• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Design of a Tubular Permanent Magnet Linear Generator with 120°Phase Belt Toroidal Windings for Detent Force Reduction

    2021-03-24 13:15:16SiJikaiYanZuoguangNieRuiXuShuaiDongLianghui
    電工技術(shù)學報 2021年6期
    關(guān)鍵詞:發(fā)電機優(yōu)化設(shè)計

    Si Jikai Yan Zuoguang Nie Rui Xu Shuai Dong Lianghui

    Optimal Design of a Tubular Permanent Magnet Linear Generator with 120°Phase Belt Toroidal Windings for Detent Force Reduction

    (College of Electrical Engineering Zhengzhou University Zhengzhou 450001 China)

    The utilization of 120° phase belt toroidal windings can bring power density improvement in a tubular permanent magnet linear generator (TPMLG). However, the TPMLG always suffers from large detent force, which would cause generator oscillation or even destabilize the system. To alleviate this problem, the optimal design of the tubular permanent magnet linear generator with 120° phase belt toroidal windings (120°-TPMLG) is conducted in this paper. The influence of different structural parameters (stator iron core length, pole arc coefficient, slot shoulder width, stator teeth width and air gap length) on the detent force is analyzed via finite element method firstly. According to these analytical results, the optimal design combined with the Taguchi method is implemented to minimize the detent force without losing output power, and the optimal structural parameters of the 120°-TPMLG are obtained. To verify the effectiveness of the optimal design process, the performance of the optimal 120°-TPMLG is compared with that of the original one. It is shown that the detent force of the optimal generator is largely decreased, and the output power is slightly improved, which proves that the proposed optimal design method is available in the detent force reduction of 120°-TPMLG.

    120° phase belt toroidal windings, detent force, optimal design, tubular permanent magnet linear generator, Taguchi method

    0 Introduction

    Nowadays, linear generators have been a promising choice for the direct-drive wave energy conversion (DD-WEC) systemowing to simple structure, friendly maintenance and high efficiency[1]. Unfortunately, common linear generators used in DD-WEC system have the drawback of low power density due to their low operation speed. Accordingly, many special types of generators have been applied in DD-WEC system for power density improvement, such as double-fed linear generator, variable reluctance linear generator, and permanent magnet linear generator (PMLG)[2-3]. The PMLG rises the most attention among these generators because ofthe advantages of high force-to-weight ratio, and high efficiency as well as high power factor[4]. The PMLG for DD-WEC system generally has tubular structure, which inherits the merits of high winding utilization rate and power density[5].

    Common tubular PMLGs usually adoptfractional pitch windings, which maycause a space vectors misalignment of coil-EMF, and a little dip of the no-load EMF. It will limit the output power improvement.To further improve the power density, a tubular PMLG with 120° phase belt toroidal windings(120°-TPMLG) is proposed. Its analysis results show that the 120°-TPMLG has the advantage that high power density and high efficiency[6-7]. However, the detent force of the 120°-TPMLG is slightly higher than that of the traditional TPMLG due to its special slot/pole ratio[8].The detent force can cause undesirable mechanical vibration, which makes the generation difficult to work, especially under the condition of low wave speed[9]. Therefore, it is of great significance to reduce the detent force for the 120°-TPMLG.

    In recent years, many detent force reduction methods from motor design technologieshave been proposed and investigated, such as skewing, stator core optimization, magnet shift and semi-closed stator slots, etc[10-14]. However, most of the aforementioned methods mainly focus on the optimization of single objective, by which it is difficult to obtain the optimal parameters for two or more objectives. Accordingly, numerous multi-objective optimization methods have been proposed, such as genetic algorithm, surface response method and Taguchi method[15-17], etc. Appling the genetic algorithm in the optimization of the tubular PMLG has a major shortcoming thatit is very time-consuming especially for the high- dimensional characteristic of the optimization[18]. Additionally, the optimization accuracy is not acceptable due to the essential assumptions and objective functions. The response surface (RS) method can be also utilized in optimizing the structure parameters of the TPMLG. Although it can reduce the computation time, it is hard to cover all sample points and goodness of fit due to the nonlinearity of the optimization[19]. By contrast, the Taguchi method can allow many settings of necessary structure parameters in design optimization simultaneously without complicated algorithms and additional programming. Hence, effects of several factors on motor perfor- mance can be investigated simultaneously with a little time[20-21]. Accordingly, the Taguchi method is utilized to minimize the detent force without losing power density in this paper.

    This paper adopts the Taguchi method to conduct the optimal design of the 120°-TPMLG for the detent force reduction. Through theoretical and finite element analysis (FEA), five key structural parameters are selected to be as the design variables to obtain the best combination of structure parameters. The optimal generator model of the 120°-TPMLG is constructed, and its performances are analyzed and compared with those of the initial one and the traditional TPMLG. The comparison results can prove the effectiveness of the Taguchi method in the detent force reduction.

    1 Introduction of the 120°-TPMLG

    1.1 Structure of the120°-TPMLG

    The 120°-TPMLG is proposed to improve the power density for DD-WEC system. Its structure of the 120°-TPMLG is depicted in Fig.1.

    Fig.1 The structure of the 120°-TPMLG

    As shown in Fig.1, the structure of the 120°- TPMLGconsists of a primary part (stator) and a secondary part (mover). The primary part, which includes an armature iron core and120° phase belt toroidal windings, is fixed. The secondary part, which is made up of permanent magnets with quasi-Halbach magnetizationand back iron, is connected to the buoy. As the secondary part moves vertically along with the buoy, the magnetic flux generated by the permanent magnets passes the 120° phase belt toroidal windings, and the induction electromotive force is obtained.

