• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of three-dimensional elastic behavior of filament-wound composites based on the bridging model

    2021-03-23 14:00:14DongmeiYinBaomingLiHongchengXiao
    Defence Technology 2021年2期

    Dong-mei Yin,Bao-ming Li,Hong-cheng Xiao

    National Key Laboratory of Transient Physics,Nanjing University of Science & Technology,Nanjing,210094,China

    Keywords:Lightweight design Filament-wound composites Bridging model Three-dimensional elastic properties

    ABSTRACT This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.

    1.Introduction

    The filament wound composites have been widely applied in many industries,such as aerospace,energy and transportation.In the meanwhile,because of their high specific stiffness,specific strength and designable ability,they are the one of ideal choices for the lightweight design of weapon equipments.The whole filament winding process can be automatic.In order to make full use of the bearing ability of fiber bundles(tow),these reinforced materials will be arranged on the direction of bearing loading.Due to the cross winding of fiber bundles,there will be fiber undulation in the local place of the filament wound composites,which is similar to the characteristic of fiber undulation in the braid composites.Its complex structure enlarges the difficulty of the investigation of its macro mechanical properties.Therefore,many researchers have developed a series of studies.Some researches are on the basis of the macro scale,which mainly adopted the classical laminate theory[1-3]or the experimental methods[4-6].

    But with different winding patterns,there will be different structures in the micro scale.These different microscopic structures may lead to varied macroscopic mechanical properties and different local stress/strain concentrations under the same loading[7 and 8].The effects of the microscopic structures on the macroscopic mechanical properties can not be embodied by the laminates model,and also need huge experiments to verify.Hence,based on the principle of multi-scale analysis,some investigations of the mechanical properties of filament wound composites have been done through the micro scale analysis.In which most researches about its elastic behavior can be classified as analytical models and numerical models.In the analytical approaches,the microscopic structure in periodic distribution is selected as a representative unit cell or a representative volume element according to the characteristic of the internal microscopic structure of the filament wound composites.Sun Jiang et al.[9]divided this kind of representative unit cell into laminate fields and filament undulation fields,and used the classic laminate theory and volume average to calculate the axial modulus of the filament wound tube.Also the similar method was adopted by D.Zindel et al.[10]to forecast the elastic properties of the filament wound composites with flexible matrix material.In this model,the nonlinear behavior of the flexible matrix has been considered on the basis of experimentally obtained nonlinear lamina properties.Base on RVE and periodic arrangement of RVE,the stiffness of filament wound composite is treated as a stiffness field in Ref.[11].The function of this stiffness field is obtained by 2D fourier series,numerical integration and analytical method is applied in deduction of relation of stiffness function and stiffness matrix of fiber bundles.In Refs.[12,13],through relating the homogeneous properties in-plane strains to the volumeaveraged in-plane stresses,a three-dimensional micromechanical model for the elastic properties of filament wound composites is set up,which considering the effects of undulated laminas.The bounds on the material behavior are provided based on the isostrain or iso-stress conditions assumed at each given station along the length of the RVE.In numerical models,based on the homogenization theory,the finite element models of the RVE for the filament wound composites with considering the effect of fiber undulating zone were often established to analyze their elastic properties.Jiang Yun-peng et al.[14]adopted the shell element to establish the finite element model of the RVE.While the solid element is used to model the finite element model of the RVE in Refs.[15,16].The influences of different technological parameters,such as winding angle,fiber undulating zone and intersecting area,on the equivalent modulus are analyzed.But only the equivalent inplane properties of the filament wound composites can be obtained in Refs.[14,15].In order to improve the calculation precision and reduce the calculation time,Fu Fuchao[17]divided the RVE into 16 sub-RVEs,and different RVEs under different winding patterns can be gained by rearranging of these sub-RVEs.

    The previous investigations reveal that the three dimensional(3D)elastic properties of the filament wound composites obtained by the experiments are more accurate,but it consumes too much time and cost.Based on the micromechanics,whether the analytical approaches or the finite element methods are applied to forecast its elastic properties,it is necessary to improve the efficiency of prediction on the premise of ensuring certain accuracy.At present,the main idea is to calculate the macroscopic mechanical properties of the whole composites on the basis of its basic constituent materials(fiber and matrix).The bridging model provided by Huang[18,19]has advantages in this respect.For this reason,this work is aimed at establishing a simple and accurate analytical method to calculate the 3D equivalent elastic properties of filament wound composites based on the bridging model(BM).Firstly,based on the multi-scale homogenization theory,a RVE is chosen,which characterizes all the micro-architecture details of the filament wound composites,such as fiber undulation,winding angle and lamination arrangement.Then referring to the principle of volume average in the analysis method of braided composites[20,21],the present research will establish a theoretical prediction model for the 3D equivalent elastic properties of the filament wound composites with the spiral winding.The previous experimental datas[9]and the classical laminate theory(CLT)model will be used to verify the reliability of this model.Besides,the effects of some winding parameters on the 3D elastic behavior of the filament wound composites,such as winding angle,will be investigated in this work.

