• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust cubature Kalman filter method for the nonlinear alignment of SINS

    2021-03-23 14:00:08ShiluoGuoYingjieSunLiminChangYangLi
    Defence Technology 2021年2期

    Shi-luo Guo,Ying-jie Sun,Li-min Chang,Yang Li

    Department of Instrument Electric,Aviation University Air Force,Changchun,People’s Republic of China

    Keywords:SINS Nonlinear alignment Cubature Kalman filter Robust Multiple fading factors Hypothesis test

    ABSTRACT Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the statics of the observation noise are pre-given before the filtering process.Therefore,any unpredicted outliers in observation noise will decrease the stability of the filter.In view of this problem,improved CKF method with robustness is proposed.Multiple fading factors are introduced to rescale the observation noise covariance.Then the update stage of the filter can be autonomously tuned,and if there are outliers exist in the observations,the update should be less weighted.Under the Gaussian assumption of KF,the Mahalanobis distance of the innovation vector is supposed to be Chi-square distributed.Therefore a judging index based on Chi-square test is designed to detect the noise outliers,determining whether the fading tune are required.The proposed method is applied in the nonlinear alignment of SINS,and vehicle experiment proves the effective of the proposed method.

    1.Introduction

    Strapdown inertial navigation system(SINS)is a very popular autonomous navigation equipment,playing an irreplaceable role in the military field.As a reckoning system,SINS is vulnerable to its initial error[1-3],hence its initialization,called initial alignment,is of vital importance for SINS.Kalman filter(KF)is a commonly used alignment tool.Sometimes under the condition of large misalignment angle,the alignment model of SINS is nonlinear,hence the nonlinear extensions of KF,such as Extended Kalman filter(EKF)[4,5],unscented Kalman filter(UKF)[6,7]and cubature Kalman filter(CKF)[8-11]are used in the nonlinear alignment.EKF is the most celebrated nonlinear approximations of KF.However,the linearization of nonlinear system in EKF leads to approximation errors and cumbersome calculations.Comparatively,UKF has more advantages than EKF since its linearization and derivative free,and compared with UKF,the theoretical deduction of CKF is more rigorous,and its stability are better especially in higher order systems[12].

    It can be proven that only when the process and observation noises are Gaussian distribution,the KF is theoretically optimal,which means it is consistent and unbiased[13].Besides,KF assumes that the mathematical characteristics of the system noise and the observation noise are constant and pre-defined.However,the priori statistical information is deficient to predict the noise outliers,especially in SINS alignment,due to uncertain carrier motion state,unknown observation conditions and varying noise characteristics of the inertial measurement units(IMU)et al.Under these conditions,the observation outliers may cause instability or even divergence of filtering result.Hence the robustness of the KF has become a significant research topic.Such as H∞filters[14],federated filters[15],M-estimation based filters[16],strong tracking Kalman filter[17]et al.In Ref.[18],a novel sigma-points update method is proposed to enhance the robustness of CKF,providing a useful reference for this work.

    Fading Kalman filters(FKF)is an effective suboptimal improved form of KF[19].This method focuses on the harmonious between the state prediction and the observation update.Because of the moderate computational load and the excellent performance,this method is widely studied.FKF was initially designed to solve the system modelling errors of KF.By using fading factor,the process noise covariance was rescaled,resulting in an increased filter gain,and the update of the current observation will be more weighted,and meanwhile the weight of historical information will be decreased.Through subsequent researches[20-22],the basic principle and application method of FKF was gradually optimized.To solve the problems of observation noise outliers,reference[23]extended this fading method to the robust improvement of KF.In which the observation noise covariance was tuned by fading factor,so the filter gain can be decreased and the weight of the observational update will be less weighted.However,the existing methods are mainly focused on the linear filtering applications,and shows insufficient in adaptability in terms of the introduction method of the fading factor.

    This study focuses on the non-linear alignment of SINS under condition of uncertain observation noise.The main works can be summarized as follows:Fading method is introduced to enhance the robustness of CKF.Multiple fading factors are adopted to inflate the observation noise covariance.Compared with the single fading factor in Ref.[21],the tune ability of multiple factors are more efficient.A judging index is designed to monitor the filter state,and determine the introducing time of the fading method.In a stable KF,the Mahalanobis distance of the innovation should be Chi-square distributed.Therefore a hypothesis test based on the Chi-square distribution of the innovation is designed.The test results will reflect the state of the filter,i.e.the rejection of the null hypothesis implies that the Gaussian assumption is false.In other words,observations may be disturbed by outliers,and then the fading method should be performed to decrease the observational update weight.