    1.2 Windings configuration of the 120°-TPMLG

    The Fig.1 shows that the stator of 120°-TPMLG is provided with 12 annular slots along the axial direction. And each slot is embedded with a self-contained toroidal winding, which increases the heat dissipation area and improves the thermal performance. Additionally, the 120°-TPMLG is good in insulation due to the windings independent of each other. The windings configuration of the 120°- TPMLG and thetraditional TPMLG are depicted in Fig.2. The symbols A, B and C represent the incoming line ends of the windings, and the symbols X, Y and Z represent the outgoing line ends of the windings.

    Fig.2 Windings configuration of the two generators

    The differences between the 120°-TPMLG and the traditional TPMLG are the slot/pole ratio and the windings configuration. The 120°-TPMLG adopts an 8-pole/12-slot structure, and the incoming ends of the windings is not only located in the same side of the stator core, but also have the same orientation. While the traditional TPMLG has a 9-pole/10-slot structure, and the incoming ends of the windings distribute on both sides of the stator core and have different orientations.

    The main parameters of the 120°-TPMLG and the traditional TPMLG are determined by the analytical method[22]and shown in Tab.1.

    2 Detent Force Analysis

    Based on Tab.1, the initial design model of the 120°-TPMLG and traditional TPMLG are established and their detent force are compared and shown in Fig.3.

    Tab.1 Main parameters of the 120°-TPMLG and traditional TPMLG

    Fig.3 Comparison of the detent force of the 120°-TPMLG and traditional TPMLG

    As shown in Fig.3, the maximum detent force of the 120°-TPML is 1 150N, which is about 4.06 times that of the traditional TPMLG. The detent force would seriously affect the performance of the generator. Therefore, it is necessary to reduce the detent force of the 120°-TPMLG.

    The components of the detent force of the 120°- TPMLG are analyzed and shown in Fig.4.

    Fig.4 Components of the detent force in the 120°-TPMLG

    It can be seen from the Fig.4, the detent force existing in the 120°-TPMLG consists of two elements: one is the end effect force due to the finite length of stator, and the other is the cogging force for the mutual attractive between permanent magnets and the stator teeth.

    2.1 Analysis of the end effect force

    For the arbitrarily length of the stator iron cores=p-d, the end effect force[23]can be expressed as

    where

    whereLendandRendare the left and the right end effect force respectively,snandcnare the magnitude of theth harmonic component,pis the pole pitch of the generator.

    Fig.5 End effect force of the 120°-TPMLG under different length of stator iron core

    As shown in Fig.5, the different length of the stator iron core () corresponds to the different values of end effect force. While=280mm, the maximum end effect force is 925N. After optimization, it drops to 288N at=288mm, which means that 68.86% of end effect force can be reduced by changing the length of stator iron core.

    2.2 Analysis of the cogging force

    The cogging force[24]can be expressed as

    where

    (4)

    wheresis length of the stator iron core,eis the effect air gap,Gis the magnitude ofth harmonic component,r(nQ/2p)is (/2)th harmonic component of remanence,is the number of slots,0is the width of slot,pis the pole arc coefficient.

    According to the formula (3) and formula (4), as one can see that the cogging force is proportional to theG. And theGhas close relationship with the0. Therefore, the0can largely affect the cogging force. The0can be adjusted by changing the width of stator tooth. The cogging force for different width of the stator tooth are shown in Fig.6.

    Fig.6 Cogging force of the120°-TPMLG under different width of stator tooth

    As shown in Fig.6, the different width of the stator tooth () corresponds to the different values of cogging force. While=13mm, the maximum cogging force is 1 360N, but while=9mm, it is only 79N, which means that the cogging force can be largely reduced by choosing a suitable width of the stator tooth.

    Additionally, the0can be adjusted by adopting the slot shoulders. The cogging force under different width of slot shoulders are obtained by magnet software and shown in Fig.7.

    Fig.7 Cogging force of the 120°-TPMLG under different width of slot shoulders

    As shown in Fig.7, the cogging force for the width of slot shoulders=3.20mm is 79N, which is decrease about 60.50% from the 200N for=4.80mm, which means that the cogging force can be decrease effectively by adopting a suitable width of the slot shoulders.

    According to the formula (3) and formula (5), as one can see that the cogging force is proportional to ther(nQ/2p)and ther(nQ/2p)has close relationship with thep. Therefore, the pole arc coefficient can largely affect the cogging force. Cogging force for different pole arc coefficient is shown in Fig.8.

    As shown in Fig.8, when the width of air-gap increases to 0.78mm from 0.48mm, the maximum cogging force decreases to 79N from 538N.And the value of the cogging force has an upward trend with the increase of pole arc coefficient, which means that the cogging force has been closely related with the pole arc coefficient.

    2.3 Analysis of the detent force

    The end effect force works together with the cogging force, resulting in a large detent force. And the expression of the detent force[25]can be written

    Fig.8 Cogging force of the 120°-TPMLG under different pole arc coefficient

    where

    wheregis the air-gap flux,is the air-gap reluctance, ?/is the rate of the air-gap reluctance,mis the magnetization length of the permanent magnet,is the magnetization area of the permanent magnet.

    From the formula (6) and formula (7), as one can see that the detent force is proportional tog, and thegis inverse toe. Therefore, an assumption is withdrawn that the detent force is inverse toe. The detent force for different width of air gap is shown in Fig.9.

    Fig.9 Detent force of the 120°-TPMLG under different width of air gap

    As shown in Fig.9, When the width of air-gap increases to 4.50mm from 1.50mm, the maximum detent force decreases to 402N from 1 803N.The value of the detent force has a downward trend with the increase of width of air-gap, which verify the correctness of the aforementioned assumption.

