE IN MYOPIC GLAUCOMA

    A correct understanding of the relationship between structural and functional damage helps to accurately distinguish glaucomatous optic neuropathy from high myopia. However,relevant investigations have been limited by two key factors.First, the relationship between RNFLT and visual field (VF)defects is relatively weak due to structural alterations in the optic nerve head (ONH)/RNFLT distribution in eyes with myopic glaucoma[14]. The poor visibility of the RNFLT in redfree photography and the large area of βPPA beyond the optical coherence tomography (OCT) scan circle prevent an accurate optimal OCT scanning[6]. Second, VF defects in eyes with highly myopic glaucoma are often confusing, due to concurrent myopic chorioretinopathy in eyes with high myopia[15]and/or intraindividual/intertest variability involving both structural and functional evaluations[16]. Elevated intraocular pressure(IOP) is a major risk factor for glaucoma; moreover, IOP is positively associated with increasing myopia[17]. However,the broad range of risk factors for elevated IOP indicates that the biomechanics of the ONH play a key role in the development of highly myopic OAG, whereas they may contribute less robustly to changes in IOP. Lan et al[18]showed that the association between myopia and glaucoma was more robust at lower levels of IOP. Therefore, microstructural and functional analysis of the optic disc is helpful for exploring the pathogenesis of highly myopic OAG.

    DISC CHARACTERISTICS ASSOCIATED WITH HIGHLY MYOPIC OAG

    Optic disc tilt and torsion represent skewed insertion of the optic nerve into the eyeballs and may increase IOP-related stress exposure for a subset of retinal ganglion cell axons[8].To explore the relationship between functional impairment and structural changes in the optic disc, prospective and retrospective studies have been conducted in eyes with different degrees of myopia. Park et al[19]found that the degree of disc tilt and torsion was significantly different between eyes with OAG and normal eyes with similar axial lengths. Choi et al[20]found that the direction of optic disc tilt was consistent with the location of initial glaucomatous VF defects. The findings of a recent study indicated that superior disc torsion was predictive of an upper wedge-shaped retinal nerve fiber layer defect and lower VF damage in eyes with highly myopic OAG; eyes that had normal-tension glaucoma with high myopia exhibited smaller discs, lower tilt ratios,and greater disc tilt, relative to eyes without high myopia[18].Considering the influences of mechanical factors on axons,axial elongation-induced RNFLT thinning may be the anatomical basis for glaucoma-related functional damage in eyes with high myopia. In addition to mechanical factors, there remains uncertainty regarding the roles of optic disc-associated hemodynamic mechanisms in the development of myopiarelated OAG. Furthermore, longitudinal observations of peripapillary microvasculature and microstructure are helpful for revealing relationships between axial elongation and highly myopic OAG.