    This paper is organized as follows.Fundamental knowledge such as the filter model of SINS,is given in Section 2.Basic principles of CKF and improved robust CKF is proposed in Section 3.Vehicle experiments are conducted in Section 4.At the end,some conclusions are drawn and the future work are presented.

    2.Filter model

    Commonly used nonlinear filter model of SINS is[8].

    In Eq.(1),n is the local geographic coordinate frame,and the computational n frame from the SINS is n′.b represents the body frame.Superscript means that the variable is the projection in corresponding frame.For example,ωieis the rotational speed of the Earth,andrepresents its projection in the n frame.gnis the gravity vector.andare the measurement of accelerometers and gyroscopes.ωnenis the rotational rate of the n frame with respect to the Earth.L,λ,h represent the latitude,longitude,altitude respectively.δvnis the difference between the SINS velocity and the actual velocity.I3is the three-dimensional identity matrix.is the transformation between the n frame and the n′frame,and it can be expressed as,in which

    In Eq.(2),φx,φyare the pitch and roll misalignment angles and φzis the yaw misalignment angle.Acan be given by

    3.Proposal of algorithm

    3.1.Cubature Kalman filter(CKF)

    The equations of system state and observation are supposed as

    Standard CKF equation can be divided into state prediction and update stage.

    (1)State Prediction

    The estimation of the system state at k-1 epoch is supposed as,and its estimation covariance is supposed to bePk-1.

    Step 1:Cholesky decomposition

    Step 2:Calculation of cubature point

    In Eq.(6),and D is the dimension of system states.is cubature point-group.[1]indicate the intersections of a unit sphere and its coordinate axis.For example,if m=2,then[1]represent

    Step 3:Substitute cubature point into state equation

    Step 4:Prediction of the state

    Step 5:Prediction covariance

    (2)Update stage

    Step 6:Cholesky decomposition

    Step 7:Calculation of cubature point

    Step 8:Substitute cubature point into observation equation

    Step 9:Observational Prediction

    Step 10:Autocorrelation covariance

    Step 11:Cross-correlation covariance

    Step 12:Calculation of filter gain

    Step 13:State estimation

    Step 14:Estimation covariance

    It should be noted that,above equations from Eq.(5)to Eq.(19)are the complete nonlinear steps of CKF.As in the nonlinear alignment issues of SINS,sometimes although the filtering state equation is nonlinear,the observation equation is still linear,at this moment the update stage of CKF can simplified as the linear update in KF,i.e.Eq.(11)-(19)can be replaced by

    It will be discussed later that,in this paper the observation equation of the alignment filter is a linear equation,so the filter update can be performed by Eqs.(20)-(22).

    3.2.Fading factor

    Measurement-noise-inflating method based on fading algorithm is adopted to increase the robustness of CKF.Multiple fading factors are introduced to inflate the observation noise covarianceRk.

    whereSrk=diag{s1s2···sm},siis the single fading factor.diag{·}represent the diagonal matrix,and m is the dimension of the observations.The calculation method of the fading factor include the analytical method[22]and the iterative method[23].Considering the computational load of CKF,the analytically calculated scaling factor is preferred in this paper.

    The innovation of the filter is defined as

    Under the Gaussian assumption,the statistical distribution of the innovationekis

    Therefore the distribution covariance ofekis

    It has been proved in Ref.[20-22]thatCkcan be estimated in the filtering process

    In order to solve theSrk,we have

    Substituting Eq.(23)into Eq.(28)yields

    DefineNrkas follows

    It can be derived from Eq.(29)that

    where ri,iis the i th diagonal element ofRk.It should be noted that,in order to inflate the observation covariance,sishould be larger than 1.

    3.3.Robust CKF

    In conventional fading filters,the fading factor will be used if it is larger than one,without considering whether the outliers is existing or not.However,excessive using of fading factors will impact the normal structure of the filter and increase the computational load.Therefore,a judging method is designed to detect whether the fading factors are required.

    Fig.1.GPS/INS integrated speed reference.

    Fig.2.GPS/INS integrated position reference.

    Fig.3.Actual velocity and contaminated velocity.

    Fig.4.Pitch misalignment errors.