    2.Homogenization approach

    2.1.Representative volume element for the filament wound tube

    The winding products are produced with the cross winding of fiber bundles,and often adopt the winding angle±φ(φ≠0°,90°),which can homogenize the products’deformations.Therefore,this work will focus on the tubes with the spiral winding angles.There will be multiple identical rhombus patterns in the final winding tube,as displayed in Fig.1.Based on the homogenization theory,a rhombus pattern is selected as the representative volume element.It can be further divided into several lower-level RVEs,which can be considered as two kinds of regions according to whether there is undulation or not.One is the laminated structure regions(including the RVE 3 and RVE 4 with stacking sequences of±φandφ,respectively),and the other(including the RVE 1,RVE 2 and RVE 5)have the fiber bundles undulation similar in the braid composites,as illustrated in Fig.2.Because the RVE 1 and RVE 2 locate along the two helical fiber paths,one lamina traverses over or under another lamina while the other lamina is not undulated.The RVE 5 locates along a circumferential path,and its two laminas traverse over or under each other.The winding pattern is related to the corresponding winding process parameters.One of the important parameters is the number of circuits performed until the tow is deposited just next to the first circuit,Nc,which can be calculated by Refs.[5,17]:

    Fig.1.The filament wound pattern for a tube.

    Fig.2.The rhombus-shaped RVE.

    Where Spis the equal fraction divided in the circumferential direction of the mandrel between two circuits,and Npis the number of circuits needed to cover mandrel completely,is given as:

    Where D is the diameter of the tube,φis the winding angle,and the wdis the bandwidth of the tow.

    If it is assumed that the thickness of a single±φlayers is 2t,the volume fractions of these five regions(1-5)in the whole RVE can be got through calculating their area fractions in the xoy plane of the whole RVE area,as shown in Fig.2,and they can be expressed as follows:

    Where t is the thickness of a tow,and is assumed to be equal to the thickness of a single layer.Lu is the undulation length,as shown in Fig.3.While a and b are related to Ncandφ,as follows:

    2.2.Prediction of the 3D equivalent elastic properties

    In order to investigate the 3D equivalent elastic properties of the filament wound cylinder,the 3D continuum homogenization procedures in RVEs at multiple length scales is employed in this work.In the largest length scale,the model includes all layers of the filament wound cylinder.In the middle length scale,the research object is the RVE of a single±φlayers,and it is further divided into five regions(lower-level RVEs).In the smallest length scale,each lower-level RVE(Region 1-Region 5)is divided into multiple unidirectional composites,and each unidirectional composite is comprised of the fiber tows and matrix.Taking one lower-level RVE(Region 1)for example,it is displayed in Fig.3.In the figure,z-axis is located in the direction of the thickness of a single±φlayers,ξ-axis is along the undulation length,and hu is the function for the distance between the tow’s center and theξ-axis.The angleβdisplays the orientation of fiber tow’s undulation.Therefore,the fiber tow’s undulation degree can be described by the parameters of hu andβ,which should be expressed in different forms in the different regions.

    Fig.3.Multiple unidirectional composites in the lower-level RVE(Region 1).

    For the Region 1:

    Each region is divided into n equal parts along the length direction.The length of each part is defined as:

    Each part is assumed to be composed of p different unidirectional composites,and the whole RVE consists of q=5np unidirectional composites.The volume fraction of the jjth unidirectional composites in the kth region can be calculated as:

    Then the volume fractions of the iith unidirectional composites in the whole RVE are given by

    It is assumed that the fiber tow is a transversely isotropic linear elastic material,while the matrix is considered as an isotropic elastic material.According to the bridging model in Ref.[18and19],the relationship between the incremental stresses in the tow and matrix of the unidirectional composite is:

    The elements in the bridging matrix can be expressed as:

    In which Em,Gmandνmare the elastic modulus,shear modulus and Poisson’s ratio of the matrix,respectively.andare the elastic moduli in the longitudinal direction and the transverse direction of the fiber tow,respectively.Gf12andνf12are the shear modulus and Poisson’s ratio in plane for the fiber tow.The parametersαandγcan be determined by the experiment or the analytical computation.Here we set them 0.3 for the fiber reinforced resin composites[22].

