• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Hysteresis Random Spread-Spectrum Method in Random PWM Selective Harmonic Elimination for Single-Phase Inverter

    2021-03-24 13:27:52LiGuohuaLiuChunwuWangYufeng
    電工技術(shù)學(xué)報(bào) 2021年6期
    關(guān)鍵詞:紋波單相工程學(xué)院

    Li Guohua Liu Chunwu Wang Yufeng

    A Novel Hysteresis Random Spread-Spectrum Method in Random PWM Selective Harmonic Elimination for Single-Phase Inverter

    1,211

    (1. College of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China 2. College of Mechanical Engineering Liaoning Technical University Fuxin 123000 China)

    In random pulse width modulation (RPWM), the instantaneous switching frequency of inverter is required to be distributed in a wide frequency range for better randomness. However, when the switching frequency continues to be high, the switching loss will be increased. When the switching frequency continues to be low, the increase of output current ripples will be introduced. The existing selective harmonic elimination method in RPWM cannot effectively control the switching frequency of inverter as needed in the process of random spread-spectrum. In this paper, a novel hysteresis random spread-spectrum method in RPWM selective harmonic elimination for single-phase inverter is proposed. With the reasonably chosen random number () according to the relationship betweenand switching frequency in RPWM, the proposed method can guarantee that the instantaneous switching frequency is randomly distributed over a wide range and the average switching frequency can be controlled within a preset range. When the current ripples are large due to low switching frequency in RPWM selective harmonic elimination method, the average switching frequency can be increased to reduce it.

    Hysteresis random spread-spectrum, random pulse width modulation (RPWM), selective harmonic elimination, single-phase inverter

    0 Introduction

    In the conventional sinusoidal pulse width modulation (SPWM)[1-4], the switching frequency of the inverter is usually fixed and high-order harmonics are generated at the switching frequency and its multiples. This is the main reason for electromagnetic interference (EMI) and electromagnetic noise[5-7]. Increasing the switching frequency can reduce the noise, but it does not work well on occasions where the switching frequency must be limited to low values, such as high-power traction drive systems[8-9]. Random pulse width modulation (RPWM) can distribute the noise power which is concentrated at the switching frequency and its multiples evenly within a certain frequency range[10]. It is an effective method to reduce the electromagnetic noise and EMI at present[11].

    RPWM can basically be classified as: random switching frequency PWM[12-13], random pulse position PWM[14], random switching PWM[15], random zero vector PWM[16]and hybrid random PWM[17]. At present, the study focuses of RPWM mainly include: how to generate random numbers and how to calculate the switching period or place the pulse position randomly[18-19]. Thereby, the aforementioned RPWM methods couldn’t eliminate the specific harmonics selectively such as the resonance frequency of the load. The selective harmonic elimination pulse width modulation (SHEPWM)[20]can eliminate specific harmonics, but it is only aimed at low-order harmonics such as 6±1[21-22]and has little effect on eliminating the high-order harmonics.

    In order to shape the noise spectrum of the inverter output voltage, the low-pass filter and the band-pass filter were used respectively to reduce harmonics in the specific frequency range[23-25]. However, the digital filter brings large computation costs. In contrast, a novel idea was suggested in Ref.[26] to calculate the switching period by using the duty ratio to reduce the noise at the specific frequency. This algorithm is simple and the calculation is small. But, with this method, harmonics below 20kHz is usually difficult to eliminate. A method of selective voltage harmonic elimination is proposed in Ref.[27]. The problem in Ref.[26] was better solved and the harmonics whose frequencies are lower than 10kHz can be eliminated. However, the general formulas of the random numberand its corresponding switching frequency extreme value are not given in Ref.[27]. The method of random modulation in Ref.[28] for selectively reducing the noise at one or more frequency points was proposed, but this method led to an increase in the peak of power spectral density (PSD). The noise at the specific frequency can also be reduced in Ref.[29], but the switching frequency of the inverter must be less than the resonance frequency. When the resonance frequency is low, the switching frequency of the inverter will be over low. However, the aforementioned methods can not effectively control the switching frequencies of inverters. Namely, the average switching frequencies of the inverter in Ref.[23-29] can not be increased or decreased according to need.

    In RPWM, the instantaneous switching frequency of the inverter is required to be distributed in a wide frequency range[30]. When the switching frequency continues to be high, the switching loss of the IGBT will be increased. Usually, if the switching frequency of the inverter rises to a certain value, the inverter should reduce the rated power by about 5% for every 1kHz increase. When the switching frequency continues to be low, the issues (such as the increase of output current ripples) will be introduced. These all put forward high requirements for inverter switching frequency control. How to control the instantaneous switching frequency and average switching frequency of the inverter optimally are not considered in the aforementioned methods[23-29]when shaping the noise spectrum of the output voltage for the inverter.

    This paper proposed a novel hysteresis random spread-spectrum method in RPWM selective harmonic elimination forsingle-phaseinverter. Firstly, the mechanism underlying RPWM selective harmonic elimination is analyzed and two ideas of eliminating specific harmonics in RPWM are derived. Based on the two ideas, the general formulas to calculate the switching period, the random numberand its upper and lower limits (maxandmin) of the switching frequencies are obtained as well. While realizing selective voltage harmonic elimination in RPWM, the average switching frequency can be controlled to increase or decrease according to the need by the frequency hysteresis comparator and reasonably chosen random number. It is simple and easy to implement.

    1 Selective HarmonicElimination in RPWM

    Topology of single-phase voltage inverter as shown in Fig.1, the bipolar PWM has been adopted in the single-phase voltage inverter. The output voltage (ab) is equal todcor-dc.

    Fig.1 Topology of single-phase voltage inverter

    The formulas of the pulse sequence forth cycle are respectively shown in

    In equation (1) and equation (2),is a constant, Tis period ofth switching cycle,Dis duty ratio ofth switching cycle,tis start time ofth switching cycle andg() indicates the pulse ofth switching cycle.

