• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An interface shear damage model of chromium coating/steel substrate under thermal erosion load

    2021-03-23 13:58:22XiolongLiYongZngYongLinMinyuLeiMuQinQin
    Defence Technology 2021年2期

    Xio-long Li ,Yong Zng ,*,Yong Lin ,Min-yu M ,Lei Mu ,Qin Qin

    a School of Mechanical Engineering,University of Science and Technology Beijing,Beijing,100083,China

    b Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Beijing,100083,China

    c Beijing Key Laboratory for Corrosion,Erosion and Surface Technology,Beijing,100083,China

    Keywords:Cr coating/steel substrate Thermal erosion Finite element simulation Ultimate shear strength Interface shear damage model

    ABSTRACT The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.?2020 The Authors.Production and hosting by Elsevier B.V.on behalf of China Ordnance Society.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The life of modern barrel weapons is normally limited by erosion of the bore as opposed to fatigue[1].The thermal shock of high-temperature gunpowder gas is the main cause of barrel erosion[2-6],although barrel erosion involves a complicated mechanism[7,8].Various new intrinsic surface treatment technologies have been proposed to delay erosion of the barrel’s inner wall,including plasma spraying,magnetron sputtering,and chemical deposition.However,these new intrinsic surface treatment technologies are constrained by factors such as manufacturing cost,processing efficiency,and performance.Thus,these processes require substantial modification before they can be feasibly applied to the barrel.Cr has the advantages of being antierosion,wear-resistant,and low-cost to manufacture.For the last several decades,electroplating Cr has been used to protect the barrel’s inner surface,and is still the main means of extending its service life[9-13].

    Because the Cr coating’s thermal expansion coefficient and that of the steel substrate are not matched,the Cr-plating coating often cracks under cyclic thermal stress due to insufficient toughness.On the one hand,the generation of Cr coating cracks provides a channel for the substrate erosion by the high temperature gunpowder gas.On the other hand,it causes the Cr coating/steel substrate interface’s damage degradation behavior.Finally,the supporting effect of the substrate on the Cr coating is weakened,and the crack spreads along the interface between the coating and the substrate,causing the Cr coating to peel off under the action of projectile impact and gas flushing.Underwood et al.[14-16]considered the influence of gunpowder heat on the interface stress,and proposed a shear failure criterion for the barrel coating material.Harris et al.[17,18]analyzed the interface damage evolution tendency of interfaces under transient thermal stress and pressure.

    Researchers have designed a variety of simulation test methods to evaluate the material’s erosion effect and the interface damage in a barrel.Among these methods,laser heating technique has been well established to simulate the thermal shock and temperature rise on the internal surface of a barrel during a projectile launch process.For example,PJ Cote et al.[19-21]studied the formation of Cr-plated cracks of the barrel material under various atmospheres,the heat-affected zone in the base steel,and the interface degradation by using laser pulse heating technology.Underwood et al.[22]used laser heating to simulate the thermal damage process of different coating materials on the gun’s steel substrate.Warrender et al.[23]found that the coating’s fracture toughness changes as the laser pulse energy changes.Therefore,the laser heating method is an efficient,convenient,and energy controllable method for studying the thermal effect of high temperature on the barrel material.

    The current study has been thus proposed to shed light on how thermal erosion affects the interfacial ultimate shear strength by conducting a series of coating cracking experiments.To this end,a laser emitter is used to apply thermal shock loading to each sample,thereby simulating the thermal erosion process.Meanwhile,in-situ tensile test and finite element simulation are performed for a better understanding towards a reasonable correlation between thermal erosion and interfacial limit shear strength.To describe the Cr coating/steel substrate interface shear damage process,we employ a cohesive zone model(CZM)based on elastoplastic mechanics,since the cohesive zone model has been widely used for cracking and failure of coating materials known for crack paths[24-29].Therefore,this study establishes a modified CZM of Cr coating/steel substrate interface shear damage considering thermal erosion factors,and the interface damage and coating flaking process are analyzed by finite element method.

    2.Experimental procedures

    2.1.Preparation of specimens

    The tested material is selected from the 25Cr3Mo3NiNb barrel steel,annealed at 905°C.The chemical composition of the tested material is depicted in Table 1.The specimen is cut into a sheet-like tensile specimen as shown in Fig.1.The processed specimen is then double-sided polished to facilitate subsequent Cr plating.The Cr coating structure can be controlled by the current density,temperature,and energization mode during the electroplating process.In this study,a single coating of hard Cr is used.The specific process parameters are:220 g/L CrO3,2.6 g/L H2SO4,63-67°C solution temperature,30 A/dm2current density,and 1 h of plating time.

    Table 1Chemical composition of the barrel steel.

    Fig.1.Dimensions of the tensile specimen.

    2.2.Laser thermal erosion test

    The energy distribution of a circular laser spot can be expressed as:

    where r0is the characteristic radius of the heat flow distribution and Q is the laser power(LP).