    LAMINA CRIBROSA MORPHOLOGY ASSOCIATED WITH HIGHLY MYOPIC OAG

    At the ONH, retinal ganglion cell axons converge and pass through the lamina cribrosa (LC), a porous connective tissue structure. The LC is a discontinuity (i.e., “weak spot”) in the corneoscleral envelope, which supports and nourishes the axons. Posterior bowing or compression of the LC and/or the dislocation of laminar sheets in the LC (caused by IOP elevation or tissue deformation) may impose shear stress on the retinal ganglion cell axons, thereby impeding axonal transport[21]. The LC is considered the primary site of glaucomatous axonal damage. Swept-source OCT facilitates rapid scanning and deep penetration for the evaluation of LC morphology and LC pores. Multiple aspects of the LC have been evaluated to investigate the close relationship between LC morphology and glaucomatous functional impairment.Thus far, large curvature, reduced thickness, tortuous LC pore paths, and the presence of focal lamina cribrosa defects(FLCDs) have been shown to correlate with glaucoma or highly myopic glaucoma[22-24]. Notably, Yoshikawa et al[25]compared the mobility of LC depth in a longitudinal study;they found that LC depth significantly decreased 3mo after glaucoma surgery and that the degree of change in LC depth was associated with the degree of change in IOP. In addition to mechanical factors, the axial elongation-related deformation and compression of LC may induce capillary collapse before or inside laminar layers, resulting in ONH ischemia. Suh et al[26]reported that circumpapillary vessel density extracted from the retinal nerve fiber layer was significantly lower in OAG eyes with FLCDs than in OAG eyes without FLCDs. In addition,the reduction of vessel density was spatially correlated with the locations of FLCDs[26]. Suh et al[27]investigated parapapillary microvasculature dropout (MvD), defined as a complete loss of microvasculature within the choroid or scleral flange, in patients with OAG. They found that higher FLCD prevalence(odds ratio, 6.27; P=0.012) and reduced circumpapillary vessel density (odds ratio, 1.27; P=0.002) were significantly associated with MvD. These studies have shown that the LC provides critical information regarding glaucomatous optic neuropathy. Both myopia and glaucoma can cause connective tissue remodeling microvasculature abnormalities within the ONH. There remains uncertainty regarding the relationships of LC morphology with both circulatory disorders within the ONH (e.g., prelaminar, LC, and retrolaminar regions) and glaucomatous damage. Population-based epidemiological surveys and longitudinal research (involving LC morphology,VF, and peripapillary microstructure and microvasculature)may aid in elucidating the pathogenesis of highly myopic OAG.

    PARAPAPILLARY ATROPHY ASSOCIATED WITH HIGHLY MYOPIC OAG

    Microstructure Changes in Eyes with OAG and Parapapillary AtrophyβPPA is a visible region lacking retinal pigment epithelium[28]. Teng et al[29]found that βPPA was correlated spatially with locations of future VF defect progression, in patients with OAG who exhibited βPPA and VF defect progression. Jonas et al[7]confirmed that the presence of βPPA was more sensitive for detection of glaucomatous optic neuropathy, compared with cup-to-disc ratio. Moreover,a larger βPPA area was associated with greater prevalence of tilted optic disc[30], as well as thinner LC and deeper anterior LC surface[28]. Thus far, the clinical implications of βPPA in OAG have been described in multiple studies[7,28-29],but the pathogenesis of βPPA remains poorly understood.Notably, there is uncertainty regarding the mechanism of retinal ganglion cell axonal damage. Recent advances in OCT technology have provided additional insights into the mechanisms underlying highly myopic OAG. By using OCT,the presence or absence of Bruch’s membrane (BM) can be determined; βPPA can then be histologically subclassified into βPPA+BMor βPPA-BM[28]. To investigate the relationship between βPPA and glaucomatous progression, Yamada et al[31]conducted a retrospective cohort study with a follow-up period of ≥2y. They reported that patients with larger βPPA+BMwidth had more rapid VF progression, compared with patients who did not have βPPA+BM. Sung et al[32]demonstrated that the width of βPPA+BMwas significantly associated with axial length, tilt angle, and optic disc rotation. Meanwhile, Sung et al[32]found that larger optic disc tilt, more inferior optic disc rotation, and lower peripapillary vessel density were all factors related to larger βPPA+BMwidth; none of these factors were related to βPPA-BM. Some researchers have suggested that the βPPA+BMis caused by age-related atrophy of the retinal pigment epithelium and is associated with OAG[7,33],whereas βPPA-BMmay be caused by axial elongation and have a protective effect in eyes with OAG[28,31,34]. Conversely, some studies have reported that βPPA+BMis present in teenagers and children with myopia[28,35]. These findings suggest that the effects of βPPA on glaucomatous injuries may be associated with changes in optic disc morphology and hemodynamics.There remains a lack of clarity regarding βPPA pathogenesis and the mechanism by which βPPA causes damage to the retinal nerve fiber layer. Several factors (e.g., the LC and optic disc) might contribute to highly myopic OAG during βPPA development, but the effect of BM presence or absence on OAG remains elusive thus far.