    Since the innovationekis Gaussian distribution,then the Mahalanobis distance of the innovation vector should be chi-square distributed,and its freedom degree is exactly the dimension of the innovation vector.

    Then a detective criterion can be designed based on hypothesis test.The null hypothesis is

    where theγkis the judging index.By offline assigning a small value αas the significance level,the corresponding quantileξcan be predetermined,which is

    Ifαis taken as a fairly small value(such as 0.01),{γk>ξ}would be a low probability event.Thereforeγkshould be smaller thanξ with a high probability i.e.1-α.In other words,ifγkis larger thanξ,it means small probability event occurred.According to the principle of hypothesis test,the null hypothesis is false.It implies that some outliers exist.Then the fading factors,which calculated from Eq.(31),should be introduced into the filter by Eq.(23).

    Thus in every recursion step of CKF,we getγkfrom Eq.(32),and perform the hypothesis-testing through Eqs.(33)and(34).If the hypothesis H0is false,fading algorithm should be introduced.

    4.Experimental study

    Since the proposed algorithm is designed for the nonlinear alignment of SINS.A vehicle test was performed to evaluate the proposed alignment algorithm.The inertial measurement units of the experimental SINS consists of the following parts:

    (1)Laser gyroscopes,the drift rate is 0.007。/h(1σ).

    (2)Quartz accelerometers,the bias is 5×10-5g(1σ).

    A single-antenna GPS receiver is installed on the top of the car.The gyros measurements,accelerometers measurements and the GPS velocity are recorded.The sampling rates of the INS and the GPS are 125 Hz and 1 Hz respectively.A 20 min segment of the whole recorded data is used to test the alignment performance of the proposed algorithm.The motions of the vehicle can be presented by the GPS/INS integrated system,which are shown in Figs.1 and 2.

    Fig.5.Roll misalignment errors.

    Fig.6.Yaw misalignment errors.

    The filtering state is chosen as

    Velocity errors[δvnE,δvnN,δvnU]are assigned as the observations,and the velocity reference is GPS velocity.Therefore the observation equation is

    whereHk=[I3×303×9].The observation is three-dimension,hence the judging indexγkhas aχ2(3)distribution.In this experiment,the significance levelαis chosen as 0.01,then the corresponding quantileξis 11.345.

    In order to simulate the case of large misalignment angles,the initial attitude error is set as[10°,10°,30°].Other filter conditions are set as

    The first 10 min segment of the record date are used to perform the alignment.Two kinds of observation error are introduced in the actual observations,i.e.,unpredictable White Gauss noise and the outliers,to simulate the case of observation outliers.

    (1)Unpredictable Gauss noise:Gauss noise with variance of 1(m/s)2is added to the velocity reference(GPS output).

    (2)Outliers case:At 100 s-250 s,and 400 s-550 s,bias errors with the value of 10 m/s are intentionally added into the GPS velocity every 10 s.

    Take the east velocity as an example,actual GPS velocity and the contaminated velocity by artificial errors are presented in Fig.3.

    Standard CKF and RCKF(robust CKF proposed in this paper)are compared,and alignment results are evaluated by the GPS/SINS integrated navigation outputs.

    The attitude misalignment angles after 10 min alignment are shown in the following figures.

    Figs.4-6 prove that,RCKF shows better robustness under the disturbance of observation noise.The final misalignment errors of RCKF are 0.002°,0.003°,and 0.1°,while the final misalignment errors of CKF are 0.4°,0.1°,and 2.7°.

    5.Conclusions

    For the nonlinear alignment of the SINS,an improved CKF method with robustness is proposed in this paper.Fading algorithm is introduced in the CKF,and a robust improvement is proposed.The proposed method is applied on the nonlinear alignment of SINS.Vehicle experiments show that the proposed method performs good filtering robustness even under the disturbance of anomalous observation noise.At present the proposed method is more like an empiricist exploration than a rigorous mathematical proof.Thus,the following theoretical research needs to be further strengthened and the fault tolerance of the algorithm needs to be improved.

    Declaration of competing interest

    The authors declared that they have no conflicts of interest to this work.We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

    Acknowledgment

    This work is supported by National Natural Science Foundation of China under Grant No.41574069.The Major National Projects of China under Grant No.GFZX0301040303.