    The PWM pulses are put in the front of the switching period and in the center of the switching period, respectively, as shown in Fig.2a and Fig.2b. A sequence of pulses in Fig.2a and Fig.2b can be regarded as the sum of output voltage (ab) and DC component (dc) of Fig.1.

    Fig.2 Pulse sequence diagram

    If the pulse functiong() does not contain a specific harmonic, then the waveform ofabdoes notcontain the harmonic. Equation (3) expresses the pulse train. The Fourier transform of equation (3) is given at equation (4). The real and imaginary parts of equation (4) are given at equation (5) and equation (6).

    Idea 1 is that the first summation of the (+)th term in equation (7) to equation (9) is removed by the second summation of theth term. The first summation of the (++1)th term is removed by the second summation of the (+1)th term, etc. Con- sequently, the summations in each term can be removed with each other.

    Idea 2 is that the second summation of the (+)th term in equation (7) to equation (9) is removed by the first summation of theth term. The second summation of the (++1)th term is removed by the first summation of the (+1)th term, etc. Consequently, the summations in each term can be removed with each other. Wheretis the start time of (+)th switching period andis a positive integer number.

    2 MechanismAnalysis of Selective Har-monic Elimination Based on Pulse Posi- tion at Front of Switching Period

    2.1 General Formula for Switching Period and Duty Ratio

    Equation (10) are available according to idea 1 on the basis of equation (8).

    Simultaneously, equation (12) is a general formula of the relation between the switching period and the duty ratio. Equation (13) and equation (14) are obtained whenare equal to 2and 3, respectively. Consequently, the cases canalso be obtained whereare equal to other positive integers. Thein equations are positive random numbers.

    Equation (15) is given according to the idea 2.

    Simultaneously, equation (16) is a general formula of the relation between the switching period and the duty ratio. Equation (17) and equation (18) are obtained whenare equal to 1 and 2, respectively. Consequently, the cases can be obtained whereare equal to other positive integers.

    2.2 General Formula for Random Number k and Its Switching Frequency Extreme Value

    In the idea 1, the general formula (takingT1as an example) of the upper and lower limits (maxandmin) for the random number () can be obtained by using equation (13) on the basis of the specific frequency (0), the duty ratio and the limit value of switching period, as shown in Tab.1. Similarly, the cases can also be obtained whereare equal to other positive integers.

    Tab.1 The ,, and in pulse position at front of switching period

    In the idea 2, the general formula of themaxandmincan be obtained according to equation (17), as shown in Tab.1. Similarly, the cases can also be obtained whereare equal to other positive integers.is a positive integer in the range of extreme values.

    Generally, more than onein Tab.1 are satisfied. The general formula for eachand its corresponding upper and lower limits of the switching frequencies can be calculated. As shown in Tab.1, the general formulas for eachand its upper and lower limits (fmaxandfmin) of the switching frequency in the idea 1 and idea 2 can be calculated according to equation (13) and equation (17), respectively. Similarly, the cases can also be obtained whereare equal to other positive integers.

    In the Tab.1,maxandminare the upper and lower limits of the duty ratio.maxandminwhich are usually preseted are the upper and lower limits of the instantaneous switching frequency.is a positive integer.fmaxandfminare the upper and lower limits of the switching frequency which are derived by each. Under the same conditions, the largeris, the smaller thefmaxandfminare and the smalleris, the largerfmaxandfminare.

    It can be seen from the equations of themaxandminin Tab.1 that the range of selection foris reduced with the decrease of0.The higher0is, the larger the selection range ofis.

    3 Mechanism Analysis of Selective Har-monic Elimination Based on Pulse Posi- tion at Center of Switching Period

    3.1 General Formula for Switching Period and Duty Ratio

    Equation (19) are available according to idea 1 on the basis of equation (9).

    Simultaneously, equation (20) is a general formula of the relation between the switching period and the duty ratio. Equation (21) and equation (22) are obtained whenare equal to 1 and 2, respectively. Consequently, the cases can be obtained whereare equal to other positive integers.

    Equation (23) is available according to the idea 2.

    Simultaneously, Equation (24) is a general formula of the relation between the switching period and the duty ratio. Equation (25) and equation (26) are obtained whenare equal to 1 and 2, respectively. Consequently, the cases can also be obtained whereare equal to other positive integers.

    3.2 General Formula for Random Number k and its Switching Frequency Extreme Value

    As shown in line 2 and line 3 of Tab.2, the extreme values (maxandmin) of the random numbercan be obtained by using equation (21) and equation (25) according to the idea 1 and idea 2, respectively.is a positive integer in the range of extreme values. By similar calculation above, the cases whereare equal to other positive integers can be obtained.

    Tab.2 The ,, and in pulse position at center of switching period

    Eachand its upper and lower limits of the switching frequencies in line 4 and line 5 of Tab.2 are calculated according to equation (21) and equation (25). In the same way, the cases whereare equal to other positive integers can also be obtained.

    It should be noted that the denominator may have a negative number when using the above equations to calculatefmaxandfmin. It is shown that the frequency () and duty ratio () can make the denominator of equations be zero without taking the limit value. In this case, the corresponding upper limit frequency is equivalent to +∞.

    4 Hysteresis Random Spread-Spectrum inRPWM Selective Harmonic Elimination Method

    It can be observed from Tab.1 and Tab.2 that the larger random number () is, the smallerfmaxandfminare. On the contrary, the limit value of the cor- responding instantaneous switching frequency is larger with a smaller. This makes it possible to control the average switching frequency of the inverter by reasonably selecting the random number (). So a smalleris selected to increase the average switching frequency when the average switching frequency is low. This can prevent the current ripples from increasing caused by the low switching frequency. Similarly, a largerischosen to reduce the average switching frequency and switching loss when the average switching frequency is high.