    According to the bridging model,the compliance matrix of each unidirectional composite in its material coordinate system(1-2-3)can be derived as:

    Then the stiffness matrix of each unidirectional composite in its material coordinate system(1-2-3)can be written as[C]i=[S]-1i.Transforming this stiffness matrix into the global coordinate system(x-y-z),the stiffness matrix of each unidirectional composite in the global coordinate system will be obtained by

    In which[T]iσis the transformation matrix of stress vector and superscript“T”represents the transpose of the matrix.In the global coordinate system,x and y axes follow axial and hoop directions of the cylinder,respectively,while the z-axis is located in the thickness direction of the winding layer.According to the relationship between the global coordinate system and the material coordinate system for each unidirectional composite in the different regions,as exhibited in Figs.2 and 3,the transformation matrix is expressed in different forms.

    In the laminate region:

    In the undulation region:

    In which

    Whereβis the angle which fiber tow is oriented out of the plane in the undulation region.

    It is supposed that all unidirectional composites have the same strains as the whole RVE.Therefore,based on the iso-strain,the equivalent stiffness matrix of the whole RVE can be obtained through the superposition of the stiffness matrices of all unidirectional composites by adopting the volume average.It is written by

    Its equivalent compliance matrix can be calculated by.According to the composite mechanics[23],the stiffness and compliance matrices of the anisotropic material are still both symmetric about their diagonals in the global coordinate system.Then the equivalent elastic constants of the RVE can be received by the elements of this compliance matrix,and on the basis of homogenization theory,they also represent the equivalent elastic constants of the filament wound cylinder with±φwinding layers.

    3.Calculation and discussion

    3.1.Verification of the model

    The experimental models in Ref.[9]are used to verify the above analysis model.These tubes are produced by filament winding with carbon fiber bundles impregnated with epoxy resin,and its material parameters are listed in Table 1.The average fiber volume fraction over the tube is 50%.The tube’s diameter is D=26 mm,and the parameter of winding pattern Ncis 4.The winding angles of the tubes in the experiment vary from 6.9°to 59.4°.

    Table 1Material parameters of carbon fiber bundle and epoxy resin.

    The equivalent axial elastic modulus Exxand in-plane Poisson’s ratioνxyof these tubes with different winding angles are predicted by the analysis model(BM)provided in this work,and are compared with the ones obtained respectively by the experiment and CLT model in Figs.4 and 5.In which the parameter n is set to 100,and Lu is about 6 times of thickness of the fiber tow.According to Ref.[11],if the distribution of fiber is uniform,the volume content of fiber tow in each position has no obvious change.Therefore,it is assumed that the fiber tow volume fractions for different unidirectional composites are equal to the average fiber volume fraction over the tube.

    Fig.4.The comparison of equivalent axial elastic modulus.

    Fig.5.The comparison of the Poisson’s ratioνxy.

    It can be observed in this figure that the variety trends of equivalent axial elastic modulus and in-plane Poisson’s ratio obtained by these three methods are consistent.For the range of winding angles from 6.9°to 45.8°adopted in the experimental models,the axial elastic moduli predicted by the BM are more aligned to the ones gained in the experiment.Because the fiber tow’s undulation can affect the in-plane stiffness of the filament wound structure[5,10 and 13],but these effects cannot be obtained by the CLT model.However,the error of the values of the in-plane Poisson’s ratio by these three methods is relatively large.It is also relevant to the reason that the data collected in the experiment is less and unstable[9].Therefore,it is concluded that the analysis model in this work is reliable to some extent.

    3.2.The influence of some of winding parameters

    To study the influence of winding angleφon the 3D elastic constants of the filament wound tube,the above model is still used here,and the values ofφare from 5°to 85°.The variations of some of elastic constants of the filament wound tube with winding angle φare displayed in Fig.6.The axial elastic modulus Exxbasically decreases with the increase of winding angleφ,while the hoop elastic modulus Eyygrows,as shown in Fig.6(a).The former declines obviously at the smallerφ(<45°),while the latter enlarges obviously at the largerφ(>45°).This result agrees with the one predicted by the classic laminate theory in Ref.[24].The radial elastic modulus Ezzhas a relatively flat growth with the increase of φ.Fig.6(b)gives the changes of shear moduli of the filament wound tube with winding angleφ.It is distinct that the shear modulus Gxyrises firstly and decreases latterly with the growth ofφ,while the changes of other shear moduli are relatively less.Moreover,when the angleφis enlarging,the Poisson’s ratioνxyincreases first and then drops obviously,as displayed in Fig.6(c),while the variations of other Poisson’s ratios are relatively smaller.It can be concluded that the effects of winding angle on the elastic constants of the filament wound tube in the plane x-y presents relatively significantly.