    国产真实乱freesex| 欧美成人免费av一区二区三区| 日本一本二区三区精品| 9191精品国产免费久久| ponron亚洲| 国产免费av片在线观看野外av| 国产伦人伦偷精品视频| xxxwww97欧美| 亚洲国产日韩欧美精品在线观看 | 亚洲精品一区av在线观看| 中文字幕人妻丝袜一区二区| 久久亚洲真实| 在线播放国产精品三级| 一级黄色大片毛片| 亚洲激情在线av| 欧美激情在线99| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲| 国产成人系列免费观看| 亚洲av熟女| 性欧美人与动物交配| 国产亚洲精品综合一区在线观看| 男人舔女人的私密视频| 天堂√8在线中文| 午夜免费激情av| svipshipincom国产片| 久久久久国产精品人妻aⅴ院| 国产av在哪里看| 亚洲18禁久久av| 男插女下体视频免费在线播放| 丰满人妻熟妇乱又伦精品不卡| 国产毛片a区久久久久| 男女午夜视频在线观看| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 在线观看舔阴道视频| 男人舔奶头视频| 亚洲国产欧美人成| 桃色一区二区三区在线观看| 特级一级黄色大片| av欧美777| 99国产精品一区二区蜜桃av| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 欧美性猛交╳xxx乱大交人| 无人区码免费观看不卡| 91在线观看av| av国产免费在线观看| 国产精品av久久久久免费| 国产成人一区二区三区免费视频网站| 人人妻人人看人人澡| 精品电影一区二区在线| 久久中文字幕人妻熟女| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 最新中文字幕久久久久 | 天堂av国产一区二区熟女人妻| 老汉色∧v一级毛片| 黄片小视频在线播放| 俺也久久电影网| 天堂影院成人在线观看| 国产高潮美女av| 亚洲国产欧洲综合997久久,| 非洲黑人性xxxx精品又粗又长| 国产伦精品一区二区三区四那| 久久久久久九九精品二区国产| 久久久水蜜桃国产精品网| 1024手机看黄色片| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆| 国内毛片毛片毛片毛片毛片| 特大巨黑吊av在线直播| 变态另类成人亚洲欧美熟女| 男女床上黄色一级片免费看| 国产美女午夜福利| 亚洲一区二区三区不卡视频| 亚洲成人中文字幕在线播放| 最近最新免费中文字幕在线| 91老司机精品| 91字幕亚洲| 天天添夜夜摸| 精品99又大又爽又粗少妇毛片 | 又大又爽又粗| 国产激情欧美一区二区| 日韩成人在线观看一区二区三区| 两个人视频免费观看高清| 中出人妻视频一区二区| 又紧又爽又黄一区二区| 深夜精品福利| 午夜激情福利司机影院| 久久精品国产综合久久久| 亚洲av成人一区二区三| 18禁黄网站禁片免费观看直播| 性色av乱码一区二区三区2| 老司机午夜福利在线观看视频| 在线十欧美十亚洲十日本专区| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 欧美一级毛片孕妇| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 久久久久性生活片| 色老头精品视频在线观看| 国产精品香港三级国产av潘金莲| 国产成人影院久久av| 久久热在线av| 成年女人看的毛片在线观看| 日韩三级视频一区二区三区| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| 久久精品国产亚洲av香蕉五月| a级毛片在线看网站| 国产高清videossex| 精品国产亚洲在线| 久久中文字幕人妻熟女| 精品久久久久久成人av| 亚洲一区二区三区色噜噜| 九色成人免费人妻av| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 亚洲片人在线观看| 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频| 美女午夜性视频免费| 亚洲五月天丁香| 国产在线精品亚洲第一网站| 精品电影一区二区在线| 欧美在线一区亚洲| 天堂网av新在线| 欧美+亚洲+日韩+国产| 听说在线观看完整版免费高清| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 国产亚洲精品久久久com| 99热精品在线国产| 精华霜和精华液先用哪个| 免费看十八禁软件| 日日摸夜夜添夜夜添小说| 人人妻人人澡欧美一区二区| 免费看十八禁软件| 国产精品电影一区二区三区| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频 | 免费看美女性在线毛片视频| 