    Equation (27) is the formula of the average switching frequency (An) at the start time of theth sampling cycle according to Fig.2a and the idea 1. In order to avoid repeating the accumulation of the first1 switching frequencies in the process of calculating the average, it only needs to multiply the average switching frequencyA(n–1)at the beginning of the previous cycle and the number of cycles, then add it to the previous cycle frequencyf1to calculate the average frequency.

    As shown in Fig.3, the average switching frequency ( fAn) of the inverter was calculated by equation (27) and the upper and lower limits of the frequency hysteresis comparator were set to f1 and f2. The average switching frequency error (Df) is determined according to the result of hysteresis comparison, as shown in equation (28).

    The next sampling cycle (T+1) is calculated by using equation (13) after selecting the random number () and then the compare registers in DSP is assigned a value. Finally, the PWM driving signal of the single-phase inverter is generated.

    The effectiveis determined by the upper and lower limits (maxandmin) of the instantaneous switching frequency of the inverter. Among them, themaxcan not exceed the allowable switching frequency of the IGBT and a certain margin is kept. In addition, for those occasions where the carrier frequency must be low, themaxshall be selected flexibly according to the actual requirements. In this paper,maxis set to 8kHz andminis set to 1.5kHz.

    Equation (29) for switching frequency of the inverter is obtained according to the reciprocal of equation (13). The effective random number () which satisfies the upper and lower limits of the instantaneous switching can be calculated by equation (29), wheref1is the (+1)th cycle switching frequency of the inverter.

    The upper and lower limits (1and2) of the average switching frequency hysteresis are con- strained by the upper and lower limits (maxandmin) of the instantaneous switching frequency. In addition, a certain hysteresis width shall be ensured, as shown in equation (30).

    In summary, under the premise of ensuring that the instantaneous switching frequency does not exceed the range frommintomax, the average frequ- ency is controlled within the set range from1to2.

    5 Simulation and Experiment

    The parameters of the simulation and experi- mental system are as follows: inverter was connected to RL load with=15Wand=5mH, also the DC voltage is equal to 48V. The instantaneous switching frequency of the inverter is distributed from 1.5kHz to 8kHz.=0.3, 0.5 and 0.7, also0=6kHz, 8kHz and 10kHz are preseted, respectively. Duty ratio is achieved from (1+sin())/2, whereis angular frequency of main harmonic. For instance, the upper and lower limits of duty ratio are equal to 0.85 and 0.15, respectively if=0.7. The fundamental frequency of the output voltage is 50Hz.

    The experimental system is shown in Fig.4. TMS320F2812 32-bit DSP for the master chip of system and the IGBT BSM50GB120DN2 for the main circuit power switches have been adopted. A dead time has been set to 4.27ms. In the experiment, the oscilloscope (DS1052E) and power quality analyzer (HIOKIPW3198) have been used.

    Fig.4 Experimental system

    5.1 Realization of Selective Harmonic Elimination in RPWM

    The proposed method is verified by the software of Matlab/Simulink. Fig.5 shows the waveforms of fixed switching frequency 3kHz for SPWM and the conventional RPWM.

    Fig.5 Simulated waveforms of PSD

    It can be seen that the harmonics are mainly concentrated at 3kHz and its multiples in Fig.5a. Compared with the fixed switching frequency SPWM, it can be seen from Fig.5b that there is no obvious peak in the PSD of the conventional RPWM and the harmonics are distributed evenly, but it can not selectively eliminate the specific frequency.

    The waveforms of the proposed method under the same parameters are shown in Fig.6. Among these figures, the upper and lower limits (1and2) of the average switching frequency are set to 2 100Hz and 4 100Hz, respectively. The0is set to 6kHz.

    Compared with the conventional RPWM, the proposed method can significantly reduce the frequency component of0and its multiples, whenare equal to 0.3, 0.5 and 0.7, respectively.

    5.2 Analysis of Experimental Results of Different f0

    The experimental waveforms of the PSD for the proposed method (0=6kHz, 8kHz and 10kHz) are shown in Fig.7. It can be seen that the harmonic power at0and its multiples can be reduced significantly when0are equal to three frequencies, respectively. It is basically consistent with the simulation results.

    As seen in Fig.7, the PSD waveforms have a significant gap with the range of about hundreds hertz around0and its multiples. The reason is that the frequency close to0is reduced by a certain amplitude when the harmonic power at0is completely eliminated. The closer to0is, the greater the amplitude is decreased. The impact of phase error in system can be overcome by the characteristics, such as the error in time-delay, etc.

    The experimental waveforms of driving voltage for IGBT, the output voltage and current for the inverter are shown in Fig.8 when0is equal to 10kHz.

    Fig.8 Experimental waveforms of voltage and current

    5.3 Comparison with existing method

    The distribution of instantaneous switching frequency percentage and average switching frequency are shown in Fig.9. Waveforms 1, 2 and 3 are for the proposed method in this paper. The upper and lower limits1and2of the frequency hysteresis comparator are: 2 100~2 200Hz, 3 000~3 100Hz, 4 000~4 100Hz, also all the hysteresis width is set to 100Hz. Waveform 4 is for the existing RPWM selective harmonic elimination method, taking Ref.[27] as an example. All0of aforementioned are 10kHz.

    It can be seen from Fig.9 that the average switching frequency can be controlled within the set of three smaller frequency ranges1~2by reasonable selection of the random number. And the instantaneous switching frequency can be ensured to be randomly distributed within the allowable rangemin~max. The randomness is well.