    The transient temperature field in the specimen surface laser action area is[30]:

    where k stands for thermal conductivity of the surface material,η the laser absorption rate of the surface material,a concentration coefficient of the heat flow,and x0the center of the laser spot.

    The laser spot moves uniformly along the lengthwise direction of the specimen(x-axis).According to the heat conduction theory,the relationship between the specimen’s temperature change and the heat transfer is[31]:

    whereρis the material density,c the material’s specific heat capacity,T the transient temperature field induced by the laser irradiation on the specimen surface,t the time,and I the heat generation.

    During the firing process,the inner surface maximum temperature has been reported to range from 600°C to 780°C for a 7.62 mm caliber rifle[32,33],and from 700°C to 830°C for a 155 mm caliber gun[34,35].According to these references,a reasonable specimen surface temperature is obtained by setting the laser emission power appropriately.The identified relation between LP and maximum temperature on the coating surface during the erosion test is shown in Table 2.A laser beam(generated by a laser emitter)is perpendicularly projected to the specimen surface to mimic the thermal erosion process,as shown in Fig.2a.The circular laser spot has a 2 mm radius and moves at a speed of 500 mm/min with its to-and-fro movement pattern shown in Fig.3.In each test,the to-and-fro movement within the targeted thermal erosion zone is run 10 times,meanwhile a high temperature infrared thermometer(Raytek RAYR3I2ML3+,Fluke Process Instruments,United States)is used to measure and record sample surface temperature as shown in Fig.2b.

    Table 2Surface maximum temperature of the Cr coating under different power of laser beam.

    3.Interface ultimate shear strength

    3.1.Principle of tensile test

    Since the Cr coating/steel substrate is a composite material and the surface coating is very thin,conventional mechanical experiments are not feasible when determining the interfacial ultimate shear strength.Agrawal and Raj[36,37]proposed a tensile test for the ultimate shear strength measurement of brittle material with a tough substrate structure,as shown in Fig.4.The method works based on the principle that the Cr coating and the substrate simultaneously undergo elastic deformation under tensile load action.As the specimen is continuously stretched,the Cr coating’s tensile stress is transmitted by the interface.Since the Cr coating is a brittle material,it will first crack perpendicular along the direction to the stretching direction.When the number of cracks reaches at saturation,the coating’s tensile stress and the coating/substrate interface’s shear stressτreach equilibrium.The corresponding stress balance can be expressed as:

    Fig.2.Test device of laser thermal erosion:(a)Laser emitter;(b)High temperature infrared thermometer.

    Fig.3.The trajectory of laser spot.

    Fig.4.Diagram of determining the interfacial ultimate shear strength by tensile test:(a)Initial state;(b)Crack saturation.

    whereσbis the breaking strength of the coating layer,h the coating thickness,and L the spacing between two adjacent coating cracks.It is assumed thatσbis uniform over the longitudinal cross section of the coating layer.

    3.2.Estimation of the interfacial ultimate shear strength

    Displacement control is applied to the in-situ tensile testing machine at a speed of 0.1 mm/min.When an initial crack occurs on the surface of the coating,the corresponding strainεis recorded,as shown in Fig.5.Then the corresponding fracture stress is determined by multiplying the elastic modulus(280 GPa[38])of Cr and the measured fracture strain.The surface topography of Cr coating at the moment of crack saturation is characterized by scanning electron microscopy,as shown in Fig.6.The maximum crack spacing of the uneroded Cr coating is 25.36μm,and the Cr coating’s crack spacing increases significantly as the degree of thermal erosion increased.When LP is 160 W,the Cr coating’s maximum crack spacing expanded to 50.18μm.

    Fig.5.Stress-strain curve of the thermal erosion specimens.

    Based on the interfacial ultimate shear strength test results,the finite element models of the cases having L values of 25.36μm and 50.18μm are established by using ABAQUS/Standard.The parameters of the materials are shown in Table 3.The vertical displacement of the model is restricted,and transverse tensile load are applied at both ends of the specimen.The corresponding shear stress and tensile stress distributions under different crack spacing are obtained by simulating the stretching process,as shown in Figs.7 and 8.The stress contours demonstrate that the coating’s shear stress is concentrated at both ends of the crack,and the tensile stress is maximized in the middle of the crack.Furthermore,the stress distribution trends of the two different crack spacing samples are basically the same,and the shear stress shows an elliptical distribution trend[39].Therefore,in this study,the shear stress distribution of Cr coating/steel substrate interface can be expressed by an elliptic function:

    Fig.6.Maximum crack spacing of Cr coating at saturation:(a)No erosion;(b)LP of 40 W;(c)LP of 80 W;(d)LP of 120 W;(e)LP of 160 W.

    Table 3Parameters of the materials.