国产高清videossex| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 夜夜躁狠狠躁天天躁| 欧美又色又爽又黄视频| 黄色视频,在线免费观看| 熟女人妻精品中文字幕| 国产成人av激情在线播放| 日本熟妇午夜| 人人妻,人人澡人人爽秒播| 美女高潮喷水抽搐中文字幕| 亚洲aⅴ乱码一区二区在线播放| x7x7x7水蜜桃| 制服人妻中文乱码| 亚洲va日本ⅴa欧美va伊人久久| 国产爱豆传媒在线观看| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 久久久国产成人免费| 麻豆成人午夜福利视频| 校园春色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 天堂av国产一区二区熟女人妻| 一区二区三区激情视频| 国产精品久久久av美女十八| av视频在线观看入口| xxx96com| 五月伊人婷婷丁香| 久99久视频精品免费| 免费在线观看视频国产中文字幕亚洲| 久久精品影院6| 亚洲精品456在线播放app | 亚洲国产色片| 亚洲色图av天堂| www.999成人在线观看| 美女 人体艺术 gogo| 欧美激情久久久久久爽电影| 国产午夜精品久久久久久| 色视频www国产| 亚洲欧美精品综合一区二区三区| 亚洲熟妇熟女久久| 国产69精品久久久久777片 | 国产精品美女特级片免费视频播放器 | 国产精品久久久久久久电影 | aaaaa片日本免费| 国产毛片a区久久久久| 亚洲国产欧洲综合997久久,| 欧美中文综合在线视频| 波多野结衣高清无吗| 嫩草影院入口| 搡老熟女国产l中国老女人| 久久精品国产亚洲av香蕉五月| 亚洲成人久久爱视频| 757午夜福利合集在线观看| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 国模一区二区三区四区视频 | 啪啪无遮挡十八禁网站| 成人精品一区二区免费| 午夜a级毛片| 精品一区二区三区视频在线 | 午夜福利欧美成人| 中文字幕精品亚洲无线码一区| 成人国产综合亚洲| 国产av不卡久久| 久久精品国产99精品国产亚洲性色| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 国产亚洲精品久久久com| 搞女人的毛片| 亚洲无线在线观看| 人妻丰满熟妇av一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 亚洲一区二区三区色噜噜| 亚洲欧美一区二区三区黑人| 中文字幕av在线有码专区| 热99在线观看视频| 亚洲欧美激情综合另类| 欧美日韩综合久久久久久 | 99热这里只有是精品50| 国产高清激情床上av| 真人一进一出gif抽搐免费| 欧美乱色亚洲激情| 男女床上黄色一级片免费看| 国产激情久久老熟女| 嫩草影视91久久| 18美女黄网站色大片免费观看| 在线国产一区二区在线| 91麻豆精品激情在线观看国产| 夜夜夜夜夜久久久久| 在线观看免费视频日本深夜| 嫩草影院精品99| 欧美日韩亚洲国产一区二区在线观看| 国产乱人视频| 真人一进一出gif抽搐免费| 国产精品国产高清国产av| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 日本一二三区视频观看| 黄色日韩在线| 欧美zozozo另类| 一级毛片高清免费大全| 99精品欧美一区二区三区四区| 亚洲欧美精品综合久久99| 成年女人看的毛片在线观看| 国产精品久久视频播放| 搞女人的毛片| 亚洲性夜色夜夜综合| 国产综合懂色| www日本黄色视频网| 可以在线观看的亚洲视频| 婷婷精品国产亚洲av| 中文字幕熟女人妻在线| 男女那种视频在线观看| 日本 av在线| 亚洲欧美激情综合另类| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 久久人人精品亚洲av| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 国产欧美日韩精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 很黄的视频免费| 国内精品美女久久久久久| 国产精品 国内视频| 91在线观看av| 露出奶头的视频| 国产在线精品亚洲第一网站| 热99在线观看视频| 色av中文字幕| 欧美av亚洲av综合av国产av| 非洲黑人性xxxx精品又粗又长| 精品国产亚洲在线| 一本久久中文字幕| 国产精品亚洲一级av第二区| 91久久精品国产一区二区成人 | 久久久久国产精品人妻aⅴ院| or卡值多少钱| 国产成人精品久久二区二区免费| 九色成人免费人妻av| 午夜久久久久精精品| 亚洲国产精品sss在线观看| 国产成人一区二区三区免费视频网站| 999久久久精品免费观看国产| 男女视频在线观看网站免费| 亚洲无线观看免费| 欧美一区二区国产精品久久精品| 