    In contrast, the existing method in Ref.[23-29] can not control the average switching frequency of the inverter flexibly. The average switching frequency in Ref.[21] is around 3 150Hz in Fig.9a under the same conditions, which is uncontrollable. In this paper, the average switching frequency can be increased to about 4 050Hz and controlled to increase or decrease in the range of 2 100~4 100Hz. So the flexibility is better. The current waveforms for the above two methods are presented in Fig.10 and Fig.11. It can be seen from the comparison that switching frequency of the method in Ref.[27] is lower than the proposed method as a whole and the current ripples are significantly larger.

    Fig.9 The waveforms of switching frequency

    Fig.10 The waveforms of uab and iab when the existing method is adopted

    In the method of this paper, the upper and lower limits of the average switching frequency can be obtained if the range of random selection is limited to the maximum three random numbers or the minimum three random numbers. Moreover, the larger0is, the more effective random numbers are and the higher the degree and precision of average switching frequency to control is.

    Fig.11 The waveforms of uab and iab when frequency hysteresis is 4 000~4 100Hz

    6 Conclusion

    In this paper, a novel hysteresis random spread- spectrum method in RPWM selective harmonic elimination forsingle-phaseinverter has been proposed. Compared with the fixed switching frequency SPWM and the traditional RPWM, the harmonics can be distributed uniformly in certain frequency range and some unwanted harmonics can be eliminated successfully with proposed method. Based on the realization of selective harmonic elimination in RPWM, the flexible increase and decrease of the average switching frequencies have been achieved by the hysteresis random spread-spectrum method. When the current ripple is large due to the low switching frequency, the average switching frequency can be increased to reduce it, while the distribution range of instantaneous switching frequency is unchanged. The proposed method is characterized by flexibility, simple algorithm and easy implementation.

    [1] Chen Jie, Li Jun, Qiu Ruichang, et al. Research on space vector PWM synchronous overmodulation in rail transit traction system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 91-100.

    [2] Niu Feng, Cao Shiran, Wang Yao, et al. Analysis of leakage current in PWM motor system[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(8): 1599-1606.

    [3] Liu Jianqiang, Liu Chuanduo, Wang Yiou, et al. Fault diagnosis method for IGBT and DC-link capacitor of single-phase PWM rectifier[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 244-257.

    [4] Xia Wenjing, Liu Bi, Wang Song, et al. Model predictive control of PWM rectifiers based on dyna- mic component optimization of input-port voltage[J]. Automation of Electric Power Systems, 2020, 44(1): 200-207.

    [5] Hara T, Ajima T, Tanabe Y, et al. Analysis of vibration and noise in permanent magnet synchronous motors with distributed winding for the PWM method[J]. IEEE Transactions on Industry Appli- cations, 2018, 54(6): 6042-6049.

    [6] Jiang Shiqi, Liu Yitao, Yin Shan, et al. Electro- magnetic interference filter design of single-phase inverter based on the noise source impedance extraction[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3552-3562.

    [7] Li Jie, Xu Yuan, Song Wenxiang. CHMPWM for active-neutral-point-clamped five-level converter and flying capacitor voltage control[J]. Electric Machines and Control, 2019, 23(9): 92-100.

    [8] Wang Chenchen, Wang Kun, You Xiaojie, et al. Research on the synchronized SVPWM strategies under low switching frequency for dual stator indu- ction machines[J]. Proceedings of the CSEE, 2017, 37(13): 3883-3891.

    [9] Chen Minwu, Liu Ruofei, Chen Ling, et al. Com- pensation algorithm and control strategy optimization of combined co-phase power supply system[J]. Electric Machines and Control, 2019, 23(8): 28-34, 42.

    [10] Liu Zhen, Wei Yingdong, Jiang Qirong. Random zero-sequence component modulation of MMC based on IGBT series modular[J]. Automation of Electric Power Systems, 2017, 41(11): 156-162.

    [11] Lezynski P. Random modulation in inverters with respect to electromagnetic compatibility and power quality[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2): 782-790.

    [12] Bhattacharya S, Mascarella D, Joos G, et al. Reduced switching random PWM technique for two-level inverters[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, CAN, 2015: 695-702.

    [13] Bu Feifei, Pu Tianyu, Huang Wenxin, et al. Perfor- mance and evaluation of five-phase dual random SVPWM strategy with optimized probability density function[J]. IEEE Transactions on Industrial Electro- nics, 2019, 66(5): 3323-3332.

    [14] Paramasivan M, Paulraj M M, Balasubramanian S. Assorted carrier-variable frequency-random PWM scheme for voltage source inverter[J]. IET Power Electronics, 2017, 10(14): 1993-2001.

    [15] Agelidis V G, Vincenti D. Optimum non-deterministic pulse-width modulation for three-phase inverters[C]// Proceedings of IECON '93-19th Annual Conference of IEEE Industrial Electronics, Maui, HI, USA, 1993: 1234-1239.

    [16] Liu Yang, Wang Qingyi, Zhao Jin. Dual randomized PWM based on vector control system[J]. Proceedings of the CSEE, 2010, 30(36): 98-102.

    [17] Huang Yingliang, Xu Yongxiang, Zhang Wentao, et al. Hybrid RPWM technique based on modified SVPWM to reduce the PWM acoustic noise[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5667-5674.

    [18] Gamoudi R, Elhak Chariag D, Sbita L. A review of spread-spectrum-based PWM techniques-a novel fast digital implementation[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10292-10307.

    [19] Jadeja R, Ved A, Chauhan S. An investigation on the performance of random PWM controlled converters[J]. Engineering, Technology & Applied Science Research, 2015, 5(6): 876-884.

    [20] Sharifzadeh M, Vahedi H, Portillo R, et al. Selective harmonic mitigation based self-elimination of triplen harmonics for single-phase five-level inverters[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 86-96.

    [21] Yang Kehu, Yuan Zhibao, Yuan Ruyi, et al. A groebner bases theory-based method for selective harmonic elimination[J]. IEEE Transactions on Power Electro- nics, 2015, 30(12): 6581-6592.