    3 Multi-Objective Optimal Design

    In this paper, the Taguchi method is applied in the structure parameters optimization of the 120°- TPMLG for the reduction of the detent force. And there are five steps for multi-objective optimal design using Taguchi design method:

    (1) Identify design variables and objective functions.

    (2) Identify levels of design variables.

    (3) Define orthogonal array for Taguchi design.

    (4) Design the matrix experiment and conduct the matrix experiment by FEM.

    (5) Multi-objective optimal design with weighting set of each objective functions.

    3.1 Design variables and objective functions

    The objective of the structure optimization of the 120°-TPMLG is to minimize the detent force without losing output power. Accordingly, the detent force () and output power (out) are selected to be optimized as the objective functions. There are many design variables related to detent force and output power. For the optimal design, it is necessary to reduce design variables to get feasible optimal design result in a short time. Therefore, five representative factors are chosen as design variables in this paper, which is stator iron core length, pole arc coefficient, slot shoulders width, stator tooth width and air gap length, respectively.

    3.2 Identify levels of design variables

    The design variables and their respective levels are given in Tab.2, whereis the stator iron core length,is the pole arc coefficient,is the stator tooth width,is the slot shoulders width andis the air gap length.

    Tab.2 The respective levels of the design variable

    3.3 Plan and conduct the matrix experiment

    According to the number of the design variables and their settings, a standard orthogonal array25is selected for the matrix numerical experiment. And matrix experiment results are obtained by magnet software and shown in Tab.3.

    Tab.3 Experimental results of objective function

    3.4 Analyze the results

    After conducting these 25 numerical experiments and obtaining all the experimental data, “Analysis of Means” (ANOM) and “Analysis of Variance” (ANOVA) are carried out for estimating the effects of the five design variables and for determining the relative importance of each design variables. The optimum settings for each design variables are then obtained from the plot of main factor effects.

    3.4.1 Analysis of means (ANOM)

    The means of all experiments results can be calculated as

    Tab.4 tabulates the results.

    Tab.4 Analysis of means

    3.4.2 Calculate average effect

    The value of average detent force of setting variableat level 1 is calculated by

    where the variableis set to level 1 only in experiments 1 to 5 as shown in Tab.3. Average value of detent force of all variables can be obtained by a similar way. Tab.5 shows the results. A plot of the main factors effects is shown in Fig.10. It is seen that the factor-level combination (3,2,3,5,5) contributes to minimum value of detent force.

    Tab.5 Maximum detent force for all levels of factors

    Fig.10 Plot of main factor effects on the detent force

    In a similar way, the average value of output power can be obtained for all levels of factors. The results are shown in Tab.6. Fig.11 illustrates the main factor effect on the value of output power. It is seen that factor-level combination (2,4,5,3,1) contributes to maximization of output power.

    Tab.6 Output power for all levels of factors

    Fig.11 Plot of main factor effects on the output power

    3.4.3 Analysis of variance (ANOVA)

    An important purpose of ANOVA is to determine the relative importance of the various design variables. To conduct ANOVA, the sum of squares () is calculated first. It is measure of the deviation of simulation data from the mean value of the data. The sum of squares (SSF) due to various factors can be calculated as

    SSF, SSF,SSFandSSFcan be obtained in the same wsay. These results show in Tab.7.

    Tab.7 Effects of all factors on characteristics analysis

    3.5 Optimal design according to weighting set

    It is noted in Tab.5 and Fig.10 that the best combination of structure parameters for minimum the detent force is determined to be (3,2,3,5,5). It is also noted in Tab.6 and Fig.11 that the best combination of structure parameters for maximum the output power is determined to be (2,4,5,3,1). None of levels can be selected to constitute the elements of the optimum design for minimum the detent force and maximum the output power. All factors are used to regulate the values of detent force and output power. It is seen that in Tab.7, factors,andhas larger effect on detent force to output power. Factorsandhas larger effect on output power to detent force. Consequently, the best combination of structure parameters for minimum detent force and maximum output power is determined to be (3,4,5,5,5).

    4 Result Comparison

    To fully analyze the effectiveness of the Taguchi method, the optimal generator model of the 120°- TPMLG (optimal generator) are constructed based on best combination of structure parameters in the Tab.8, and its performance are analyzed and compared with those of the initial design model of the 120°-TPMLG (initial generator) and the traditional TPMLG. Fig.12a compares the no-load back electromotive force (EMF) under rated speed, where back-EMF waveforms of the three generators are almost sinusoidal. The correspon- ding spectral analysis results ars shown in Fig.12b. From the comparison it can be found that the fundamental amplitude of back-EMF waveforms for the optimal generator is 201.23V, which increase about 5.73% from the 190.33V for the initial generator. Besides, the fundamental amplitude of back-EMF waveform for the optimal generator is higher about 17.26% than that for the traditional TPMLG. The detent force of the three generators are shown in Fig.12c, it can be seen that the maximum detent force for the optimal generator is decreased to 187N from 1 150N for the initial generator, which represent 83.74% detent force is reduced. Additionally, the maximum detent force of the optimal generator is lower about 31.50% than that of the traditional TPMLG.

    Tab.8 Comparison of combination

    The losses, output power and the efficiency of the three generators under rated operation are calculated and compared in Tab.9 and Fig.13.