    According to equation(4),the fracture strengthσbexpression of the coating can be obtained as follows:

    where a=Lmax/2 and b=τuss.Thus,the interfacial ultimate shear strengthτusscan be formulized as follows:

    Based on the above analysis,we calculate the interfacial ultimate shear strength change of the chrome-plated steel substrate with the degree of thermal erosion.As shown in Table 4,the Cr coating/steel substrate’s interfacial ultimate shear strength reduces from 2.57(LP=0 W)GPa to 1.02 GPa(LP=160 W),which shows a significant weakening effect due to increasing temperature.

    Fig.7.Distributions of the interfacial shear stress and coating tensile stress with a crack spacing of 25.36μm.

    Fig.8.Distributions of the interfacial shear stress and coating tensile stress with a crack spacing of 50.18μm.

    Table 4Interfacial ultimate shear strength of Cr coating/steel substrate of different thermal erosion specimens.

    4.Cr coating/steel substrate interface shear damage model

    4.1.Interface cohesion zone

    According to the principle of tensile test,after the surface crack is formed,the substrate continues to stretch the Cr coating,and the stress of the Cr coating is transmitted by the interface,so that the Cr coating and the steel substrate have higher stress near the end of the interface.Fig.9 shows the cross-sectional microscopic morphology of the specimen perpendicular to the tensile direction.Due to the shearing force,voids nucleation occurs and gradually grows to form incipient micro-cracks.The cohesive fracture-based CZM proposed by Dugdale[40]indicated that there is a fracture process zone at the crack tip.The constitutive relationship between cohesion and open displacement was established in this region,which could effectively describe the crack change process.Therefore,this study establishes a specialized CZM that evolves from the nucleation process,as shown in Fig.10.

    Typical cohesion zone models include bilinear,trapezoidal,polynomial,and exponential forms.The first two models belong to a linear discontinuous model,while the tension-separation relationship in polynomial and exponential models is nonlinear and continuous,more in line with the actual case.The exponential cohesion model shows a better predictive performance,particularly for the crack initiation and cracking of the thin film coating on the tough substrate.The fracture energy control equation of the CZM under case of the two-dimensional plane stress state is[41-44]:

    whereΔnandΔtare the normal and tangential displacement values at the interface,φnthe normal fracture energy,andδnandδtthe characteristic displacements(the displacement value corresponding to the stress maximum point)of the normal and tangential interface cracking,respectively.The expression of q and r is as shown in Eq.(9):

    whereφtis the interfacial fracture energy required to form a complete interface crack under pure shear state.Δn*is the normal displacement value when the normal stress is zero and the tangential direction is completely cracked.The stress expression on the interface is:

    Fig.9.Cross-sectional micromorphology of the specimen perpendicular to tensile direction.

    Fig.10.Schematic diagram of the CZM of the Cr coating/steel substrate interface:(a)Void nucleation;(b)Damage initiation.

    The exponential cohesion’s normal strength and tangential strength(stress maximum)areσmaxandτmax,respectively,and the relationship between these parameters in the exponential cohesion model is:

    Since the Cr coating/steel substrate interface cracking process in a gun barrel is only related to the shear stress and belongs to the slip-open type(type II)cracking,the normal displacement isΔn=0.Then,the relationship between the fracture energy control equation and the tension displacement in the shear direction is as follows:

    According to Eq.(14),in order to describe the tangential traction-separation curves for the exponential CZM,it is also necessary to determine the tangential interface characteristic length,δt.d describes the relative displacement between the initial crack(Fig.11a)on the Cr coating’s surface to the moment of reaching the saturated crack(Fig.11b).At this time,the shear stress in the cohesive zone reaches the maximum value,and the interface damage begins to occur.Since the Cr coating’s deformation force in the process is generated by the interface,the tangential interface’s characteristic lengthδtcan be expressed as:

    4.2.Modified tangential damage CZM

    The Cr-coated steel substrate’s bonding interface is affected by the high temperature cyclic load and the interface is damaged.For the temperature load,the cohesive energy damage factorλs(0<λ≤1)and the interface characteristic length damage factorλδare introduced,and the fracture energy control equation model is modified to obtain the shear state fracture energy control equation considering the damage:

    Thus,the tangential tension-displacement relationship is determined as:

    Fig.12 shows the crack width at the maximum crack spacing for saturated cracks.The Cr coating’s crack width increases with the degree of erosion.The average crack width increases from 0.714μm(no erosion)to 0.9μm(LP=160 W),which is related to the reduction of the Cr coating fracture stress.The value ofλδfor the specimen without any erosion is set to be 1.0,and the characteristic length factor of the corresponding different erosion states is determined.At the same time,the value ofλsis determined in combination with the interfacial shear strengthτmaxobtained by derivation.

    Fig.12.Saturation crack width of Cr coating:(a)No erosion;(b)LP of 40 W;(c)LP of 80 W;(d)LP of 120 W;(e)LP of 160 W.

    Fig.13 shows the relationship betweenλδand the Cr coating surface temperature changeΔT,which is defined by whereΔT=T2-T1,where T2is the coating surface erosion temperature and T1the specimen’s initial temperature.The results indicate a good linear relationship between these two variables.Fig.14 shows thatλsdecreases linearly with an increasing ofΔT.Therefore,the expression ofλδwith respect toΔT is established as follows:

    Fig.13.Fitting curve of coating surface temperature variation andλδ.