    Microvascular Changes in Eyes with OAG and Parapapillary AtrophyIn addition to morphologic changes in βPPA, ischemia around the ONH is presumably involved in the pathogenesis of highly myopic OAG[36]. The microvasculature in deep retinal layers and the choroid around the optic disc is of particular clinical interest because these vascular regions are both downstream from the short posterior ciliary artery[27,37], which perfuses the prelaminar tissue and LC[38]. OCT angiography (OCTA) facilitates noninvasive evaluation of the microvasculature located within various retinal[27]and choroidal layers[39]. Hu et al[40]investigated the superficial radial peripapillary capillary and choroidal microvascular density in eyes with healthy myopia and βPPA.Compared with eyes that had βPPA-BM, eyes that had βPPA+BMexhibit lower superficial radial peripapillary capillary and choroidal microvascular densities[40]. MvD has been defined as a focal sectoral filling defect without any visible microvascular network identified in parapapillary deep-layer en face images.Lee et al[41]demonstrated that MvD accurately coincided with perfusion defects observed by indocyanine green angiography.Recent OCTA studies frequently showed deep-layer MvD within the ONH in eyes with primary OAG and βPPA[27,36,42].These findings implied that parapapillary MvD represents a true peripapillary perfusion defect in the choroid or inner sclera, which causes reduced blood supply to the ONH[37].OAG eyes with MvD had significantly thinner RNFLT, worse VF mean deviation, and larger βPPA-BMthan OAG eyes without MvD[43]. The presence of MvD was proposed to serve as a strong predictor for an initial parafoveal scotoma[44]and a strong prognostic factor for progressive retinal nerve fiber layer thinning[45]. βPPA-BMzone is characterized by an oblique scleral flange and MvD in this region develops by stretching of the microvasculature in the scleral flange during axial elongation[46]. The choroidal and peripapillary scleral flange both supplies the prelaminar and LC via the circle Zinn-Haller.The circle of Zinn-Haller in myopic eyes without scleral flange exposure (βPPA-BMzone) is located at the end of the peripapillary scleral flange where the dura mater merges with the sclera. The scleral flange exposure and displacement is considered a product resulting from temporal stretching of the peripapillary tissues during axial elongation[46]. Meanwhile,the circle of Zinn-Haller location in scleral flange undergoes stretching and shearing forces; given that circle of Zinn-Haller insufficiency would decrease the vascular support of prelaminar and LC, the development of βPPA-BMzone could hamper the axonal transport[46]. Recent studies with OCTA frequently detected deep-layer MvD in the ONH in primary OAG with βPPA-BM[27,36,42]. Notably, precisely recognizing and segmentation in BM, choroid and sclera is a prerequisite to evaluate the microvasculature within βPPA zone. As the presentation of choroidal atrophy, BM rupture, and posterior staphyloma accompanied by axial elongation are serious obstacles of automatic segmentation provided by OCT or OCTA, up to now, research on microvasculature is limited to patients with non-pathological myopia[26,36-37,39-41].

    Both microstructure and microvasculature around the ONH provide some clues concerning the presence and location of glaucomatous damage in eyes with high myopia. We speculate that the pathogenesis of glaucomatous optical neuropathy induced by βPPA-BMdiffers from those eyes with βPPA+BM,basing on the differences of deep ONH structures (i.e., LC and deep-layer microvasculature). However, the precise relationships of juxtapapillary microvasculature with the ONH and/or LC topography require further investigation. The pathogenesis of optic neuropathy induced by microcirculatory deficiency, independent of IOP, is incompletely understood.A targeted understanding of BM, rather than βPPA, may aid in revealing the essential etiology and pathogenesis of highly myopic OAG.

    EXPLORATION OF DIAGNOSTIC AND THERAPEUTIC STRATEGIES

    A common diagnostic dilemma of myopic OAG in clinical practice is the presentation of a patient with ONH changes and borderline high or normal IOP. Even if there are VF defects, it may be difficult to determine if the defects are due primarily to myopia or OAG. Based on these facts that myopic ONH appearance and MvD represents the LC shifting and a true peripapillary perfusion defect, respectively, it seems reasonable to posit that the development or progression of optic disc ovality, βPPA-BMzone, and MvD could provide some clues to diagnosis of myopic OAG. Ophthalmologists should carefully assess the functional damages in patients with significant optic disc tilt and MvD regardless of IOP. As some myopes with VF defects may not show characteristic progression of OAG,necessary nutritional support and glaucoma medications may be considerable to improve blood circulation around the ONH and prevent the progression of glaucomatous optic neuropathy in such patients with borderline high IOP values. It remains uncertain, although, whether or not short-term or long-term IOP fluctuations are independent risk factors for development or progression of myopic OAG, monitoring IOP fluctuation and establishment baseline data are important in management myopic OAG[47]. In addition, longitudinal follow-up in the setting of high myopia with ONH changes may be necessary to confirm the diagnosis.