    In addition,some elements of its equivalent compliance matrix obtained in the results,which are related to the coupling coefficients of tension-shear and shear-shear,are non zero.It means that the filament wound composites with winding angle±φis not a classical orthotropic material if considering the fiber undulation.Fig.7 exhibits the variations of these elements of its equivalent compliance matrix with the winding angleφ.It can be found that the effects ofφon the elements S34,S14and S24are relatively bigger,especially for S34,and the element S56is affected less.It reveals that the shears in the plane zoy are sensitive to the change of the winding angle,especially for the shear leaded by the radial loading.The shear coupling between the plane zox and xoy is very small,even can be ignored.However,these elements of equivalent compliance matrix related to the coupling coefficients are very minor,and they will have little effects on the macroscopic mechanical properties of the filament wound tube.So it can be ignored in some researches.

    Fig.7.The variations of some elements of the equivalent compliance matrix of filament wound composites with winding angleφ.

    To investigate the influence of the parameter Ncon the 3D elastic constants of the filament wound tube,a series of models with Np=25 andφ=25°are set up,while Nc=1,2,3,4,6,7,8,9,11,12.The diameter and material parameters of the tube are the same to the above,and the variations of some equivalent elastic constants of the filament wound tube with Ncare displayed in Fig.8.With the growth of Nc,the radial modulus Ezzincreases significantly,while the axial modulus Exxdrops,and the hoop modulus Eyyis basically unchanged.Also the shear modulus Gxydecreases,and the variations of the other shear moduli are small.It is because that larger Ncproduces more undulated weaving in the tubes,and it will weak the stiffness in the xoy plane of the composites.This phenomenon is also found in Ref.[14,25].The calculation results also show that the Poisson’s ratiosνxyandνxzdecrease when the Ncis growing.But the change of the Poisson’s ratioνyzis opposite to them.

    In additions,Fig.9 depicts some predicted elements of the equivalent compliance matrix for the tubes with different winding parameter Nc.As seen from the figure,the predicted absolute values of S34and S24are increasing with the rising of Nc,and the absolute values of other elements are quite small,which are almost unaffected by Nc.Though the values of the elements related to the coupling effects are relatively very small,the shears in the plane yOz caused by the hoop and axial loads are relatively sensitive to the winding parameter Nc.

    Fig.8.The variations of some of elastic constants of the filament wound tube with Nc.

    Fig.9.The variations of some elements of the equivalent compliance matrix of filament wound tube with Nc.

    4.Conclusions

    A multi-scale homogenization procedure for predicting the 3D equivalent elastic properties of filament-wound composite cylinders has been developed.This model adopts the bridging model to calculate the elastic properties of different unidirectional composites in the RVE,which is chosen on the basis of the filament winding pattern.Referring to the analysis method of braided composites,the volume average is applied to calculate the equivalent stiffness matrix of the filament wound cylinder.A comparison among the results predicted by this method and the ones obtained by the previous experiments and CLT model for the filamentwound composite tubes is carried out to validate the reliability of this theory model.The trends of the results gained by these three methods are in good agreement,especially for the axial elastic moduli of the tubes with the winding angles from 6.9°to 45.8°.It means that the analysis model in this investigation is reliable to some extent.

    In additions,the effects of winding angles and winding parameter Ncon the elastic properties of the filament wound composite cylinder are analyzed by this model.The results indicate that if considering the fiber undulation,the filament wound composites with±φwinding angle can not be thought as a classical orthotropic material.The effects of winding angle on the elastic constants of the filament wound tube in the plane x-y are relatively obvious.The shears in the plane yoz are sensitive to the changes of the winding angle and the winding parameter Nc.These conclusions can provide a reference to the design of the mechanical properties of filament wound composites.