    Fig.14.Fitting curve of coating surface temperature variation andλs.

    Likewise,λsis expressed as:

    where k1=0.001/°C,l1=0.47,k2=-0.0029/°C,and l2=2.52.Thus,it can be inferred that interface begins to exhibit tangential damage when the Cr coating’s surface temperature reaches 550°C.The Cr coating thickness in a real barrel is greater than that of the test specimen,and thus the initial surface erosion temperature related to the interface tangential damage could be even higher.

    The tangential fracture energy curves and the tangential traction-separation curves with different thermal erosion damage degrees are obtained based on the modified shear damage model,as shown in Fig.15 and Fig.16,respectively.Bothλsandλδtogether control the trend of fracture energy.Since the change in interface characteristic length change is not significant,the interface damage shows a stronger dependence onλsthanλδ.Moreover,the interface damage gradually increases with a decreasingλs.The critical maximum tangential fracture energy decreased from 1514 J/m2to 756 J/m2as the LP increased to 160 W.For the traction-separation curve of interface damage,the shear strength decreases obviously with increasing of thermal damage.Therefore,by introducing damage factors,the modified shear damage model can characterize the interface’s decreasing trend bearing capacity due to the accumulation of damage.

    Fig.15.Interface tangential damage fracture energy.

    Fig.16.Interface tangential damage traction-separation curve.

    5.Failure analysis of steel substrate/Cr coating interface

    5.1.Establishment and simulation of finite element model

    A two-dimensional Cr coating/steel substrate model is established and a cohesive zone in nearly zero thicknesses[45]is located at the interface between the coating and the substrate by using ABAQUS/Standard.Cohesive zone parameters are determined based on the discussion in Section 4.The initial criterion of material damage in the cohesive zone is the maximum stress criterion,and the damage evolution is simulated using the energy control method under the independent mode(Mode-Independent).The bottom of the substrate is completely constrained,and a tangential load is applied to the upper surface of the coating to simulate the process of the projectile rubbing the Cr coating,as shown in Fig.17(a).The coating and the substrate mesh are of the Standard type(CPS4R),and the mesh type for cohesive area is Cohesive(COH2D4)[46].In addition,mesh refinement has been used in the transition area of the coating and the substrate,as shown in Fig.17(b).The steel substrate/Cr coating interface failure process without considering the effects of temperature can be seen from Fig.18.Under the influence of the tangential load,the interface begins to appear damaged.When the critical maximum tangential fracture energy is reached,the interface completely fails and the coating eventually separates.

    5.2.Effect of coating crack spacing

    The coating crack spacing L is set from 10μm to 50μm,and the surface shear stress-displacement curve is extracted,as shown in Fig.19(a).It is found that the surface shear stress of the Cr coating increased from 538 MPa with L of 10μm-841 MPa with L of 50μm.The compressive stress of the Cr coating gradually decreases with the increasing of the coating crack spacing.The internal compressive stress of the Cr coating with L of 50μm is only one fourth of which with crack spacing of L=10μm,as shown in Fig.19(b).It indicates that an increase in L leads to a higher friction force(between the projectile and the bore inner surface)to cause the interface damage and the coating fall off.And an increase in L can also effectively reduce the degree of extrusion load inside the Cr coating.According to the shear stress-displacement curve at the interface during the separation process,as shown in Fig.19(c),the spacing of the Cr coating does not affect the shear strength of the interface.

    Fig.17.Two-dimensional Cr coating/steel substrate model:(a)boundary constraint;(b)mesh generation.

    Fig.18.Steel substrate/Cr coating interface damage and failure process:(a)load application;(b)interface damage;(c)interface failure;(d)coating separation.

    5.3.Effect of coating thickness

    Taking the Cr coating thickness H as a variable,the surface shear stress-displacement curve of the coating with different H and the internal compressive stress-displacement curve of the coating are obtained,as shown in Fig.20(a)and Fig.20(b),respectively.The data shows that with the increase in H,the shear stress of the coating surface increases from 710 MPa with a H of 5μmto 892 MPa when H=9μm.Meanwhile,the compressive stress of the Cr coating decrease from 818 MPa to 415 MPa.Therefore,an increasing in the thickness of the Cr coating could increase the threshold at which the contact friction of the projectile causes the coating to flake off,and reduce the degree of extrusion load inside the Cr coating.The change in the thickness of the Cr coating does not affect the shear strength of the interface,as shown in Fig.20(c),which is consistent with the conclusion of the effect of the coating crack spacing.

    Fig.19.Stress-displacement curves of coating and interface under different coating crack spacing:(a)coating surface shear stress;(b)coating compressive stress;(c)interfacial shear stress.