    Tab.9 Comparison of performance

    As shown in Fig.13, the total losses of the three generators under the rated operation are 115.32W, 113.00W and 103.95W, respectively. Compared with the initial generator and traditional TPMLG, the total losses of the optimal generator are increased by 2.05% and 10.94%, respectively. Nevertheless, the output power of the optimal generator is increased by 1.78% and 27.42% than that of the initial generator and traditional TPMLG, respectively. The efficiency of the optimal generator and the initial generator are almost the same and are higher 1.15% than that of the traditional TPMLG.

    Fig.12 Performance of the initial and the Taguchi method

    5 Conclusion

    This paper adopts the Taguchi method to optimize the structure parameters of the 120°- TPMLG for detent force reduction. The influence of different structural parameters on the detent force are analyzed via finite element method firstly. According to these analysis results, five optimization variables and their levels are determined. Meanwhile, the optimal design combined with the Taguchi method is conducted to minimize the detent force without losing output power. Finally, the optimal generator model is obtained and its performance is analyzed and compared with that of the initial generator and the traditional TPMLG. The results show that the detent force of the optimal generator is decreased by 83.74% and the output power increased by 1.78%. Therefore, it is effective to decrease the detent force of the 120°- TPMLG by this method.

    [1] Trapanese M, Boscaino V, Cipriani G, et al. A per- manent magnet linear generator for the enhancement of the reliability of a wave energy conversion system[J]. IEEE Transactions on Industrial Electro- nics, 2019, 66(6): 4934-4944.

    [2] Du Jinhua, Liang Deliang, Xu Longya, et al. Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach[J]. IEEE Transactions on Magnetics, 2010, 46(6): 1334-1337.

    [3] Chen Hao, Zhan Yiming, Wang Haiying, et al. A tubular permanent magnet linear generator with novel structure[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2995-3001.

    [4] Farrok O, Islam M R, Islam Sheikh M R, et al. Oceanic wave energy conversion by a novel per- manent magnet linear generator capable of preventing demagnetization[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6005-6014.

    [5] Gao Yuping, Shao Shuangquan, Zou Huiming, et al. A fully floating system for a wave energy converter with direct-driven linear generator[J]. Energy, 2015, 95: 99-109.

    [6] Jin Fuli, Si Jikai, Cao Zhiping, et al. Analysis of a six-phase direct-drive permanent magnet synchronous motor with novel toroidal windings[C]//16th IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, 2019: 14-17.

    [7] Cui Xu, Si Jikai, Feng Haicao, et al. Operating principle and electromagnetic characteristic analysis for large-small pole solid-rotor induction motor with toroidal windings[J]. Transactions of China Electro- technical Society, 2019, 34(9): 1850-1856.

    [8] Gao Mengzhen, Si Jikai, Gao Caixia, et al. Cogging torque minimization in novel direct-drive PMSM with toroidal windings[C]//22nd International Conference on Electrical Machines and Systems (ICEMS), ?Harbin, 2019: 5108-5112.

    [9] Chung S U, Kim J M. Double-sided iron core PMLSM mover teeth arrangement design for reduction of detent force and speed ripple[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3000-3008.

    [10] Chu Wenqiang, Zhu Ziqiang. Investigation of torque ripples in permanent magnet synchronous machines with skewing[J]. IEEE Transactions on Magnetics, 2013, 49(3): 1211-1220.

    [11] Hu Hengzai, Liu Xiangdong, Zhao Jing, et al. Analysis and minimization of detent end force in linear permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2475-2486.

    [12] Kwon Y S, Kim W J. Detent-force minimization of double-sided interior permanent-magnet flat linear brushless motor[J]. IEEE Transactions on Magnetics, 2016, 52(4): 1-8.

    [13] Hu Xiaofei, Liu Chao, Wang Yi, et al. Analysis and optimization of single phase brushless slotted limited-angle torque motor[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2744-2751, 1856.

    [14] Anusha Vadde, Sudha B. Influence of skewing design for reduction of force ripples in DSL-SYNRM using 3D FEA[J]. China Electrotechnical Society Transa- ctions on Electrical Machines and System, 2019, 3(4): 397-402.

    [15] Liu Guohai, Wang Yanyang, Chen Qian, et al. Multi- objective optimization of an asymmetric V-shaped. interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 385-393.

    [16] Gao Jian, Dai Litao, Zhang Wenjuan, et al. Improved genetic optimization algorithm with subdomain model for multi-objective optimal design of SPMSM[J]. China Electrotechnical Society Transactions on Elec- trical Machines and Systems, 2018, 2(1): 160-165.

    [17] Guo Youquan, Si Jikai, Gao Caixai, et al. Improved fuzzy-based Taguchi method for multi-objective optimization of direct-drive permanent magnet syn- chronous motors[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-4.

    [18] Hwang C C, Lyu L Y, Liu C T, et al. Optimal design of an SPM motor using genetic algorithms and Taguchi method[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4325-4328.

    [19] Li Xianglin, Li Jinyang, Yang Guangyong, et al. Multi-objective optimization analysis of electric- excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 972-982.

    [20] Zhu Huangqiu, Cheng Yifeng. Rotor optimization design of bearing less permanent magnet synchronous motor based on modular poles[J]. Electric Machines and Control, 2020, 24(3): 123-130.

    [21] Cheng Peng, Yang Xinjiu, Lan Hai, et al. Design and efficiency optimization of a synchronous generator using finite element method and Taguchi method[J]. Electric Machines and Control, 2019, 23(2): 94-104.

    [22] Si Jikai, Feng Haicao, Su Peng, et al. Design and analysis of tubular permanent magnet linear wave generator[J]. The Scientific World Journal, 2014, 65(9): 1-7.