    99久久人妻综合| 久久毛片免费看一区二区三区| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 国产成人精品无人区| 汤姆久久久久久久影院中文字幕| 丰满乱子伦码专区| 亚洲精品第二区| 少妇精品久久久久久久| 制服丝袜香蕉在线| 国产精品亚洲av一区麻豆 | 欧美少妇被猛烈插入视频| 婷婷色综合www| 自线自在国产av| 亚洲欧美成人精品一区二区| 国产精品成人在线| 国产综合精华液| 91久久精品国产一区二区三区| 久久久国产一区二区| 亚洲综合色惰| 久久久久视频综合| 看十八女毛片水多多多| 巨乳人妻的诱惑在线观看| 两个人免费观看高清视频| 国产欧美日韩一区二区三区在线| 久久精品久久久久久久性| 女的被弄到高潮叫床怎么办| av线在线观看网站| 久久久a久久爽久久v久久| 国产色婷婷99| 欧美黄色片欧美黄色片| 成人免费观看视频高清| 最近最新中文字幕大全免费视频 | 免费日韩欧美在线观看| av在线播放精品| 亚洲情色 制服丝袜| 在线观看美女被高潮喷水网站| 有码 亚洲区| 美女xxoo啪啪120秒动态图| 美女xxoo啪啪120秒动态图| 久久 成人 亚洲| 久久精品国产综合久久久| 欧美 亚洲 国产 日韩一| 曰老女人黄片| 久久精品久久久久久久性| 男女午夜视频在线观看| 久久婷婷青草| 考比视频在线观看| 国产在线视频一区二区| 日本免费在线观看一区| 久久精品亚洲av国产电影网| 99热网站在线观看| 亚洲人成77777在线视频| 少妇猛男粗大的猛烈进出视频| 啦啦啦在线观看免费高清www| 美女福利国产在线| 日韩成人av中文字幕在线观看| 丝袜脚勾引网站| 久久久久国产精品人妻一区二区| 女的被弄到高潮叫床怎么办| 亚洲视频免费观看视频| 亚洲精品一二三| 99国产精品免费福利视频| 久久久久久久久久人人人人人人| 麻豆av在线久日| 日产精品乱码卡一卡2卡三| 国产极品粉嫩免费观看在线| 日本色播在线视频| 亚洲精品久久久久久婷婷小说| 青春草国产在线视频| 成人国语在线视频| 最新中文字幕久久久久| 午夜激情久久久久久久| 久久久久久久久免费视频了| 大码成人一级视频| 欧美另类一区| 蜜桃国产av成人99| 少妇被粗大猛烈的视频| 欧美国产精品一级二级三级| 校园人妻丝袜中文字幕| 一本大道久久a久久精品| 丰满饥渴人妻一区二区三| 国产深夜福利视频在线观看| 久久这里有精品视频免费| 久久久久国产网址| 久久久久久久久久人人人人人人| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 欧美中文综合在线视频| videossex国产| 久久人人97超碰香蕉20202| 免费少妇av软件| 日韩,欧美,国产一区二区三区| 你懂的网址亚洲精品在线观看| 亚洲av国产av综合av卡| 久久免费观看电影| 日韩三级伦理在线观看| xxxhd国产人妻xxx| 欧美 亚洲 国产 日韩一| 国产成人欧美| 久久精品国产鲁丝片午夜精品| 女的被弄到高潮叫床怎么办| 美女午夜性视频免费| 人妻一区二区av| 伦理电影大哥的女人| 最近中文字幕2019免费版| 最近中文字幕2019免费版| 日本色播在线视频| 少妇的丰满在线观看| 久久ye,这里只有精品| 国产片内射在线| 久久久久网色| 国产日韩欧美视频二区| 国产深夜福利视频在线观看| 另类精品久久| av视频免费观看在线观看| 欧美激情极品国产一区二区三区| av网站免费在线观看视频| 国产熟女欧美一区二区| 婷婷色综合大香蕉| 色吧在线观看| 久久热在线av| 国产精品三级大全| 好男人视频免费观看在线| 五月天丁香电影| 黄色 视频免费看| 亚洲欧美色中文字幕在线| 宅男免费午夜| 久久婷婷青草| 一级片'在线观看视频| 中国国产av一级| 免费观看无遮挡的男女| 色婷婷久久久亚洲欧美| 卡戴珊不雅视频在线播放| 国产av精品麻豆| 国产探花极品一区二区| 国产又爽黄色视频| videos熟女内射| 18禁国产床啪视频网站| 亚洲经典国产精华液单| 精品少妇黑人巨大在线播放| 精品国产一区二区三区久久久樱花| 免费人妻精品一区二区三区视频| 中国国产av一级| 男男h啪啪无遮挡| 一二三四中文在线观看免费高清| 欧美另类一区| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 久久久欧美国产精品| 成人免费观看视频高清| 男女边摸边吃奶| 免费女性裸体啪啪无遮挡网站| 免费在线观看黄色视频的| 又粗又硬又长又爽又黄的视频| 免费久久久久久久精品成人欧美视频| 男女高潮啪啪啪动态图| 中国国产av一级| 日本-黄色视频高清免费观看| 涩涩av久久男人的天堂| 日本wwww免费看| 亚洲第一区二区三区不卡| 人人妻人人添人人爽欧美一区卜| 欧美国产精品一级二级三级| 国产1区2区3区精品| 中文字幕精品免费在线观看视频| 欧美亚洲日本最大视频资源| 亚洲精品久久成人aⅴ小说| 亚洲av在线观看美女高潮| 99re6热这里在线精品视频| 亚洲欧美成人精品一区二区| 亚洲美女搞黄在线观看| 少妇精品久久久久久久| 97在线人人人人妻| 大香蕉久久网| 亚洲精品美女久久av网站| 免费观看av网站的网址| 2022亚洲国产成人精品| 亚洲精品乱久久久久久| 亚洲综合色网址| 欧美日韩视频高清一区二区三区二| 久久久久国产一级毛片高清牌| 国产精品.