    Fig.20.Stress-displacement curves of coating and interface under different coating thickness:(a)coating surface shear stress;(b)coating compressive stress;(c)interfacial shear stress.

    6.Conclusions

    (1)The thermal erosion simulation of the barrel bore can be realized by using the laser emitter.Through a combination of the in-situ tensile test and finite element method,we obtain the elliptical distribution law of interface shear stress for the Cr coating/steel substrate.In this study,the initial surface erosion temperature of interface shear damage,which is 550°C,is obtained by introducing the damage factor into the exponential cohesive zone model,and the relationship between Cr coating surface temperature and interface shear damage is established.

    (2)The finite element simulation analysis of interface shear separation process shows that the increase of coating crack spacing and thickness is conducive to reduce the extrusion stress of coating,and increase the tangential stress of coating falling off caused by bullet friction.It should be noted that the change of coating crack spacing and thickness does not affect the shear strength of the interface.Therefore,by improving the preparation process to increase the crack spacing of Cr coating in use,and appropriately increasing the coating thickness,the service life of gun barrels can be extended.

    Declaration of competing interest

    We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

    99久久综合精品五月天人人| www.自偷自拍.com| 亚洲一区高清亚洲精品| 午夜亚洲福利在线播放| 午夜免费观看网址| 亚洲精品成人av观看孕妇| 最新美女视频免费是黄的| 亚洲色图 男人天堂 中文字幕| a级片在线免费高清观看视频| 精品人妻1区二区| 99国产精品99久久久久| 校园春色视频在线观看| 亚洲一区二区三区欧美精品| 啦啦啦 在线观看视频| 中文字幕制服av| 一二三四在线观看免费中文在| 脱女人内裤的视频| 校园春色视频在线观看| tocl精华| 久久中文字幕人妻熟女| 一级a爱片免费观看的视频| 成人av一区二区三区在线看| 黑人巨大精品欧美一区二区mp4| 久久精品国产综合久久久| 久久久久精品国产欧美久久久| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品一区二区三区在线| 80岁老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区蜜桃| 丝袜在线中文字幕| 午夜日韩欧美国产| 男女高潮啪啪啪动态图| 欧美亚洲 丝袜 人妻 在线| 91av网站免费观看| 亚洲成av片中文字幕在线观看| videos熟女内射| 久久久久久人人人人人| 又黄又粗又硬又大视频| 久久久久久久久免费视频了| 精品一区二区三区四区五区乱码| 国内毛片毛片毛片毛片毛片| 十八禁高潮呻吟视频| 午夜日韩欧美国产| 久久ye,这里只有精品| 日本wwww免费看| 久久午夜亚洲精品久久| 免费女性裸体啪啪无遮挡网站| 国产精品二区激情视频| avwww免费| 12—13女人毛片做爰片一| 午夜激情av网站| 少妇猛男粗大的猛烈进出视频| 99精品在免费线老司机午夜| 99国产精品99久久久久| 看免费av毛片| 免费久久久久久久精品成人欧美视频| 国产精品秋霞免费鲁丝片| 高清毛片免费观看视频网站 | 在线视频色国产色| 侵犯人妻中文字幕一二三四区| 美女 人体艺术 gogo| 青草久久国产| 十八禁人妻一区二区| 亚洲精华国产精华精| 亚洲国产精品一区二区三区在线| 精品免费久久久久久久清纯 | 国产成人免费无遮挡视频| 国精品久久久久久国模美| 人人妻人人添人人爽欧美一区卜| 日韩欧美在线二视频 | 久久久国产欧美日韩av| 悠悠久久av| 国产精品久久久久久精品古装| 亚洲精品一卡2卡三卡4卡5卡| 亚洲va日本ⅴa欧美va伊人久久| 精品卡一卡二卡四卡免费| 