成人一区二区视频在线观看| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 精品国产美女av久久久久小说| 狂野欧美激情性xxxx| 波多野结衣高清无吗| 亚洲国产色片| 99久久久亚洲精品蜜臀av| 俺也久久电影网| 亚洲欧美日韩东京热| 90打野战视频偷拍视频| 国产av麻豆久久久久久久| 亚洲精品色激情综合| 亚洲第一电影网av| 久久99热这里只有精品18| 国产美女午夜福利| 亚洲色图av天堂| 免费高清视频大片| 好男人在线观看高清免费视频| 亚洲自偷自拍图片 自拍| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 日本黄大片高清| 国内毛片毛片毛片毛片毛片| 观看免费一级毛片| 男人舔奶头视频| 国模一区二区三区四区视频 | 精品久久久久久,| 91久久精品国产一区二区成人 | 国产成人av教育| 婷婷亚洲欧美| 久久精品影院6| www国产在线视频色| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| 精品国产超薄肉色丝袜足j| 国产精品女同一区二区软件 | 国产精品99久久99久久久不卡| 午夜福利免费观看在线| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 亚洲在线观看片| 精品乱码久久久久久99久播| 淫妇啪啪啪对白视频| 一进一出好大好爽视频| 真实男女啪啪啪动态图| 波多野结衣高清作品| 久久午夜综合久久蜜桃| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 欧美大码av| 久久天堂一区二区三区四区| 九色国产91popny在线| 宅男免费午夜| 亚洲在线观看片| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 九九热线精品视视频播放| 一区二区三区国产精品乱码| 最近视频中文字幕2019在线8| 国产1区2区3区精品| 久久精品影院6| 欧美最黄视频在线播放免费| 欧美日韩中文字幕国产精品一区二区三区| 国产成人精品久久二区二区免费| 99国产综合亚洲精品| 国产熟女xx| 香蕉丝袜av| 香蕉久久夜色| av视频在线观看入口| 久久久久国产精品人妻aⅴ院| 成人午夜高清在线视频| 一个人看的www免费观看视频| 亚洲国产精品成人综合色| 老司机在亚洲福利影院| 国产成人影院久久av| 全区人妻精品视频| 久9热在线精品视频| 亚洲成人久久性| 亚洲国产色片| 亚洲精品在线观看二区| 国产成人欧美在线观看| 国内揄拍国产精品人妻在线| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 欧美一级a爱片免费观看看| 亚洲国产欧洲综合997久久,| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 国产精品一区二区三区四区免费观看 | 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| www日本在线高清视频| 免费人成视频x8x8入口观看| av福利片在线观看| 青草久久国产| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 精品99又大又爽又粗少妇毛片 | 99久久成人亚洲精品观看| 国产精品久久久人人做人人爽| 成人18禁在线播放| 亚洲国产欧洲综合997久久,| 中文字幕av在线有码专区| 黄色视频,在线免费观看| 国产免费男女视频| 最近最新免费中文字幕在线| 精品一区二区三区视频在线观看免费| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 国内精品久久久久久久电影| 精品久久久久久,| 午夜福利成人在线免费观看| 色吧在线观看| 免费一级毛片在线播放高清视频| 91av网站免费观看| 国产精品1区2区在线观看.| 久久久久九九精品影院| 每晚都被弄得嗷嗷叫到高潮| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 成人国产一区最新在线观看| 亚洲色图 男人天堂 中文字幕| 日韩免费av在线播放| 亚洲欧美激情综合另类| 国产不卡一卡二| 高清在线国产一区| 欧美黑人欧美精品刺激| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 亚洲av五月六月丁香网| 亚洲成av人片免费观看| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 他把我摸到了高潮在线观看| 啦啦啦韩国在线观看视频| 中文字幕熟女人妻在线| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 老汉色∧v一级毛片| 在线免费观看不下载黄p国产 | 蜜桃久久精品国产亚洲av| 国产私拍福利视频在线观看| 真人做人爱边吃奶动态| 日本a在线网址| av福利片在线观看| 一级作爱视频免费观看| 村上凉子中文字幕在线| 亚洲av电影不卡..