久久久| 久久久亚洲精品成人影院| 精品一区二区免费观看| 丰满乱子伦码专区| 国产精品久久久久成人av| 黑人巨大精品欧美一区二区蜜桃| 日本91视频免费播放| 毛片一级片免费看久久久久| av女优亚洲男人天堂| 精品亚洲乱码少妇综合久久| 精品人妻在线不人妻| 你懂的网址亚洲精品在线观看| 亚洲综合色网址| 99久久综合免费| 久久精品国产a三级三级三级| 亚洲在久久综合| 日韩av不卡免费在线播放| 精品久久蜜臀av无| 2021少妇久久久久久久久久久| 精品亚洲成a人片在线观看| 亚洲经典国产精华液单| 国产一区二区在线观看av| av卡一久久| 巨乳人妻的诱惑在线观看| 交换朋友夫妻互换小说| 男人操女人黄网站| 久久久国产一区二区| 免费在线观看视频国产中文字幕亚洲 | av不卡在线播放| 国产野战对白在线观看| 日本-黄色视频高清免费观看| 久久久国产一区二区| 少妇 在线观看| 久久精品aⅴ一区二区三区四区 | www.熟女人妻精品国产| 一边摸一边做爽爽视频免费| 伦精品一区二区三区| 如日韩欧美国产精品一区二区三区| 久久97久久精品| 丁香六月天网| 久久久亚洲精品成人影院| av一本久久久久| 夜夜骑夜夜射夜夜干| 亚洲精品一区蜜桃| 精品福利永久在线观看| 国产成人91sexporn| 国产成人av激情在线播放| av女优亚洲男人天堂| 国产精品国产av在线观看| 久久99精品国语久久久| 国产亚洲最大av| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 国产国语露脸激情在线看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 久久久久久久大尺度免费视频| av线在线观看网站| 亚洲第一区二区三区不卡| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久av不卡| 国产精品99久久99久久久不卡 | 热re99久久国产66热| 十八禁高潮呻吟视频| 久久精品人人爽人人爽视色| 成年女人毛片免费观看观看9 | 嫩草影院入口| 在线 av 中文字幕| 久久久久久久大尺度免费视频| 五月开心婷婷网| 日本vs欧美在线观看视频| 国产精品熟女久久久久浪| 久久毛片免费看一区二区三区| 最新的欧美精品一区二区| 色哟哟·www| 嫩草影院入口| 精品亚洲成a人片在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产又色又爽无遮挡免| 国产在线视频一区二区| 国产精品成人在线| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂| 精品人妻偷拍中文字幕| 午夜免费鲁丝| 丝袜在线中文字幕| 国产精品香港三级国产av潘金莲 | 女人被躁到高潮嗷嗷叫费观| 久久久久国产网址| 电影成人av| 国产成人精品婷婷| 99久久综合免费| 欧美精品高潮呻吟av久久| 亚洲精品视频女| 亚洲欧洲日产国产| 最近2019中文字幕mv第一页| av视频免费观看在线观看| 麻豆av在线久日| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产专区5o| 老汉色av国产亚洲站长工具| 精品久久久久久电影网| 男人爽女人下面视频在线观看| 成年动漫av网址| 久久精品亚洲av国产电影网| 精品少妇内射三级| 国产淫语在线视频| 亚洲人成电影观看| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 边亲边吃奶的免费视频| 欧美日韩视频高清一区二区三区二| 亚洲av在线观看美女高潮| 国产成人精品久久二区二区91 | 久久这里只有精品19| 国产 精品1| 五月开心婷婷网| 熟女少妇亚洲综合色aaa.