    [22] Pérez-Basante A, Ceballos S, Konstantinou G, et al. A universal formulation for multilevel selective- harmonic- eliminated PWM with half-wave symmetry[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 943- 957.

    [23] Kang B J, Liaw C M. Random hysteresis PWM inverter with robust spectrum shaping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 619-629.

    [24] Liu Heping, Liu Qing, Zhang Wei, et al. Random PWM technique for acoustic noise and vibration reduction in induction motors used by electric vehicles[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1488-1495.

    [25] Chai J Y, Lin Y W, Liaw C M. Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor[J]. IEE Pro- ceedings-Electric Power Applications, 2006, 153(3): 348-360.

    [26] Kirlin R L, Lascu C, Trzynadlowski A M. Shaping the noise spectrum in power electronic inverters[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2780-2788.

    [27] Peyghambari A, Dastfan A, Ahmadyfard A. Strategy for switching period selection in random pulse width modulation to shape the noise spectrum[J]. IET Power Electronics, 2015, 8(4): 517-523.

    [28] Pedersen J K, Blaabjerg F, Frederiksen P S. Reduction of acoustic noise emission in AC-machines by intelligent distributed random modulation[C]//Fifth European Conference on Power Electronics and Applications, Brighton, UK, 1993, 4: 369-375.

    [29] Wang Zheng, Chau K, Cheng Ming. A chaotic PWM motor drive for electric propulsion[C]//IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-6.

    [30] Lee K, Shen G, Yao W, et al. Performance characteri- zation of random pulse width modulation algorithms in industrial and commercial adjustable-speed drives[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1078-1087.

    單相逆變器隨機(jī)PWM選擇性消諧滯環(huán)隨機(jī)擴(kuò)頻方法

    李國華1,2劉春武1汪玉鳳1

    (1. 遼寧工程技術(shù)大學(xué)電氣與控制工程學(xué)院 葫蘆島 125105 2. 遼寧工程技術(shù)大學(xué)機(jī)械工程學(xué)院 阜新 123000)

    在隨機(jī)脈沖寬度調(diào)制(RPWM)中,要求逆變器的瞬時(shí)開關(guān)頻率分布在較寬的頻率范圍內(nèi),以獲得較好的隨機(jī)性。然而,當(dāng)開關(guān)頻率持續(xù)偏高時(shí),逆變器的開關(guān)損耗將會(huì)增加;當(dāng)開關(guān)頻率持續(xù)較低時(shí),會(huì)引起輸出電流紋波的增加。現(xiàn)有的RPWM選擇性諧波消除方法在隨機(jī)擴(kuò)頻的過程中不能有效地控制逆變器的開關(guān)頻率。該文提出一種單相逆變器RPWM選擇性消諧滯環(huán)隨機(jī)擴(kuò)頻方法。根據(jù)RPWM策略中有效隨機(jī)數(shù)與開關(guān)頻率的關(guān)系,合理選擇隨機(jī)數(shù),既可以保證逆變器瞬時(shí)開關(guān)頻率在較寬的范圍內(nèi)隨機(jī)分布,又可以將平均開關(guān)頻率控制在預(yù)先設(shè)定的頻率范圍內(nèi)。在RPWM選擇性消諧過程中,當(dāng)開關(guān)頻率較低而引起電流紋波增加時(shí),該方法可以通過提高平均開關(guān)頻率來減小紋波。

    滯環(huán)隨機(jī)擴(kuò)頻 隨機(jī)脈寬調(diào)制(RPWM) 選擇性諧波消除 單相逆變器

    TM46

    10.19595/j.cnki.1000-6753.tces.200018

    This work is partially supported by National Natural Science Foundation of China (51307076) and Natural Science Foundation of Liaoning Province, China (20180550268).

    January 7, 2020;

    March 3, 2020.

    Li Guohua male, born in 1981, PhD. Major research interests include power electronics, pulse-width modulation schemes and harmonic compensation in power system.E-mail: dkliguohua@163.com

    Liu Chunwu male, born in 1995, Postgraduate. Major research interests include power electronics and pulse-width modulation schemes.E-mail: lcw19950204@163.com (Corresponding author)

    (編輯 陳 誠)