    [23] Liu Chunyuan, Yu Haitao, Hu Minqiang, et al. Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion[J]. IEEE Transactions on Magnetics, 2013, 49(5): 1913- 1916.

    [24] Tang Xu, Wang Xiuhe, Tian Mengmeng, et al. Study of reduction methods of cogging torque in line-start permanent magnet synchronous motor by changing the parameters of stator teeth and slots[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(23): 1-8.

    [25] Liu Chunyuan. Research on the tubular permanent magnet linear generator using direct driven wave power take off system[D]. Nanjing: Southeast University, 2015.

    120°相帶環(huán)形繞組圓筒型永磁直線發(fā)電機定位力降低的優(yōu)化設(shè)計

    司紀凱 嚴作光 聶 瑞 徐 帥 董亮輝

    (鄭州大學電氣工程學院 鄭州 450001)

    圓筒型永磁直線發(fā)電機(TPMLG)采用120°相帶環(huán)型繞組可以提高其功率密度,然而,TPLMG具有較大的定位力,這會引起發(fā)電機的振蕩甚至使系統(tǒng)不穩(wěn)定。為了解決這一問題,該文對120°相帶環(huán)形繞組(120°-TPMLG)的圓筒型永磁直線發(fā)電機進行優(yōu)化設(shè)計。首先利用有限元方法研究不同結(jié)構(gòu)參數(shù)(定子鐵心長度、極弧系數(shù)、槽肩寬度、定子齒寬和氣隙長度)對定位力的影響。根據(jù)分析結(jié)果,結(jié)合田口方法對發(fā)電機進行優(yōu)化設(shè)計,在不損失輸出功率的情況下使定位力最小,得到120°-TPMLG的最優(yōu)結(jié)構(gòu)參數(shù)。為了驗證優(yōu)化設(shè)計過程的有效性,將優(yōu)化后的120°-TPMLG與初始發(fā)電機的性能進行比較。結(jié)果表明,優(yōu)化后的120°-TPMLG的定位力得到了極大的減小,輸出功率也略有增加。因此,該文采用的優(yōu)化方法對減小120°-TPMLG的定位力是有效的。

    120°相帶環(huán)形繞組 定位力 優(yōu)化設(shè)計 圓筒型永磁直線發(fā)電機 田口法

    TM359.4

    10.19595/j.cnki.1000-6753.tces.201077

    This work is partially supported Natural Science Foundation of China under grant No.51777060, in part by the Major Special Project for Collaborative Innovation in Zhengzhou No. 20XTZX12023.

    August 30, 2020;

    October 12, 2020.

    Si Jikai born in 1973, PhD, Major research interests include the theory, application, and control of special motor design.E-mail: sijikai527@126.com

    Yan Zuoguang born in 1995, Master Candidate, Major research interests include permanent magnet linear generator and applications.E-mail: yzg151231@126.com (Corresponding author)

    (編輯 陳 誠)