| 秋霞在线观看毛片| 少妇被粗大的猛进出69影院| 街头女战士在线观看网站| 国产成人免费无遮挡视频| 久久精品国产鲁丝片午夜精品| 精品国产一区二区三区久久久樱花| 激情五月婷婷亚洲| 亚洲精品一区蜜桃| 国产成人精品久久二区二区91 | 成人国语在线视频| 青春草国产在线视频| 欧美日韩综合久久久久久| 欧美国产精品一级二级三级| 国产精品久久久久久久久免| 成人亚洲欧美一区二区av| 国产精品一区二区在线不卡| av在线老鸭窝| 在线观看免费日韩欧美大片| 午夜福利影视在线免费观看| 欧美人与善性xxx| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 最近最新中文字幕大全免费视频 | 永久免费av网站大全| 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 在线观看三级黄色| 最近的中文字幕免费完整| 成人免费观看视频高清| 久久久精品94久久精品| 国产精品一二三区在线看| 精品一区二区三卡| 精品人妻偷拍中文字幕| 高清不卡的av网站| 精品99又大又爽又粗少妇毛片| 天堂中文最新版在线下载| 欧美少妇被猛烈插入视频| 熟妇人妻不卡中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 色婷婷久久久亚洲欧美| 不卡视频在线观看欧美| 中国三级夫妇交换| 黄网站色视频无遮挡免费观看| 人妻一区二区av| 99香蕉大伊视频| 在线观看免费高清a一片| 午夜福利乱码中文字幕| 91国产中文字幕| 精品久久久精品久久久| 日韩视频在线欧美| 国产极品天堂在线| 嫩草影院入口| 欧美激情 高清一区二区三区| 中国三级夫妇交换| 国产一级毛片在线| 母亲3免费完整高清在线观看 | 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 免费人妻精品一区二区三区视频| 久久ye,这里只有精品| 激情视频va一区二区三区| av有码第一页| 最新中文字幕久久久久| 五月天丁香电影| 人人妻人人澡人人爽人人夜夜| 久久影院123| 国产精品久久久av美女十八| 精品人妻偷拍中文字幕| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91 | 成人国产av品久久久| 欧美国产精品va在线观看不卡| 国产毛片在线视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人一二三区av| 男女免费视频国产| av在线播放精品| 男女无遮挡免费网站观看| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 夫妻性生交免费视频一级片| 一本大道久久a久久精品| 性高湖久久久久久久久免费观看| 91久久精品国产一区二区三区| 久久人人97超碰香蕉20202| 亚洲欧美精品自产自拍| 97在线视频观看| 蜜桃国产av成人99| 亚洲成色77777| 国产人伦9x9x在线观看 | 一区二区三区精品91| 亚洲一区中文字幕在线| 国产一区二区激情短视频 | 99久久综合免费| 成年动漫av网址| 色婷婷av一区二区三区视频| 另类精品久久| 母亲3免费完整高清在线观看 | 亚洲国产精品国产精品| 超色免费av| 春色校园在线视频观看| a级片在线免费高清观看视频| 亚洲av福利一区| 老熟女久久久| 中文字幕人妻熟女乱码| 精品国产超薄肉色丝袜足j| 国产成人精品在线电影| 精品一区在线观看国产| 一个人免费看片子| 街头女战士在线观看网站| 亚洲欧美一区二区三区久久| 成年动漫av网址| 国产熟女午夜一区二区三区| 国语对白做爰xxxⅹ性视频网站| 日韩欧美一区视频在线观看| av网站免费在线观看视频| 一区二区三区四区激情视频| 久久久精品免费免费高清| 日本wwww免费看| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 我的亚洲天堂| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 18禁动态无遮挡网站| 亚洲精品,欧美精品| 老汉色∧v一级毛片| 视频区图区小说| 国产乱人偷精品视频| 久久久久国产一级毛片高清牌| 久热这里只有精品99| 国产高清国产精品国产三级| 国产成人精品福利久久| 高清欧美精品videossex| 国产成人精品无人区| 精品少妇一区二区三区视频日本电影 | 午夜福利,免费看| 国产av国产精品国产| 国产高清不卡午夜福利| 老司机亚洲免费影院| 精品人妻偷拍中文字幕| 黄色 视频免费看| 日韩制服骚丝袜av| 久久精品熟女亚洲av麻豆精品| 国产片内射在线| 不卡视频在线观看欧美| 午夜免费鲁丝| 国产精品久久久久久久久免| 亚洲精品视频女| 美女国产高潮福利片在线看| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 自线自在国产av| 成人毛片60女人毛片免费| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 亚洲av福利一区| 日韩电影二区| 亚洲,欧美精品.