    猜你喜歡
    紋波單相工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    紋波電流對不同芯片尺寸的LED光源可靠性的影響
    光源與照明(2019年4期)2019-05-20 09:18:18
    福建工程學(xué)院
    裝飾性鍍鉻用低紋波可調(diào)控高頻開關(guān)電源設(shè)計(jì)
    基于PI+重復(fù)控制的單相逆變器研究
    基于MAX16832長壽命低紋波LED路燈電源的設(shè)計(jì)
    電子器件(2015年5期)2015-12-29 08:43:41
    級聯(lián)Boost變換器輸出電壓紋波分析
    一種新型斬波AC/DC/AC變換的單相DVR
    精品一区二区三区av网在线观看 | 乱人伦中国视频| 宅男免费午夜| 十八禁人妻一区二区| 七月丁香在线播放| 2021少妇久久久久久久久久久| 美女视频免费永久观看网站| 欧美黑人精品巨大| 国产精品一区二区在线观看99| 黄片无遮挡物在线观看| 国产人伦9x9x在线观看| 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀 | 欧美国产精品一级二级三级| 国产精品久久久久久精品电影小说| 日本91视频免费播放| 亚洲人成77777在线视频| 欧美日韩一级在线毛片| 亚洲成人手机| 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 国产精品偷伦视频观看了| 亚洲国产中文字幕在线视频| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 精品福利永久在线观看| 精品一区在线观看国产| 麻豆精品久久久久久蜜桃| 天天影视国产精品| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看| 亚洲欧美一区二区三区久久| 精品亚洲成国产av| 国产精品av久久久久免费| 人人妻人人澡人人看| 亚洲精品av麻豆狂野| 丰满饥渴人妻一区二区三| 国产不卡av网站在线观看| 久久免费观看电影| 成人18禁高潮啪啪吃奶动态图| 五月天丁香电影| 亚洲精品在线美女| 999久久久国产精品视频| 国产精品久久久久久精品古装| 国产精品99久久99久久久不卡 | 欧美精品一区二区大全| 一区在线观看完整版| 美女主播在线视频| 免费av中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 超碰97精品在线观看| 在线观看免费视频网站a站| 欧美最新免费一区二区三区| 国产精品无大码| 2018国产大陆天天弄谢| 最近中文字幕高清免费大全6| 欧美精品亚洲一区二区| 熟妇人妻不卡中文字幕| 久久婷婷青草| 看十八女毛片水多多多| 日韩一本色道免费dvd| 少妇人妻 视频| 精品一区二区三区av网在线观看 | 亚洲精品中文字幕在线视频| 午夜影院在线不卡| 国产成人午夜福利电影在线观看| 狠狠婷婷综合久久久久久88av| 国产精品偷伦视频观看了| 七月丁香在线播放| 国产片内射在线| 日日摸夜夜添夜夜爱| 热re99久久国产66热| 国产黄色视频一区二区在线观看| 亚洲国产成人一精品久久久| 丝袜喷水一区| 久久毛片免费看一区二区三区| 亚洲精品美女久久av网站| 永久免费av网站大全| 中文欧美无线码| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品一区三区| 99九九在线精品视频| 国产精品一区二区精品视频观看| 欧美亚洲日本最大视频资源| 日本91视频免费播放| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 最新的欧美精品一区二区| 69精品国产乱码久久久| 国产精品人妻久久久影院| 亚洲精品国产一区二区精华液| 久久午夜综合久久蜜桃| 一本久久精品| 亚洲精品成人av观看孕妇| 在线观看人妻少妇| 尾随美女入室| 天堂中文最新版在线下载| 如日韩欧美国产精品一区二区三区| 亚洲免费av在线视频| 成人影院久久| 欧美乱码精品一区二区三区| 亚洲三区欧美一区| 免费黄频网站在线观看国产| 亚洲第一青青草原| 免费观看人在逋| 国产精品成人在线| 久久这里只有精品19| 日本爱情动作片www.在线观看| svipshipincom国产片| 在线观看一区二区三区激情| 在线观看免费视频网站a站| 中文字幕人妻丝袜一区二区 | 色吧在线观看| 亚洲精品国产色婷婷电影| 成人漫画全彩无遮挡| 欧美国产精品一级二级三级| 久久国产亚洲av麻豆专区| 亚洲四区av| 国产欧美日韩一区二区三区在线| 高清黄色对白视频在线免费看| 久久性视频一级片| 国产精品人妻久久久影院| 免费观看性生交大片5| av女优亚洲男人天堂| 熟妇人妻不卡中文字幕| 日韩精品免费视频一区二区三区| 国产成人精品在线电影| 国产极品天堂在线| 女人精品久久久久毛片| 一边亲一边摸免费视频| 亚洲av福利一区| 亚洲,一卡二卡三卡| 最近2019中文字幕mv第一页| 伊人久久国产一区二区| 尾随美女入室| 天天操日日干夜夜撸| 波多野结衣一区麻豆| 熟女少妇亚洲综合色aaa.| 一二三四中文在线观看免费高清| 午夜激情av网站| 十八禁高潮呻吟视频| 国产毛片在线视频| 电影成人av| 免费不卡黄色视频| 中国国产av一级| 五月天丁香电影| 欧美成人午夜精品| 丝瓜视频免费看黄片| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 国产极品粉嫩免费观看在线| 久久人人爽av亚洲精品天堂| 在现免费观看毛片| 国产亚洲一区二区精品| 青春草视频在线免费观看| 黑丝袜美女国产一区| 男女下面插进去视频免费观看| 精品一区二区三区四区五区乱码 | 又大又爽又粗| 国产男女内射视频| 9191精品国产免费久久| 999精品在线视频| 日韩一区二区视频免费看| 亚洲中文av在线| 国产av码专区亚洲av| 免费观看a级毛片全部| 国产亚洲最大av| 下体分泌物呈黄色| 性高湖久久久久久久久免费观看| 欧美另类一区| 高清在线视频一区二区三区| 一区二区三区精品91| 男男h啪啪无遮挡| 亚洲国产看品久久| 日韩精品有码人妻一区| 国产亚洲av高清不卡| 啦啦啦 在线观看视频| 成年女人毛片免费观看观看9 | 一区在线观看完整版| 可以免费在线观看a视频的电影网站 | 青春草亚洲视频在线观看| 亚洲自偷自拍图片 自拍| 成年av动漫网址| 国产成人午夜福利电影在线观看| 久久99一区二区三区| 少妇人妻 视频| 国产99久久九九免费精品| 欧美国产精品va在线观看不卡| 