    CONCLUSION

    In summary, we focused on current findings of microvasculature and microstructure around and within the ONH, and described the detection of highly myopic OAG by both OCT and OCTA. βPPA has been found to influence the outcome of high myopic glaucoma, whereas the influence of BM on the ONH in eyes with high myopia requires further investigation. The diagnostic utility of OCT and OCTA for glaucomatous optic nerve damages and peripapillary microvascular perfusion defect is promising; it is considerable that nutritional support and glaucoma medications for some myopes with βPPA, MvD,borderline high IOP values and atypical VF defects. However,accurate alignment of the OCT scan beam, as well as adequate centering of the scan circle remains difficult in eyes with pathological myopia resulting in improper image acquisition and structural segmentation[6]. Moreover, there remain obstacles to consistently distinguishing structures and complex lesions among individuals. Improvements regarding image capture,picture recognition, standardized nomenclature and automated calculation, by means of software development and machine learning, are important considerations for future research. For note, the diagnosis of OAG remains to be determined with the longitudinal changes of functional damages (e.g., VF defects,visual electrophysiological changes).

    ACKNOWLEDGEMENTS

    We thank Jian Ji, MD, and Wei Liu, MD, both from the Tianjin Medical University Eye Hospital, Tianjin, China, for their invaluable comments, editing and expertise.

    Foundation:Supported by National Natural Science Foundation of China (No.81770901).

    Conflicts of Interest: Chen YH,None;Wei RH,None;Hui YN,None.