一级毛片高清免费大全| 91精品国产国语对白视频| 亚洲欧美日韩高清在线视频| 制服诱惑二区| 亚洲国产欧美网| 高清黄色对白视频在线免费看| av超薄肉色丝袜交足视频| 国产区一区二久久| 黑人巨大精品欧美一区二区蜜桃| 不卡一级毛片| 国产精品亚洲一级av第二区| 老司机深夜福利视频在线观看| 高清欧美精品videossex| 黑人欧美特级aaaaaa片| 国产一区二区三区综合在线观看| 少妇被粗大的猛进出69影院| 免费日韩欧美在线观看| 欧美丝袜亚洲另类 | 国产乱人伦免费视频| 久久久久久久久免费视频了| 欧美成人免费av一区二区三区 | 久久久久久久久久久久大奶| 女人久久www免费人成看片| 国产成人精品在线电影| 亚洲av成人av| 19禁男女啪啪无遮挡网站| 18禁国产床啪视频网站| 国产高清激情床上av| 天天躁狠狠躁夜夜躁狠狠躁| 国产不卡一卡二| 欧美老熟妇乱子伦牲交| 国产一区二区三区综合在线观看| 十八禁网站免费在线| 99热只有精品国产| 久久精品aⅴ一区二区三区四区| 在线免费观看的www视频| 一进一出好大好爽视频| 欧美黑人精品巨大| 美女午夜性视频免费| 国产又色又爽无遮挡免费看| 啦啦啦 在线观看视频| 国产黄色免费在线视频| 在线av久久热| 精品国产国语对白av| 国产99白浆流出| 脱女人内裤的视频| 国产亚洲欧美98| 精品无人区乱码1区二区| 女人精品久久久久毛片| 99久久精品国产亚洲精品| 久久草成人影院| svipshipincom国产片| 91老司机精品| 在线观看免费高清a一片| 搡老熟女国产l中国老女人| 国产精品乱码一区二三区的特点 | 欧美日韩亚洲综合一区二区三区_| 91av网站免费观看| 最近最新免费中文字幕在线| 久9热在线精品视频| 极品人妻少妇av视频| 免费在线观看亚洲国产| 91麻豆av在线| 黑人欧美特级aaaaaa片| 99久久精品国产亚洲精品| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 1024视频免费在线观看| 国产精品偷伦视频观看了| 精品久久久久久电影网| 校园春色视频在线观看| av网站在线播放免费| 久久久久久人人人人人| 亚洲中文字幕日韩| 日韩欧美一区视频在线观看| 99精国产麻豆久久婷婷| 天堂动漫精品| 日本一区二区免费在线视频| 人人妻人人添人人爽欧美一区卜| 老司机靠b影院| 亚洲第一青青草原| 亚洲色图 男人天堂 中文字幕| 国产高清videossex| 满18在线观看网站| 国产免费av片在线观看野外av| 亚洲五月色婷婷综合| 搡老熟女国产l中国老女人| av福利片在线| 18禁美女被吸乳视频| 在线免费观看的www视频| avwww免费| 午夜影院日韩av| 成人国产一区最新在线观看| 午夜激情av网站| 一级黄色大片毛片| 无限看片的www在线观看| 中文字幕色久视频| 亚洲熟女精品中文字幕| 18禁国产床啪视频网站| 不卡一级毛片| 在线观看66精品国产| 热99国产精品久久久久久7| 99国产精品99久久久久| 午夜视频精品福利| а√天堂www在线а√下载 | 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 亚洲专区字幕在线| 一级a爱片免费观看的视频| 18禁美女被吸乳视频| 午夜久久久在线观看| 国产精品1区2区在线观看. | 操美女的视频在线观看| 国产免费男女视频| 人妻 亚洲 视频| 午夜福利在线观看吧| 亚洲精品国产色婷婷电影| 亚洲中文字幕日韩| 多毛熟女@视频| 亚洲成人免费电影在线观看| 99精品欧美一区二区三区四区| 午夜精品在线福利| 久久精品亚洲精品国产色婷小说| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 国产1区2区3区精品| 国产亚洲精品第一综合不卡| 最新的欧美精品一区二区| 人人澡人人妻人| 纯流量卡能插随身wifi吗| 大香蕉久久网| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 欧美黑人欧美精品刺激| 男人的好看免费观看在线视频 | 午夜免费鲁丝| 一级a爱片免费观看的视频| 母亲3免费完整高清在线观看| 国产亚洲欧美精品永久| 9191精品国产免费久久| 制服人妻中文乱码| 欧美色视频一区免费| a级毛片在线看网站| 国产一区二区三区综合在线观看| 一a级毛片在线观看| 久久精品熟女亚洲av麻豆精品| 精品一区二区三卡| 日本精品一区二区三区蜜桃| 日本a在线网址| 欧美成狂野欧美在线观看| 日韩有码中文字幕| 精品一区二区三区四区五区乱码| 国产成人影院久久av| 国产欧美日韩一区二区精品| 成人手机av| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美一区二区三区黑人| 亚洲五月天丁香| 久久性视频一级片| 夜夜夜夜夜久久久久| 精品久久久久久久久久免费视频 | 在线视频色国产色| 欧美乱妇无乱码| 黑人操中国人逼视频| 精品视频人人做人人爽| 三级毛片av免费| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀| 日本撒尿小便嘘嘘汇集6| 777久久人妻少妇嫩草av网站| 亚洲男人天堂网一区| x7x7x7水蜜桃| 亚洲欧美激情在线| 亚洲九九香蕉| 人妻丰满熟妇av一区二区三区 | 欧美人与性动交α欧美精品济南到| 91在线观看av| 一本一本久久a久久精品综合妖精| 夜夜夜夜夜久久久久| 亚洲熟女毛片儿| 色94色欧美一区二区| 久9热在线精品视频| 天天躁日日躁夜夜躁夜夜| 日韩免费av在线播放| 性色av乱码一区二区三区2| 国产激情久久老熟女| 热re99久久精品国产66热6| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 