日日啪夜夜爽| videosex国产| av在线观看视频网站免费| 免费久久久久久久精品成人欧美视频| 亚洲综合精品二区| 18禁观看日本| 人妻一区二区av| 亚洲激情五月婷婷啪啪| 极品人妻少妇av视频| 久久热在线av| 97精品久久久久久久久久精品| 一级爰片在线观看| 久久精品国产亚洲av涩爱| 国产成人精品无人区| 亚洲成国产人片在线观看| 精品久久久精品久久久| 十八禁高潮呻吟视频| 亚洲成av片中文字幕在线观看| 国产成人精品无人区| av网站在线播放免费| 一级毛片我不卡| 纯流量卡能插随身wifi吗| 久久精品熟女亚洲av麻豆精品| 欧美日韩一区二区视频在线观看视频在线| 国产成人91sexporn| 天堂8中文在线网| 人人妻人人添人人爽欧美一区卜| 侵犯人妻中文字幕一二三四区| videos熟女内射| 午夜福利在线免费观看网站| 又粗又硬又长又爽又黄的视频| 悠悠久久av| 国产福利在线免费观看视频| 99久久综合免费| 考比视频在线观看| 成人国产av品久久久| 成人免费观看视频高清| 欧美国产精品一级二级三级| 国产成人系列免费观看| 又大又黄又爽视频免费| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 亚洲国产毛片av蜜桃av| 久久久精品国产亚洲av高清涩受| 亚洲av电影在线进入| 成人三级做爰电影| 极品少妇高潮喷水抽搐| 中文字幕人妻熟女乱码| 国产精品国产三级国产专区5o| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 美女中出高潮动态图| 日韩伦理黄色片| 最近2019中文字幕mv第一页| 欧美日韩亚洲综合一区二区三区_| 中国国产av一级| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| 国产乱来视频区| 天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| 少妇人妻久久综合中文| 美女视频免费永久观看网站| 十八禁人妻一区二区| 免费在线观看视频国产中文字幕亚洲 | 国产精品免费视频内射| 国产免费福利视频在线观看| 午夜91福利影院| 久久亚洲国产成人精品v| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品古装| 中文天堂在线官网| 高清欧美精品videossex| 久久久久精品人妻al黑| 制服人妻中文乱码| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 国产 一区精品| 成年人午夜在线观看视频| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 80岁老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 午夜影院在线不卡| 国产精品久久久久久人妻精品电影 | 午夜av观看不卡| 亚洲欧洲日产国产| 秋霞在线观看毛片| a级片在线免费高清观看视频| 青草久久国产| 欧美另类一区| 欧美日韩精品网址| 天天影视国产精品| 亚洲成人av在线免费| 最新在线观看一区二区三区 | 欧美另类一区| 午夜激情av网站| 国产av一区二区精品久久| 亚洲激情五月婷婷啪啪| 国产精品 欧美亚洲| 99热全是精品| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 人妻人人澡人人爽人人| 老司机影院毛片| 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品 | 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看 | 两性夫妻黄色片| 国产精品免费视频内射| 一级,二级,三级黄色视频| 在现免费观看毛片| 久久精品国产亚洲av高清一级| 色播在线永久视频| 女性生殖器流出的白浆| 日日摸夜夜添夜夜爱| 深夜精品福利| 久久久久久久久免费视频了| 人妻一区二区av| 亚洲精品国产色婷婷电影| 日韩电影二区| 日韩av免费高清视频| videos熟女内射| 一区二区av电影网| 亚洲伊人色综图| 最黄视频免费看| 在线观看www视频免费| 日韩av不卡免费在线播放| 我要看黄色一级片免费的| 色94色欧美一区二区| 啦啦啦中文免费视频观看日本| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 一级爰片在线观看| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 亚洲av成人精品一二三区| 黄色 视频免费看| 超色免费av| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 多毛熟女@视频| 国产亚洲av片在线观看秒播厂| 亚洲熟女精品中文字幕| 国产精品熟女久久久久浪| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 99re6热这里在线精品视频| 中国国产av一级| 国产又色又爽无遮挡免| 亚洲av电影在线观看一区二区三区| 国产淫语在线视频| 午夜久久久在线观看| 国产xxxxx性猛交| 十分钟在线观看高清视频www| 人人妻,人人澡人人爽秒播 | av福利片在线| 日韩免费高清中文字幕av| 国产午夜精品一二区理论片| 哪个播放器可以免费观看大片| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 制服诱惑二区| 久久精品国产综合久久久| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 一本大道久久a久久精品| 亚洲欧美成人精品一区二区| 久久影院123| 日韩一区二区视频免费看| 国产精品免费大片| 秋霞伦理黄片| 国产亚洲最大av| 国产又色又爽无遮挡免| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 少妇人妻 视频| 97人妻天天添夜夜摸| 国产成人精品福利久久| 狂野欧美激情性xxxx| 青春草国产在线视频| 19禁男女啪啪无遮挡网站| 精品国产一区二区久久| 水蜜桃什么品种好| 国产一区二区三区综合在线观看| 成人国产麻豆网| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 操出白浆在线播放| 亚洲色图综合在线观看| 欧美97在线视频| 爱豆传媒免费全集在线观看| 日韩精品免费视频一区二区三区| 国产亚洲最大av| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀 | 黄片无遮挡物在线观看| 晚上一个人看的免费电影| 中文字幕人妻熟女乱码| 精品亚洲乱码少妇综合久久| 亚洲国产av影院在线观看| av.