    丰满人妻熟妇乱又伦精品不卡| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频| 精品熟女少妇八av免费久了| 精品一区二区三区视频在线 | 免费电影在线观看免费观看| 欧美黄色片欧美黄色片| 国产亚洲欧美在线一区二区| 午夜亚洲福利在线播放| 在线观看午夜福利视频| 欧美色视频一区免费| 夜夜夜夜夜久久久久| 欧美3d第一页| 国产精品永久免费网站| 亚洲国产中文字幕在线视频| 精品日产1卡2卡| 久久久久国产一级毛片高清牌| 两性夫妻黄色片| 青草久久国产| 成人av在线播放网站| 久久久国产成人免费| 亚洲色图 男人天堂 中文字幕| 免费人成视频x8x8入口观看| 男女视频在线观看网站免费| 亚洲成av人片免费观看| 久9热在线精品视频| 无人区码免费观看不卡| 亚洲成a人片在线一区二区| 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| 久久精品人妻少妇| 欧美日韩中文字幕国产精品一区二区三区| 后天国语完整版免费观看| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| 18禁国产床啪视频网站| 好男人在线观看高清免费视频| 亚洲精品乱码久久久v下载方式 | 精华霜和精华液先用哪个| 久久中文字幕一级| 亚洲一区高清亚洲精品| 韩国av一区二区三区四区| 久久精品人妻少妇| 国产黄色小视频在线观看| 欧美丝袜亚洲另类 | 日韩欧美免费精品| 99热这里只有精品一区 | 99在线人妻在线中文字幕| 午夜精品在线福利| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 日本免费a在线| 美女高潮的动态| 女警被强在线播放| 国内精品久久久久精免费| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久久久久人妻精品电影| 99热6这里只有精品| 久久国产精品人妻蜜桃| www日本在线高清视频| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 亚洲精品在线观看二区| 18禁观看日本| 亚洲成人精品中文字幕电影| 他把我摸到了高潮在线观看| 琪琪午夜伦伦电影理论片6080| 天堂√8在线中文| 精品国产乱码久久久久久男人| 国产精品av久久久久免费| 亚洲国产欧美一区二区综合| 国产成人aa在线观看| 老司机午夜福利在线观看视频| 亚洲av电影不卡..在线观看| 一级毛片女人18水好多| 91九色精品人成在线观看| 悠悠久久av| 国产不卡一卡二| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 不卡一级毛片| 女生性感内裤真人,穿戴方法视频| 亚洲色图 男人天堂 中文字幕| xxx96com| 国产一区二区三区视频了| 亚洲av成人av| 成年免费大片在线观看| 婷婷精品国产亚洲av| 午夜福利欧美成人| 国产精品av久久久久免费| 久久天堂一区二区三区四区| 国产成+人综合+亚洲专区| 小蜜桃在线观看免费完整版高清| 精品国内亚洲2022精品成人| 最近最新中文字幕大全电影3| 欧美中文综合在线视频| 最新美女视频免费是黄的| 麻豆成人av在线观看| 亚洲国产精品999在线| 18禁国产床啪视频网站| 国产精品女同一区二区软件 | 一本一本综合久久| aaaaa片日本免费| 国产高清videossex| 免费一级毛片在线播放高清视频| 老司机深夜福利视频在线观看| 1000部很黄的大片| 久久婷婷人人爽人人干人人爱| 国产三级黄色录像| 国产单亲对白刺激| 日本成人三级电影网站| 淫秽高清视频在线观看| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区| 免费看日本二区| 757午夜福利合集在线观看| 男女下面进入的视频免费午夜| 91久久精品国产一区二区成人 | 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站 | 小说图片视频综合网站| 亚洲中文av在线| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 色综合亚洲欧美另类图片| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 免费av不卡在线播放| 老汉色∧v一级毛片| 老司机午夜福利在线观看视频| 后天国语完整版免费观看| xxxwww97欧美| 国产精品电影一区二区三区| 伦理电影免费视频| 无限看片的www在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产午夜福利久久久久久| 久久欧美精品欧美久久欧美| 久久这里只有精品中国| 