    猜你喜歡
    發(fā)電機優(yōu)化設(shè)計
    超限高層建筑結(jié)構(gòu)設(shè)計與優(yōu)化思考
    民用建筑防煙排煙設(shè)計優(yōu)化探討
    關(guān)于優(yōu)化消防安全告知承諾的一些思考
    一道優(yōu)化題的幾何解法
    瞞天過?!律O(shè)計萌到家
    設(shè)計秀
    海峽姐妹(2017年7期)2017-07-31 19:08:17
    大型發(fā)電機勵磁用旋轉(zhuǎn)變換器的開發(fā)和應(yīng)用
    有種設(shè)計叫而專
    Coco薇(2017年5期)2017-06-05 08:53:16
    隨身攜帶的小發(fā)電機
    軍事文摘(2016年16期)2016-09-13 06:15:49
    基于PCS-985B的發(fā)電機定子接地保護應(yīng)用及整定
    亚洲三级黄色毛片| 欧美亚洲 丝袜 人妻 在线| 蜜桃久久精品国产亚洲av| 国语对白做爰xxxⅹ性视频网站| 黄片wwwwww| 欧美精品人与动牲交sv欧美| 人体艺术视频欧美日本| 肉色欧美久久久久久久蜜桃 | 欧美日韩精品成人综合77777| 自拍偷自拍亚洲精品老妇| 天天躁夜夜躁狠狠久久av| 91久久精品电影网| av在线蜜桃| 国产有黄有色有爽视频| 91精品一卡2卡3卡4卡| 精品久久久久久久末码| 亚洲精品,欧美精品| 看免费成人av毛片| 99久久人妻综合| 国产在线一区二区三区精| 亚洲图色成人| 亚洲av在线观看美女高潮| 精品亚洲乱码少妇综合久久| 亚洲精品乱码久久久v下载方式| 尤物成人国产欧美一区二区三区| 免费黄网站久久成人精品| 亚洲图色成人| 国产大屁股一区二区在线视频| 最近最新中文字幕大全电影3| 国产精品久久久久久精品古装| 久久精品国产鲁丝片午夜精品| 97超碰精品成人国产| 免费av不卡在线播放| 欧美bdsm另类| 免费观看性生交大片5| 简卡轻食公司| 欧美一级a爱片免费观看看| 国产成人精品福利久久| 久久国产乱子免费精品| 欧美激情在线99| 国产精品国产三级国产专区5o| 天堂网av新在线| 欧美日本视频| 久久99蜜桃精品久久| 啦啦啦在线观看免费高清www| 91久久精品国产一区二区成人| 午夜激情福利司机影院| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃 | av线在线观看网站| h日本视频在线播放| 亚洲欧美精品专区久久| 我要看日韩黄色一级片| 久久久久久久国产电影| 国产成人一区二区在线| 亚洲精品,欧美精品| 国产男女内射视频| 一级毛片我不卡| 精品人妻熟女av久视频| 午夜视频国产福利| 精品人妻偷拍中文字幕| 国产国拍精品亚洲av在线观看| 欧美成人一区二区免费高清观看| 尤物成人国产欧美一区二区三区| 三级经典国产精品| 日日撸夜夜添| 男插女下体视频免费在线播放| 亚洲精品国产av蜜桃| 国产探花极品一区二区| av国产免费在线观看| 日韩强制内射视频| 最近的中文字幕免费完整| 国产精品麻豆人妻色哟哟久久| 成年女人看的毛片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人被狂操c到高潮| 久久久久久久亚洲中文字幕| 亚洲欧美一区二区三区黑人 | av福利片在线观看| 搡女人真爽免费视频火全软件| 深爱激情五月婷婷| 超碰97精品在线观看| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 亚洲av福利一区| videossex国产| 女的被弄到高潮叫床怎么办| 熟女av电影| 日韩人妻高清精品专区| 久久精品综合一区二区三区| 秋霞在线观看毛片| 波多野结衣巨乳人妻| 亚洲av中文av极速乱| 一级片'在线观看视频| 国语对白做爰xxxⅹ性视频网站| 欧美高清性xxxxhd video| 美女被艹到高潮喷水动态| 国产精品久久久久久久电影| 97超视频在线观看视频| 国产亚洲精品久久久com| 欧美成人午夜免费资源| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 久久人人爽av亚洲精品天堂 | 男女下面进入的视频免费午夜| 天天一区二区日本电影三级| 亚洲精品成人av观看孕妇| 一级毛片电影观看| 777米奇影视久久| 欧美另类一区| 777米奇影视久久| 草草在线视频免费看| 纵有疾风起免费观看全集完整版| 国产成人一区二区在线| 成年版毛片免费区| 永久免费av网站大全| 国产精品无大码| 亚洲成人精品中文字幕电影| 欧美最新免费一区二区三区| 人妻制服诱惑在线中文字幕| 熟女av电影| 天堂俺去俺来也www色官网| 国国产精品蜜臀av免费| 亚洲自偷自拍三级| 青春草亚洲视频在线观看| 亚洲色图综合在线观看| 高清欧美精品videossex| 黄色视频在线播放观看不卡| 极品教师在线视频| 老女人水多毛片| 中文资源天堂在线| 国产有黄有色有爽视频| 国产一区二区三区av在线| 最近最新中文字幕免费大全7| 国产一区二区亚洲精品在线观看| 精品一区在线观看国产| 性插视频无遮挡在线免费观看| 久久久久网色| 女的被弄到高潮叫床怎么办| 久久精品熟女亚洲av麻豆精品| 亚洲最大成人中文| 三级国产精品欧美在线观看| 看非洲黑人一级黄片| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲无线观看免费| 国内精品美女久久久久久| 在线观看一区二区三区| 国产视频首页在线观看| 久久人人爽av亚洲精品天堂 | 高清日韩中文字幕在线| 一级片'在线观看视频| 最近最新中文字幕免费大全7| 国产午夜精品久久久久久一区二区三区| 日本午夜av视频| 一级毛片 在线播放| 18禁在线播放成人免费| 亚洲va在线va天堂va国产| 国产亚洲一区二区精品| 国产大屁股一区二区在线视频| 国产精品人妻久久久久久| 国产av码专区亚洲av| 中文欧美无线码| 亚洲欧美成人综合另类久久久| 男女边吃奶边做爰视频| 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线| 欧美日韩亚洲高清精品| 亚洲精品456在线播放app| 尾随美女入室| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 欧美成人午夜免费资源| 大陆偷拍与自拍| 免费电影在线观看免费观看| 亚洲国产精品成人久久小说| 国产精品99久久久久久久久| 少妇丰满av| 好男人视频免费观看在线| 