在线观看| 亚洲激情在线av| 国产精品电影一区二区三区| 制服丝袜大香蕉在线| 一个人看的www免费观看视频| 国产亚洲av嫩草精品影院| 成人国产一区最新在线观看| 成人亚洲精品av一区二区| 宅男免费午夜| 亚洲成a人片在线一区二区| 久久人人精品亚洲av| 亚洲国产中文字幕在线视频| 国产精品一区二区三区四区久久| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av| 欧美日韩黄片免| 免费在线观看亚洲国产| 国产高清激情床上av| 天堂网av新在线| 久久久精品欧美日韩精品| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人一区二区免费高清观看 | 欧美中文日本在线观看视频| 久久精品国产清高在天天线| 一区二区三区国产精品乱码| 欧美zozozo另类| 欧美三级亚洲精品| 免费在线观看成人毛片| 少妇丰满av| 亚洲在线观看片| av在线天堂中文字幕| 婷婷精品国产亚洲av| av女优亚洲男人天堂 | 日韩欧美国产在线观看| 视频区欧美日本亚洲| 岛国在线观看网站| 1024手机看黄色片| 少妇人妻一区二区三区视频| 两个人看的免费小视频| 淫秽高清视频在线观看| 亚洲av五月六月丁香网| 国产真实乱freesex| 亚洲国产精品sss在线观看| 久久午夜综合久久蜜桃| 天天添夜夜摸| 国产精品1区2区在线观看.| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 亚洲人成网站高清观看| 免费大片18禁| 亚洲人成网站在线播放欧美日韩| 免费在线观看亚洲国产| 在线永久观看黄色视频| 色综合婷婷激情| 日本 欧美在线| 日韩免费av在线播放| 婷婷丁香在线五月| 一二三四社区在线视频社区8| 韩国av一区二区三区四区| 色精品久久人妻99蜜桃| 男人舔奶头视频| svipshipincom国产片| 亚洲中文av在线| 手机成人av网站| 精品一区二区三区视频在线 | 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看 | 国产精品一区二区精品视频观看| 亚洲精华国产精华精| 12—13女人毛片做爰片一| 91麻豆av在线| 一进一出好大好爽视频| 最新美女视频免费是黄的| 岛国视频午夜一区免费看| 久久久精品大字幕| 中文字幕人妻丝袜一区二区| 高潮久久久久久久久久久不卡| 亚洲18禁久久av| 久久精品亚洲精品国产色婷小说| 亚洲五月婷婷丁香| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品一区二区三区免费看| 性色av乱码一区二区三区2| 国产极品精品免费视频能看的| 欧美3d第一页| 99精品欧美一区二区三区四区| 熟妇人妻久久中文字幕3abv| tocl精华| 色噜噜av男人的天堂激情| 亚洲 欧美一区二区三区| 久久久久久久精品吃奶| 亚洲专区中文字幕在线| 欧美国产日韩亚洲一区| 国产精品爽爽va在线观看网站| 久久国产精品影院| av片东京热男人的天堂| 在线免费观看的www视频| 国产精品99久久久久久久久| 后天国语完整版免费观看| 啦啦啦免费观看视频1| 日日夜夜操网爽| 久久亚洲真实| 欧美又色又爽又黄视频| 观看免费一级毛片| 搡老妇女老女人老熟妇| 99久久久亚洲精品蜜臀av| 亚洲avbb在线观看| 亚洲精品国产精品久久久不卡| 免费无遮挡裸体视频| 午夜激情欧美在线| 午夜免费观看网址| 欧美乱色亚洲激情| 久久久国产成人免费| 亚洲片人在线观看| 亚洲国产欧美网| 亚洲精品久久国产高清桃花| 色在线成人网| 精品一区二区三区av网在线观看| 制服丝袜大香蕉在线| 悠悠久久av| 午夜成年电影在线免费观看| 亚洲狠狠婷婷综合久久图片| 亚洲电影在线观看av| 婷婷丁香在线五月| 欧美日韩中文字幕国产精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| av片东京热男人的天堂| 国产精品一区二区三区四区久久| 婷婷亚洲欧美| 很黄的视频免费| 岛国视频午夜一区免费看| www日本在线高清视频| 18禁黄网站禁片午夜丰满| 一进一出好大好爽视频| 特级一级黄色大片| 欧美日韩一级在线毛片| 丰满的人妻完整版| 亚洲自偷自拍图片 自拍| 欧美日韩一级在线毛片| 他把我摸到了高潮在线观看| 无限看片的www在线观看| 成人性生交大片免费视频hd| 久久婷婷人人爽人人干人人爱| 国产伦精品一区二区三区四那| 丝袜人妻中文字幕| 91av网一区二区| 波多野结衣巨乳人妻| 亚洲五月婷婷丁香| 在线观看一区二区三区| 久久精品国产综合久久久| 最近在线观看免费完整版| 草草在线视频免费看| 久久精品亚洲精品国产色婷小说| 国产真实乱freesex| 午夜免费观看网址| 岛国在线观看网站|