| 亚洲成人av在线免费| 青青草视频在线视频观看| av在线老鸭窝| 国产 一区精品| 亚洲精品中文字幕在线视频| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 中文天堂在线官网| 少妇 在线观看| 麻豆av在线久日| 久久久久国产精品人妻一区二区| 男女免费视频国产| 春色校园在线视频观看| 日本免费在线观看一区| 亚洲国产欧美网| 亚洲中文av在线| 午夜福利视频精品| 久久女婷五月综合色啪小说| 午夜福利影视在线免费观看| av.在线天堂| 春色校园在线视频观看| 满18在线观看网站| 最近的中文字幕免费完整| 亚洲国产精品一区二区三区在线| 亚洲国产色片| 一级,二级,三级黄色视频| 一边摸一边做爽爽视频免费| 青草久久国产| 日韩一区二区三区影片| 汤姆久久久久久久影院中文字幕| 精品国产超薄肉色丝袜足j| 久久久亚洲精品成人影院| 久久久久精品性色| 永久网站在线| 一区二区三区乱码不卡18| 国产免费现黄频在线看| 嫩草影院入口| 久久精品人人爽人人爽视色| 免费观看无遮挡的男女| 岛国毛片在线播放| av国产精品久久久久影院| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图| 蜜桃在线观看..| av天堂久久9| 国产精品不卡视频一区二区| 国产日韩一区二区三区精品不卡| 黄片小视频在线播放| 午夜日韩欧美国产| 1024视频免费在线观看| 熟妇人妻不卡中文字幕| 男女边吃奶边做爰视频| 日韩熟女老妇一区二区性免费视频| 中文乱码字字幕精品一区二区三区| 91aial.com中文字幕在线观看| 精品亚洲成国产av| 久久影院123| 亚洲成人av在线免费| 免费黄色在线免费观看| 精品一区二区三区四区五区乱码 | 亚洲精品日本国产第一区| 街头女战士在线观看网站| 丁香六月天网| 美女xxoo啪啪120秒动态图| 99国产综合亚洲精品| 侵犯人妻中文字幕一二三四区| 搡女人真爽免费视频火全软件| 秋霞伦理黄片| 高清不卡的av网站| 美女大奶头黄色视频| 天天躁夜夜躁狠狠躁躁| 欧美国产精品一级二级三级| 色94色欧美一区二区| 一二三四在线观看免费中文在| 成人国产麻豆网| 精品人妻在线不人妻| 高清不卡的av网站| 电影成人av| 韩国精品一区二区三区| 国产亚洲最大av| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 亚洲在久久综合| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 韩国av在线不卡| 国产精品无大码| 久久久久久久国产电影| 视频区图区小说| 老女人水多毛片| av又黄又爽大尺度在线免费看| 在线观看免费视频网站a站| 国产激情久久老熟女| 少妇的逼水好多| 久久久久久久久免费视频了| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天美传媒精品一区二区| 五月开心婷婷网| 一区二区三区乱码不卡18| 国产成人精品久久二区二区91 | 久久国产亚洲av麻豆专区| 成人亚洲精品一区在线观看| 国产在视频线精品| 国产福利在线免费观看视频| 99九九在线精品视频| 美女福利国产在线| 91精品三级在线观看| 99久久综合免费| 亚洲av日韩在线播放| 不卡av一区二区三区| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品电影小说| 美女大奶头黄色视频| 少妇 在线观看| 青草久久国产| 精品人妻一区二区三区麻豆| 欧美国产精品一级二级三级| 国产在线视频一区二区| 性色avwww在线观看| 亚洲第一区二区三区不卡| 一级a爱视频在线免费观看| 久久99蜜桃精品久久| 飞空精品影院首页| 久久久久久伊人网av| 男女无遮挡免费网站观看| 中国国产av一级| 亚洲中文av在线| av不卡在线播放| 最新的欧美精品一区二区| 亚洲国产成人一精品久久久| 中国三级夫妇交换| 另类亚洲欧美激情| 精品少妇久久久久久888优播| 夫妻性生交免费视频一级片| 在线 av 中文字幕| 大香蕉久久成人网| 免费黄网站久久成人精品| av又黄又爽大尺度在线免费看| 国产午夜精品一二区理论片| 天美传媒精品一区二区| 99精国产麻豆久久婷婷| 97人妻天天添夜夜摸| 69精品国产乱码久久久| 一个人免费看片子| 国产视频首页在线观看| 美女高潮到喷水免费观看| 国产精品熟女久久久久浪| 久久99精品国语久久久| 熟妇人妻不卡中文字幕| 啦啦啦在线观看免费高清www| 午夜福利,免费看| 99九九在线精品视频| 男女啪啪激烈高潮av片|