日日啪夜夜爽| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 日日摸夜夜添夜夜爱| 亚洲人与动物交配视频| 伊人久久国产一区二区| av在线app专区| 十八禁网站网址无遮挡 | 一个人看视频在线观看www免费| 欧美一级a爱片免费观看看| 黄色欧美视频在线观看| 成年版毛片免费区| 2022亚洲国产成人精品| 一级毛片 在线播放| 午夜福利视频精品| 性色av一级| 成年女人在线观看亚洲视频 | 亚洲第一区二区三区不卡| 五月开心婷婷网| 在线看a的网站| 人妻夜夜爽99麻豆av| 久久精品久久久久久噜噜老黄| 大片电影免费在线观看免费| 久久久久久久精品精品| 乱系列少妇在线播放| 直男gayav资源| 中文资源天堂在线| 国产午夜福利久久久久久| 成人毛片60女人毛片免费| 亚洲精品日韩av片在线观看| 亚洲内射少妇av| 一区二区三区免费毛片| 青春草国产在线视频| 伊人久久国产一区二区| 人人妻人人看人人澡| 在线a可以看的网站| 在线a可以看的网站| 久久久色成人| 久久久久久久国产电影| av在线亚洲专区| 午夜日本视频在线| av一本久久久久| 三级国产精品片| 大又大粗又爽又黄少妇毛片口| 九九在线视频观看精品| 99热网站在线观看| 一个人观看的视频www高清免费观看| 国产精品久久久久久精品古装| 大又大粗又爽又黄少妇毛片口| 在线精品无人区一区二区三 | 久久久久久久亚洲中文字幕| 在线观看一区二区三区激情| 人体艺术视频欧美日本| 亚洲国产精品专区欧美| 国产黄片视频在线免费观看| 日本黄色片子视频| 成人美女网站在线观看视频| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 色吧在线观看| av卡一久久| 老师上课跳d突然被开到最大视频| 精品酒店卫生间| 精品一区二区免费观看| 一区二区三区免费毛片| 女的被弄到高潮叫床怎么办| 人妻一区二区av| 日韩人妻高清精品专区| 免费电影在线观看免费观看| 精品久久久久久久末码| 成年人午夜在线观看视频| 久久人人爽av亚洲精品天堂 | 亚洲精品日韩av片在线观看| 国产一区亚洲一区在线观看| 一区二区三区四区激情视频| 国产精品久久久久久久久免| 久久亚洲国产成人精品v| 边亲边吃奶的免费视频| 啦啦啦在线观看免费高清www| 日本一二三区视频观看| 精品人妻一区二区三区麻豆| 黄色日韩在线| 亚洲美女视频黄频| 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 国产 一区 欧美 日韩| 亚洲最大成人中文| 国产黄色免费在线视频| 欧美国产精品一级二级三级 | 久久精品久久久久久久性| 少妇 在线观看| 97在线人人人人妻| h日本视频在线播放| 午夜福利在线在线| 国产成人免费观看mmmm| 在线观看国产h片| 亚洲精品国产av成人精品| 男人狂女人下面高潮的视频| 国产乱人偷精品视频| 97超碰精品成人国产| 日韩,欧美,国产一区二区三区| 熟女电影av网| 久久国产乱子免费精品| 国产男女内射视频| 99热全是精品| 中文资源天堂在线| 亚洲精品成人久久久久久| 天天躁日日操中文字幕| 极品少妇高潮喷水抽搐| 人妻夜夜爽99麻豆av| 欧美另类一区| 热re99久久精品国产66热6| 亚洲在久久综合| 少妇丰满av| 最近手机中文字幕大全| kizo精华| 亚洲天堂av无毛| 超碰av人人做人人爽久久| av线在线观看网站| 免费观看在线日韩| 国产一区二区亚洲精品在线观看| 国产精品久久久久久精品古装| 在线精品无人区一区二区三 | 国产爱豆传媒在线观看| 免费观看a级毛片全部| 六月丁香七月| 国产色婷婷99| 汤姆久久久久久久影院中文字幕| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 日韩欧美 国产精品| 18禁在线播放成人免费| 国产精品久久久久久精品古装| 免费av不卡在线播放| 国产成人精品婷婷| 亚洲精品第二区| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| 中国国产av一级| 高清欧美精品videossex| 亚洲图色成人| 亚洲在久久综合| 日韩一本色道免费dvd| 七月丁香在线播放| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线 | 老女人水多毛片| 免费观看av网站的网址| 各种免费的搞黄视频| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 国产一区二区三区综合在线观看 | 国产精品熟女久久久久浪| 亚洲丝袜综合中文字幕| 麻豆久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 在线观看免费高清a一片| 国产精品久久久久久精品电影小说 | 亚洲最大成人中文| 黄片wwwwww| 午夜免费鲁丝| 青春草国产在线视频| 人人妻人人看人人澡| 国产极品天堂在线| 成人无遮挡网站| 亚洲av成人精品一二三区| 成人国产av品久久久| 最近手机中文字幕大全| 欧美3d第一页| 国产在线男女| 男女啪啪激烈高潮av片| 国产一区亚洲一区在线观看| 日本爱情动作片www.在线观看| 中文字幕免费在线视频6| 91狼人影院| 午夜福利在线在线| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 超碰97精品在线观看| 国产探花极品一区二区| 精品国产三级普通话版| 少妇猛男粗大的猛烈进出视频 | 国产精品99久久久久久久久| 日本免费在线观看一区| 亚洲av.av天堂| 成人无遮挡网站| 国产精品蜜桃在线观看| 国产精品一区二区三区四区免费观看| 亚洲真实伦在线观看| 久久久久久久精品精品| 久久精品国产亚洲网站| 男女无遮挡免费网站观看| 欧美三级亚洲精品| 国产亚洲最大av| 狂野欧美激情性bbbbbb| 日韩欧美一区视频在线观看 | 亚洲国产精品专区欧美| 国产黄片视频在线免费观看| 国产人妻一区二区三区在| 久热这里只有精品99| 婷婷色麻豆天堂久久| 亚洲精品亚洲一区二区| 成人免费观看视频高清| 汤姆久久久久久久影院中文字幕| 久久6这里有精品| 欧美日韩亚洲高清精品| 内射极品少妇av片p| 欧美老熟妇乱子伦牲交| 亚洲精品视频女| 五月玫瑰六月丁香| 97精品久久久久久久久久精品| 国产精品不卡视频一区二区| 欧美精品人与动牲交sv欧美| 国产男人的电影天堂91| 少妇人妻精品综合一区二区| kizo精华| 青春草视频在线免费观看| 