波多野结衣高清作品| 亚洲aⅴ乱码一区二区在线播放| a级毛片在线看网站| 狂野欧美白嫩少妇大欣赏| 久久久久精品国产欧美久久久| 99热这里只有是精品50| 国产免费男女视频| 国内少妇人妻偷人精品xxx网站 | 99久久国产精品久久久| www日本在线高清视频| 香蕉av资源在线| 欧美日韩一级在线毛片| 不卡av一区二区三区| 九九久久精品国产亚洲av麻豆 | 国产精品国产高清国产av| 宅男免费午夜| 桃色一区二区三区在线观看| 国产精品一区二区精品视频观看| 国产私拍福利视频在线观看| 国产69精品久久久久777片 | 可以在线观看的亚洲视频| 午夜日韩欧美国产| 国产精品久久久久久精品电影| 青草久久国产| 99国产精品一区二区三区| 亚洲激情在线av| 国产真实乱freesex| 女同久久另类99精品国产91| a级毛片a级免费在线| 一卡2卡三卡四卡精品乱码亚洲| 久久国产精品影院| 叶爱在线成人免费视频播放| 99热这里只有是精品50| 嫩草影视91久久| 亚洲激情在线av| 国产一区二区在线av高清观看| 精品国产乱子伦一区二区三区| 美女被艹到高潮喷水动态| 变态另类成人亚洲欧美熟女| 少妇人妻一区二区三区视频| 国产精品九九99| 久久久久九九精品影院| 欧美极品一区二区三区四区| 国产伦精品一区二区三区四那| 亚洲欧美日韩东京热| 97碰自拍视频| 亚洲片人在线观看| 免费看美女性在线毛片视频| 亚洲成av人片免费观看| 国产精品 欧美亚洲| 亚洲国产日韩欧美精品在线观看 | 欧美日韩精品网址| 最新中文字幕久久久久 | 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 最近最新中文字幕大全免费视频| xxx96com| 日本 av在线| 麻豆成人午夜福利视频| 婷婷亚洲欧美| 哪里可以看免费的av片| 日本三级黄在线观看| 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 亚洲av成人一区二区三| 亚洲熟妇中文字幕五十中出| 成人18禁在线播放| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 亚洲色图av天堂| 国产午夜精品久久久久久| 欧美日韩亚洲国产一区二区在线观看| 日韩免费av在线播放| 免费人成视频x8x8入口观看| 99久久精品一区二区三区| 欧美在线黄色| 热99re8久久精品国产| 精品福利观看| 精品国产乱码久久久久久男人| 在线播放国产精品三级| www日本黄色视频网| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| АⅤ资源中文在线天堂| 久久午夜综合久久蜜桃| 亚洲片人在线观看| 又爽又黄无遮挡网站| 不卡一级毛片| 99riav亚洲国产免费| 麻豆一二三区av精品| 国产极品精品免费视频能看的| 在线观看午夜福利视频| 久久精品91无色码中文字幕| 夜夜夜夜夜久久久久| 一级毛片高清免费大全| 精品电影一区二区在线| 国产精品日韩av在线免费观看| 国产高清有码在线观看视频| 欧美色欧美亚洲另类二区| 小蜜桃在线观看免费完整版高清| 伊人久久大香线蕉亚洲五| 五月玫瑰六月丁香| 精品欧美国产一区二区三| 九色国产91popny在线| 99久久久亚洲精品蜜臀av| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 日韩欧美在线乱码| 丁香欧美五月| 日韩高清综合在线| 久久久久久久久免费视频了| 国内精品美女久久久久久| 亚洲精品粉嫩美女一区| 精品无人区乱码1区二区| www日本在线高清视频| 日本 av在线| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| 日韩有码中文字幕| 欧美最黄视频在线播放免费| 国产精品影院久久| 国产精品日韩av在线免费观看| 18美女黄网站色大片免费观看| 老司机福利观看| 白带黄色成豆腐渣| 国产精品av视频在线免费观看| 国产精品 国内视频| 观看免费一级毛片| 久久精品91蜜桃| 久久久水蜜桃国产精品网| 两人在一起打扑克的视频| 在线观看舔阴道视频| 久久精品人妻少妇| 久久中文字幕一级| 又爽又黄无遮挡网站| 亚洲色图av天堂| 亚洲精品色激情综合| 国产欧美日韩一区二区精品| 看片在线看免费视频| 国产乱人视频| 少妇裸体淫交视频免费看高清| 中出人妻视频一区二区| 国产精品98久久久久久宅男小说| 久久婷婷人人爽人人干人人爱| 天天躁日日操中文字幕| 在线播放国产精品三级| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 亚洲一区高清亚洲精品| 国产精品一区二区精品视频观看| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| x7x7x7水蜜桃| 