久久人妻福利社区极品人妻图片| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av| 满18在线观看网站| 成人精品一区二区免费| 亚洲片人在线观看| 久久这里只有精品19| 水蜜桃什么品种好| 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| 日韩免费av在线播放| 日韩大码丰满熟妇| 日日夜夜操网爽| 午夜福利乱码中文字幕| 成人国语在线视频| 99国产极品粉嫩在线观看| 18在线观看网站| 99国产精品一区二区三区| 日韩三级视频一区二区三区| 欧美精品av麻豆av| 少妇 在线观看| 久久精品国产a三级三级三级| 国产淫语在线视频| 亚洲av日韩在线播放| 夫妻午夜视频| 欧美日韩av久久| 日韩欧美一区视频在线观看| 亚洲国产欧美一区二区综合| 色尼玛亚洲综合影院| 精品国产亚洲在线| 亚洲视频免费观看视频| 久久九九热精品免费| 国产在线精品亚洲第一网站| 女人被躁到高潮嗷嗷叫费观| 亚洲精品粉嫩美女一区| 99精品久久久久人妻精品| 91在线观看av| 99re在线观看精品视频| 最近最新免费中文字幕在线| 国产精品一区二区免费欧美| 国产99白浆流出| 日本黄色日本黄色录像| e午夜精品久久久久久久| 色播在线永久视频| 精品国产一区二区三区四区第35| 18在线观看网站| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 一区在线观看完整版| 一级a爱视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 啦啦啦 在线观看视频| 国产精品免费大片| av线在线观看网站| 如日韩欧美国产精品一区二区三区| 美国免费a级毛片| 久久国产乱子伦精品免费另类| 精品欧美一区二区三区在线| 如日韩欧美国产精品一区二区三区| 国产精品电影一区二区三区 | 国产亚洲欧美98| 女性被躁到高潮视频| 国产一区二区三区在线臀色熟女 | 久久热在线av| 丝瓜视频免费看黄片| 欧美精品一区二区免费开放| 国产人伦9x9x在线观看| 国产日韩一区二区三区精品不卡| 午夜日韩欧美国产| 老鸭窝网址在线观看| 黄色片一级片一级黄色片| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 1024香蕉在线观看| 日韩制服丝袜自拍偷拍| 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| 最近最新免费中文字幕在线| 免费久久久久久久精品成人欧美视频| 丝袜美足系列| 曰老女人黄片| 看免费av毛片| 午夜激情av网站| 午夜视频精品福利| 嫩草影视91久久| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人一区二区三| 18禁观看日本| 美女高潮喷水抽搐中文字幕| 亚洲欧洲精品一区二区精品久久久| 757午夜福利合集在线观看| 国产亚洲精品久久久久久毛片 | 99国产极品粉嫩在线观看| 视频区欧美日本亚洲| 国产亚洲欧美精品永久| 在线十欧美十亚洲十日本专区| 国产精品久久久久久精品古装| 国产一区有黄有色的免费视频| 国产精品自产拍在线观看55亚洲 | 日日爽夜夜爽网站| 欧美乱码精品一区二区三区| 99久久99久久久精品蜜桃| 日韩一卡2卡3卡4卡2021年| 9色porny在线观看| 国产精品1区2区在线观看. | 日本黄色视频三级网站网址 | 亚洲av第一区精品v没综合| 制服人妻中文乱码| 777久久人妻少妇嫩草av网站| 99re在线观看精品视频| 大陆偷拍与自拍| 在线观看免费日韩欧美大片| 老司机午夜福利在线观看视频| 久久午夜综合久久蜜桃| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩av久久| 在线视频色国产色| 人妻 亚洲 视频| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 免费一级毛片在线播放高清视频 | 亚洲av第一区精品v没综合| netflix在线观看网站| 一区福利在线观看| 国产成人一区二区三区免费视频网站| 国产精品一区二区免费欧美| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 超碰成人久久| 日韩欧美三级三区| 18禁裸乳无遮挡动漫免费视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 夜夜躁狠狠躁天天躁| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 久久精品国产a三级三级三级| 电影成人av| 黄色成人免费大全| 女性生殖器流出的白浆| 欧美一级毛片孕妇| 男女午夜视频在线观看| 精品福利永久在线观看| 日韩中文字幕欧美一区二区| 久久人妻福利社区极品人妻图片| 在线播放国产精品三级| 91成人精品电影| 国产精品久久视频播放| av天堂久久9| 亚洲欧美色中文字幕在线| 人成视频在线观看免费观看| 十分钟在线观看高清视频www| 午夜免费鲁丝| 精品福利观看| 一a级毛片在线观看| 男女之事视频高清在线观看| bbb黄色大片| 看免费av毛片| 九色亚洲精品在线播放| 免费少妇av软件| 国产一区二区三区在线臀色熟女 | 日本vs欧美在线观看视频| 一级片免费观看大全| 国产成人av教育| 看黄色毛片网站| 午夜视频精品福利| 十八禁网站免费在线| 亚洲精品自拍成人| 正在播放国产对白刺激| 久热爱精品视频在线9| 亚洲成人免费av在线播放| 国产午夜精品久久久久久| 欧美成狂野欧美在线观看| 在线观看免费日韩欧美大片| 欧美大码av| 亚洲专区国产一区二区| 在线视频色国产色| а√天堂www在线а√下载 | 日韩一卡2卡3卡4卡2021年| 香蕉久久夜色| 国产欧美亚洲国产| 久99久视频精品免费| 国产乱人伦免费视频| 久久精品国产清高在天天线| 搡老乐熟女国产| www.