在线看a的网站| 激情 狠狠 欧美| 国产精品伦人一区二区| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人 | 亚洲人与动物交配视频| 欧美成人精品欧美一级黄| 91狼人影院| 国产高潮美女av| 国产综合精华液| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 美女国产视频在线观看| 春色校园在线视频观看| 国产探花在线观看一区二区| 看非洲黑人一级黄片| 18禁在线无遮挡免费观看视频| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载 | 日韩大片免费观看网站| 久久久久网色| 亚洲欧美日韩东京热| 国产精品秋霞免费鲁丝片| 天天躁日日操中文字幕| 免费少妇av软件| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩亚洲高清精品| 亚洲色图av天堂| 久久久久精品久久久久真实原创| 亚洲aⅴ乱码一区二区在线播放| 亚洲av在线观看美女高潮| 夜夜看夜夜爽夜夜摸| 高清av免费在线| 成人亚洲精品av一区二区| 少妇高潮的动态图| 夜夜看夜夜爽夜夜摸| 久久久国产一区二区| 婷婷色综合www| 男女那种视频在线观看| 黄色日韩在线| 激情五月婷婷亚洲| 内地一区二区视频在线| 国产熟女欧美一区二区| 欧美性感艳星| 精品视频人人做人人爽| 亚洲av男天堂| 久久97久久精品| 日韩av不卡免费在线播放| 中文字幕免费在线视频6| 欧美老熟妇乱子伦牲交| 神马国产精品三级电影在线观看| 亚洲熟女精品中文字幕| 国模一区二区三区四区视频| 别揉我奶头 嗯啊视频| 精品国产露脸久久av麻豆| 国产精品一二三区在线看| 国产精品一区二区性色av| 国产精品99久久99久久久不卡 | 亚洲在久久综合| 国产视频首页在线观看| kizo精华| 国产高清有码在线观看视频| 色网站视频免费| 国产精品熟女久久久久浪| 免费观看在线日韩| 狂野欧美白嫩少妇大欣赏| 中文欧美无线码| 欧美极品一区二区三区四区| 中国三级夫妇交换| a级一级毛片免费在线观看| 99九九线精品视频在线观看视频| 精品酒店卫生间| 能在线免费看毛片的网站| 国内精品美女久久久久久| 日韩 亚洲 欧美在线| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 国产国拍精品亚洲av在线观看| 18+在线观看网站| 精品少妇久久久久久888优播| 一个人看的www免费观看视频| 禁无遮挡网站| 亚洲av中文av极速乱| 蜜桃亚洲精品一区二区三区| 久久久久久久久大av| 亚洲三级黄色毛片| 中国国产av一级| 亚洲在久久综合| 一区二区三区乱码不卡18| 免费观看av网站的网址| 亚洲精品第二区| 中文欧美无线码| 别揉我奶头 嗯啊视频| 七月丁香在线播放| 高清毛片免费看| av国产免费在线观看| 亚洲欧美日韩另类电影网站 | 欧美少妇被猛烈插入视频| 涩涩av久久男人的天堂| 哪个播放器可以免费观看大片| 国产精品99久久99久久久不卡 | 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 国产精品一及| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 国产中年淑女户外野战色| 麻豆久久精品国产亚洲av| 亚洲综合精品二区| h日本视频在线播放| av国产精品久久久久影院| 99re6热这里在线精品视频| 亚洲av电影在线观看一区二区三区 | 国产欧美日韩一区二区三区在线 | 国产精品三级大全| 夜夜爽夜夜爽视频| 少妇丰满av| 久久精品久久久久久久性| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 黄片wwwwww| 久久精品国产亚洲网站| 午夜福利高清视频| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 亚洲,欧美,日韩| 99九九线精品视频在线观看视频| 日本三级黄在线观看| 久久99精品国语久久久| 少妇熟女欧美另类| 亚洲精品自拍成人| 简卡轻食公司| 成年女人看的毛片在线观看| 欧美成人一区二区免费高清观看| 国产乱人视频| 超碰97精品在线观看| 亚洲伊人久久精品综合| 久久久欧美国产精品| 男男h啪啪无遮挡| 精品人妻偷拍中文字幕| 亚洲精品国产成人久久av| 免费看日本二区| 国产女主播在线喷水免费视频网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 婷婷色综合www| 下体分泌物呈黄色| 欧美+日韩+精品| 欧美国产精品一级二级三级 | 91狼人影院| 亚洲伊人久久精品综合| 又爽又黄无遮挡网站| 成人亚洲欧美一区二区av| 一级毛片电影观看| 大又大粗又爽又黄少妇毛片口| 99久久中文字幕三级久久日本| 免费黄网站久久成人精品| 国产精品无大码| 午夜激情福利司机影院| 亚洲精品自拍成人| 国产成人aa在线观看| 成人毛片60女人毛片免费| 国产亚洲av嫩草精品影院| 熟女电影av网| 国产高清有码在线观看视频| 亚洲国产精品999| 久久久精品欧美日韩精品| kizo精华| 一级二级三级毛片免费看| 久久久欧美国产精品| 国产精品三级大全| 亚洲在线观看片| 国产精品久久久久久精品电影| 欧美成人a在线观看| 97在线人人人人妻| 少妇丰满av| 美女视频免费永久观看网站| 国产亚洲5aaaaa淫片| 国产成人aa在线观看| 在线看a的网站| 日本欧美国产在线视频| 制服丝袜香蕉在线| 嫩草影院入口| 亚洲在久久综合| 久久ye,这里只有精品| 人妻 亚洲 视频| 亚州av有码| 美女视频免费永久观看网站| 国产精品成人在线| 最近的中文字幕免费完整| 91久久精品电影网| 日韩大片免费观看网站| a级毛色黄片| 精品人妻视频免费看| 中文字幕免费在线视频6| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| 22中文网久久字幕| 久久久久精品性色| av天堂中文字幕网| 欧美日韩国产mv在线观看视频 | 国产大屁股一区二区在线视频| 97超视频在线观看视频| 在线观看人妻少妇| 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄| 日日啪夜夜爽| 丰满人妻一区二区三区视频av| 少妇人妻精品综合一区二区| 22中文网久久字幕| 水蜜桃什么品种好| 亚洲av二区三区四区|