欧美又色又爽又黄视频| 国产麻豆成人av免费视频| 精品国产亚洲在线| 高清毛片免费观看视频网站| av福利片在线观看| 99国产精品一区二区蜜桃av| 不卡av一区二区三区| 精品久久久久久久毛片微露脸| 男女那种视频在线观看| 老汉色∧v一级毛片| 免费观看人在逋| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 亚洲无线在线观看| 国产亚洲欧美98| 久久久久国产精品人妻aⅴ院| 亚洲真实伦在线观看| 国产成人精品久久二区二区91| 校园春色视频在线观看| h日本视频在线播放| 免费高清视频大片| 99热这里只有精品一区 | 国产精品影院久久| а√天堂www在线а√下载| 国产又黄又爽又无遮挡在线| 伊人久久大香线蕉亚洲五| 成人午夜高清在线视频| 亚洲在线自拍视频| 免费看a级黄色片| 国模一区二区三区四区视频 | 日本精品一区二区三区蜜桃| 美女高潮的动态| 亚洲人成网站在线播放欧美日韩| 久久久水蜜桃国产精品网| 欧美极品一区二区三区四区| 午夜视频精品福利| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 国产精品 欧美亚洲| 99久久综合精品五月天人人| 在线十欧美十亚洲十日本专区| 欧美一区二区精品小视频在线| 亚洲中文av在线| 午夜福利成人在线免费观看| 黄色 视频免费看| 制服丝袜大香蕉在线| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 国产免费男女视频| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 国产一级毛片七仙女欲春2| 国内毛片毛片毛片毛片毛片| 久久热在线av| 村上凉子中文字幕在线| 十八禁人妻一区二区| 国产伦在线观看视频一区| 国产精品,欧美在线| e午夜精品久久久久久久| 一区二区三区激情视频| 亚洲av第一区精品v没综合| 一级毛片精品| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 国产男靠女视频免费网站| 久久这里只有精品19| 嫩草影视91久久| 在线免费观看不下载黄p国产 | 18禁裸乳无遮挡免费网站照片| 国产精品乱码一区二三区的特点| 在线观看美女被高潮喷水网站 | 国产午夜精品论理片| 成人欧美大片| 波多野结衣高清无吗| 免费搜索国产男女视频| 99国产精品99久久久久| 亚洲片人在线观看| 狂野欧美白嫩少妇大欣赏| 日本成人三级电影网站| 亚洲九九香蕉| 精品国产乱子伦一区二区三区| av天堂在线播放| 免费看十八禁软件| 国产熟女xx| 中文字幕人妻丝袜一区二区| 精品久久蜜臀av无| 国产精品综合久久久久久久免费| 亚洲av熟女| 麻豆一二三区av精品| 国产欧美日韩一区二区三| 亚洲一区高清亚洲精品| 久久久久久人人人人人| 嫩草影院入口| 欧美乱色亚洲激情| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 19禁男女啪啪无遮挡网站| 五月玫瑰六月丁香| 一进一出抽搐动态| 久久久久国产精品人妻aⅴ院| 少妇丰满av| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 久久久色成人| 日本成人三级电影网站| 亚洲国产精品成人综合色| 免费在线观看视频国产中文字幕亚洲| 久久精品影院6| 欧美国产日韩亚洲一区| 亚洲 国产 在线| 夜夜爽天天搞| 在线观看舔阴道视频| 久久亚洲精品不卡| 欧美色视频一区免费| 人人妻人人看人人澡| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 1000部很黄的大片| 18美女黄网站色大片免费观看| 看黄色毛片网站| 99精品欧美一区二区三区四区| 色视频www国产| 国产精品综合久久久久久久免费| cao死你这个sao货| 99国产精品99久久久久| 美女黄网站色视频| 国产精品久久电影中文字幕| 久久久国产欧美日韩av| 三级毛片av免费| 国内精品美女久久久久久| 国产精品久久视频播放| 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密| svipshipincom国产片| 无遮挡黄片免费观看| 一进一出抽搐动态| 亚洲国产高清在线一区二区三| 欧美激情在线99| 免费av不卡在线播放| 亚洲成av人片免费观看| 久久99精品国语久久久| 欧美成人午夜免费资源| 又粗又硬又长又爽又黄的视频| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| 99热这里只有是精品在线观看| 免费看a级黄色片| 女的被弄到高潮叫床怎么办| 精品久久久久久电影网 | 国产 一区 欧美 日韩| 欧美bdsm另类| 