自偷自拍.com| 国产精品 国内视频| 9191精品国产免费久久| 精品免费久久久久久久清纯 | 亚洲精品在线观看二区| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区视频了| 少妇裸体淫交视频免费看高清 | √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月 | av天堂久久9| 他把我摸到了高潮在线观看| 国产激情欧美一区二区| 在线观看舔阴道视频| 欧美日韩亚洲综合一区二区三区_| 曰老女人黄片| 色精品久久人妻99蜜桃| 老熟妇乱子伦视频在线观看| 在线观看免费日韩欧美大片| 嫩草影视91久久| 精品一区二区三区四区五区乱码| 9191精品国产免费久久| 亚洲欧美色中文字幕在线| 久久精品国产清高在天天线| 女人精品久久久久毛片| 777久久人妻少妇嫩草av网站| 狠狠婷婷综合久久久久久88av| 久久久国产成人精品二区 | 18禁黄网站禁片午夜丰满| 咕卡用的链子| 激情视频va一区二区三区| 满18在线观看网站| 久久热在线av| 国产亚洲精品第一综合不卡| 人人妻人人澡人人看| 岛国在线观看网站| 性色av乱码一区二区三区2| av天堂久久9| 亚洲伊人色综图| 国产亚洲欧美精品永久| 国产精品综合久久久久久久免费 | 老司机亚洲免费影院| 一个人免费在线观看的高清视频| 搡老熟女国产l中国老女人| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| 国产精品自产拍在线观看55亚洲 | av视频免费观看在线观看| 欧美久久黑人一区二区| 天堂俺去俺来也www色官网| 51午夜福利影视在线观看| 色播在线永久视频| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 亚洲九九香蕉| 欧美日韩国产mv在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| 国产麻豆69| 亚洲伊人色综图| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| av天堂久久9| 国产一区二区三区在线臀色熟女 | 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载 | 成在线人永久免费视频| 99国产精品99久久久久| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 中亚洲国语对白在线视频| 黄色 视频免费看| 久久性视频一级片| 免费黄频网站在线观看国产| 中文字幕人妻熟女乱码| 波多野结衣av一区二区av| 欧美色视频一区免费| 国产在线观看jvid| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 久久中文字幕人妻熟女| 国产亚洲一区二区精品| 国产一区二区激情短视频| 日日爽夜夜爽网站| 久久久精品免费免费高清| 精品电影一区二区在线| 亚洲男人天堂网一区| 久久久国产成人精品二区 | 1024视频免费在线观看| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 中文字幕高清在线视频| 美女午夜性视频免费| 一区在线观看完整版| 午夜精品国产一区二区电影| 最近最新中文字幕大全免费视频| 少妇猛男粗大的猛烈进出视频| 亚洲熟妇熟女久久| 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 天天躁日日躁夜夜躁夜夜| 99在线人妻在线中文字幕 | 日日夜夜操网爽| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 亚洲精品美女久久久久99蜜臀| 欧美国产精品一级二级三级| 一进一出抽搐gif免费好疼 | 又紧又爽又黄一区二区| 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| 色老头精品视频在线观看| 国产日韩欧美亚洲二区| 亚洲av第一区精品v没综合| a级毛片黄视频| 岛国毛片在线播放| 国产1区2区3区精品| 久久精品国产a三级三级三级| 欧美丝袜亚洲另类 | 两人在一起打扑克的视频| 国产高清视频在线播放一区| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 亚洲伊人色综图| 日韩三级视频一区二区三区| 一级毛片精品| 美女视频免费永久观看网站| cao死你这个sao货| 精品福利观看| 日韩视频一区二区在线观看| 一级毛片高清免费大全| tube8黄色片| 夜夜爽天天搞| 一本综合久久免费| 热99久久久久精品小说推荐| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 丝袜美腿诱惑在线| 香蕉久久夜色| 国产一区二区三区综合在线观看| 日日爽夜夜爽网站| 久热这里只有精品99| 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 成人亚洲精品一区在线观看| 看免费av毛片| 天天添夜夜摸| 国产1区2区3区精品| 欧美日韩乱码在线| 人人澡人人妻人| 黄色视频,在线免费观看| 999久久久精品免费观看国产| 国产欧美日韩综合在线一区二区| av视频免费观看在线观看| 欧美乱色亚洲激情| 国产精品av久久久久免费| 岛国在线观看网站| 日韩熟女老妇一区二区性免费视频| 99国产精品99久久久久|