在线天堂| 一本久久精品| 交换朋友夫妻互换小说| 欧美成人午夜精品| 69精品国产乱码久久久| 人人妻,人人澡人人爽秒播 | 9色porny在线观看| 国产探花极品一区二区| 丝袜美足系列| 免费观看人在逋| 不卡av一区二区三区| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 别揉我奶头~嗯~啊~动态视频 | 热re99久久精品国产66热6| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 精品久久久久久电影网| 亚洲第一av免费看| 男女高潮啪啪啪动态图| 国产精品二区激情视频| 国产1区2区3区精品| videosex国产| 不卡av一区二区三区| 亚洲av欧美aⅴ国产| 久久人人爽人人片av| 一区二区三区精品91| 国产精品久久久久久久久免| 亚洲国产av新网站| 欧美97在线视频| 男女高潮啪啪啪动态图| 不卡视频在线观看欧美| netflix在线观看网站| 中文字幕人妻丝袜制服| 狂野欧美激情性bbbbbb| 国产一区二区三区av在线| 亚洲精品国产av蜜桃| 久久久精品国产亚洲av高清涩受| 搡老岳熟女国产| 男女边吃奶边做爰视频| 高清视频免费观看一区二区| 亚洲成人手机| 久久99一区二区三区| 在线免费观看不下载黄p国产| 亚洲美女黄色视频免费看| 纯流量卡能插随身wifi吗| 99久久精品国产亚洲精品| 国产精品久久久av美女十八| 欧美精品av麻豆av| 啦啦啦 在线观看视频| netflix在线观看网站| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 90打野战视频偷拍视频| 制服人妻中文乱码| 精品一区二区三卡| 日本vs欧美在线观看视频| 热re99久久精品国产66热6| 日韩大码丰满熟妇| 老司机影院成人| 国产男女超爽视频在线观看| 欧美久久黑人一区二区| 精品一品国产午夜福利视频| 亚洲欧洲国产日韩| 国产精品久久久久成人av| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 精品少妇一区二区三区视频日本电影 | 亚洲精品成人av观看孕妇| 久热爱精品视频在线9| 香蕉国产在线看| 老熟女久久久| 爱豆传媒免费全集在线观看| 亚洲精华国产精华液的使用体验| 国精品久久久久久国模美| 国产av码专区亚洲av| 97人妻天天添夜夜摸| 日本av免费视频播放| 亚洲精品一区蜜桃| 亚洲欧洲日产国产| 19禁男女啪啪无遮挡网站| 国产在视频线精品| 又大又爽又粗| www.自偷自拍.com| www.精华液| 男女床上黄色一级片免费看| 9191精品国产免费久久| 天天躁夜夜躁狠狠久久av| 精品少妇一区二区三区视频日本电影 | 伦理电影免费视频| 女性生殖器流出的白浆| a级毛片黄视频| 91aial.com中文字幕在线观看| 免费黄网站久久成人精品| xxx大片免费视频| 尾随美女入室| 亚洲欧美一区二区三区久久| 一级,二级,三级黄色视频| 女的被弄到高潮叫床怎么办| 777米奇影视久久| 18禁国产床啪视频网站| 精品少妇内射三级| 天天躁夜夜躁狠狠久久av| 欧美成人精品欧美一级黄| 成人国产av品久久久| 国产精品三级大全| 欧美激情极品国产一区二区三区| 欧美国产精品va在线观看不卡| 免费高清在线观看视频在线观看| 久久精品国产a三级三级三级| 国产精品免费大片| 欧美激情极品国产一区二区三区| www日本在线高清视频| 青草久久国产| 无遮挡黄片免费观看| 久久午夜综合久久蜜桃| 黑丝袜美女国产一区| 少妇 在线观看| 国产极品粉嫩免费观看在线| 日韩精品免费视频一区二区三区| 啦啦啦中文免费视频观看日本| 成人免费观看视频高清| 在线观看免费高清a一片| 在线天堂中文资源库| 久久青草综合色| 亚洲精品美女久久av网站| 精品少妇久久久久久888优播| 99国产精品免费福利视频| 中文字幕av电影在线播放| 黄色一级大片看看| 观看美女的网站| 精品少妇黑人巨大在线播放| 中国国产av一级| 亚洲精品一二三| 欧美另类一区| 国产午夜精品一二区理论片| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院| 伦理电影免费视频| 久久毛片免费看一区二区三区| 成人影院久久| 欧美人与善性xxx| 国产99久久九九免费精品| 岛国毛片在线播放| 中文字幕高清在线视频| 国产av精品麻豆| 免费在线观看视频国产中文字幕亚洲 | 国产高清国产精品国产三级| 亚洲精华国产精华液的使用体验| 9色porny在线观看| www.av在线官网国产| 嫩草影院入口| 狠狠婷婷综合久久久久久88av| 女性被躁到高潮视频| 亚洲中文av在线| av国产久精品久网站免费入址| 亚洲人成77777在线视频| 99久久99久久久精品蜜桃| 国产熟女欧美一区二区| 国产在视频线精品| 男女免费视频国产| 久久久久网色| 日韩一本色道免费dvd| 国产亚洲av高清不卡| 亚洲美女黄色视频免费看| 女人被躁到高潮嗷嗷叫费观| 99精品久久久久人妻精品| 久久久久久人人人人人| 国产一区二区在线观看av| 少妇精品久久久久久久| 熟女少妇亚洲综合色aaa.| 亚洲精品一二三| 国产av国产精品国产| 狠狠婷婷综合久久久久久88av| 亚洲精品国产区一区二| 一边亲一边摸免费视频| 午夜福利免费观看在线| 麻豆精品久久久久久蜜桃| 各种免费的搞黄视频| 不卡视频在线观看欧美| 老司机在亚洲福利影院| 国产一区二区在线观看av| 亚洲,欧美精品.| 超碰成人久久| 日本一区二区免费在线视频| kizo精华| 欧美人与性动交α欧美软件| 别揉我奶头~嗯~啊~动态视频 | 亚洲av在线观看美女高潮| 久久午夜综合久久蜜桃| 制服丝袜香蕉在线| 午夜精品国产一区二区电影| 欧美国产精品一级二级三级| 叶爱在线成人免费视频播放| 美女视频免费永久观看网站| 夫妻午夜视频| 叶爱在线成人免费视频播放| 国产成人欧美| 国产精品 欧美亚洲| 叶爱在线成人免费视频播放| 国产一级毛片在线| 欧美少妇被猛烈插入视频| av天堂久久9| 欧美日韩亚洲高清精品| 老司机影院毛片| 国产一区亚洲一区在线观看| 国产精品.久久久| 欧美 亚洲 国产 日韩一| 婷婷色综合www| 中文字幕人妻丝袜一区二区 | 亚洲一区二区三区欧美精品| 国产一区亚洲一区在线观看| 少妇 在线观看| 国产成人精品在线电影| 午夜福利,免费看| 久久ye,这里只有精品| 午夜福利一区二区在线看| 日韩大片免费观看网站|