久久精品国产99精品国产亚洲性色| 亚洲第一区二区三区不卡| 国产精品久久视频播放| 国产探花极品一区二区| 久久久精品欧美日韩精品| 99久久精品一区二区三区| 国产成人精品婷婷| 老司机福利观看| 国产午夜精品久久久久久一区二区三区| 在现免费观看毛片| 中文亚洲av片在线观看爽| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 深爱激情五月婷婷| 欧美日本视频| 一级毛片电影观看 | 日本免费一区二区三区高清不卡| 天天躁日日操中文字幕| 黄色一级大片看看| 搡老妇女老女人老熟妇| 精品少妇黑人巨大在线播放 | 伊人久久精品亚洲午夜| 日本免费a在线| 伦精品一区二区三区| 天美传媒精品一区二区| 亚洲性久久影院| 免费大片18禁| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 免费大片18禁| 国产伦一二天堂av在线观看| 一级二级三级毛片免费看| 国产伦在线观看视频一区| 日本免费a在线| 亚洲成人av在线免费| 成人av在线播放网站| 深夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 人人妻人人看人人澡| 亚洲国产精品成人综合色| 日本黄大片高清| 欧美丝袜亚洲另类| 精品一区二区免费观看| 天堂av国产一区二区熟女人妻| 国产精品精品国产色婷婷| 白带黄色成豆腐渣| 成人av在线播放网站| 成人三级黄色视频| 亚洲人成网站高清观看| 我要搜黄色片| 国产精品久久久久久久电影| 久久精品夜色国产| 婷婷六月久久综合丁香| 欧美变态另类bdsm刘玥| 性插视频无遮挡在线免费观看| 天堂中文最新版在线下载 | 嫩草影院精品99| 国产黄片美女视频| 国产真实乱freesex| 五月伊人婷婷丁香| 欧美97在线视频| 校园人妻丝袜中文字幕| 寂寞人妻少妇视频99o| 超碰97精品在线观看| 丰满人妻一区二区三区视频av| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 国产免费又黄又爽又色| 国产精品三级大全| 白带黄色成豆腐渣| 久久久久网色| 亚洲精品自拍成人| 青春草国产在线视频| 日韩精品有码人妻一区| 成人一区二区视频在线观看| 日日干狠狠操夜夜爽| 欧美三级亚洲精品| 干丝袜人妻中文字幕| 日韩欧美三级三区| 中国美白少妇内射xxxbb| 最后的刺客免费高清国语| 汤姆久久久久久久影院中文字幕 | 99热精品在线国产| 亚洲aⅴ乱码一区二区在线播放| 欧美三级亚洲精品| 又爽又黄无遮挡网站| 亚洲自偷自拍三级| 亚洲最大成人中文| 成人无遮挡网站| 国产精品久久久久久久电影| 一区二区三区四区激情视频| 午夜福利视频1000在线观看| 黄色日韩在线| 91在线精品国自产拍蜜月| 亚洲在久久综合| 日本免费a在线| 99久久九九国产精品国产免费| 乱人视频在线观看| 不卡视频在线观看欧美| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 国产白丝娇喘喷水9色精品| 一级毛片我不卡| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 中文欧美无线码| 99热这里只有精品一区| 国产精品一及| 青春草视频在线免费观看| 久久久久久大精品| 国产伦在线观看视频一区| 色播亚洲综合网| 欧美日韩一区二区视频在线观看视频在线 | 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 国产精品一区www在线观看| 亚洲真实伦在线观看| 99久国产av精品| 色综合亚洲欧美另类图片| 久久久欧美国产精品| 日韩高清综合在线| 美女大奶头视频| 欧美潮喷喷水| 丝袜美腿在线中文| 欧美又色又爽又黄视频| 又黄又爽又刺激的免费视频.| 成人漫画全彩无遮挡| 日本黄大片高清| 免费黄网站久久成人精品| 亚洲最大成人av| 亚洲第一区二区三区不卡| 中文字幕制服av| 97在线视频观看| 国产熟女欧美一区二区| 亚洲欧美精品综合久久99| 国产一区二区亚洲精品在线观看| 看十八女毛片水多多多| a级毛色黄片| 中文精品一卡2卡3卡4更新| 伦理电影大哥的女人| 国产乱来视频区| 国产高清视频在线观看网站| 黄色一级大片看看| 麻豆乱淫一区二区| 国产高清视频在线观看网站| h日本视频在线播放| 久久精品久久久久久久性| 长腿黑丝高跟| 夫妻性生交免费视频一级片| 桃色一区二区三区在线观看| 99在线人妻在线中文字幕| 一级黄色大片毛片| 又爽又黄无遮挡网站| 国国产精品蜜臀av免费| 日本免费在线观看一区| 中文字幕免费在线视频6| 欧美性猛交╳xxx乱大交人| 两个人的视频大全免费| 亚洲精品乱码久久久v下载方式| 国产视频首页在线观看| av.在线天堂| 内地一区二区视频在线| 欧美性猛交黑人性爽|