• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bimetallic Oxyhydroxide as a High-Performance Water Oxidation Electrocatalyst under Industry-Relevant Conditions

    2021-03-22 07:37:42JixinYunXioiChngChojunLiBinYngZhongjinLiKunLuoKokoLmLhngLiYngHouKostyKnOstrikov
    Engineering 2021年9期

    Jixin Yun, Xioi Chng, Chojun Li, Bin Yng, Zhongjin Li, Kun Luo, K.H. Koko Lm,Lhng Li, Yng Hou,b,*, Kosty Kn Ostrikov

    a Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

    b Institute of Zhejiang University–Quzhou, Quzhou 324000, China

    c State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

    d Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

    e School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia

    Keywords:Bimetallic oxyhydroxide 3D hybrid Electrocatalysis Oxygen evolution reaction High current density

    ABSTRACT Developing high-performing oxygen evolution reaction(OER)electrocatalysts under high-current operation conditions is critical for future commercial applications of alkaline water electrolysis for clean energy generation.Herein,we prepared a three-dimensional(3D)bimetallic oxyhydroxide hybrid grown on a Ni foam (NiFeOOH/NF) prepared by immersing Ni foam (NF) into Fe(NO3)3 solution. In this unique 3D structure,the NiFeOOH/NF hybrid was composed of crystalline Ni(OH)2 and amorphous FeOOH evenly grown on the NF surface.As a bimetallic oxyhydroxide electrocatalyst,the NiFeOOH/NF hybrid exhibited excellent catalytic activity, surpassing not only the other reported Ni–Fe based electrocatalysts, but also the commercial Ir/C catalyst.In situ electrochemical Raman spectroscopy demonstrated the active FeOOH and NiOOH phases involved in the OER process.Profiting from the synergy of Fe and Ni catalytic sites,the NiFeOOH/NF hybrid delivered an outstanding OER performance under challenging industrial conditions in a 10.0 mol·L-1 KOH electrolyte at 80°C, requiring potentials as small as 1.47 and 1.51 V to achieve the super-high catalytic current densities of 100 and 500 mA·cm-2, respectively.

    1. Introduction

    In a context of the development of global power and environmental concerns, electrocatalytic water splitting is a promising renewable and clean energy technology that can convert a large amount of water into hydrogen and oxygen [1,2]. Electrochemical water splitting involves two half reactions; of these, the oxygen evolution reaction (OER) is a four-step electron-transfer reaction[3] that requires a higher overpotential and thus greatly reduces the overall reaction rate,acting as a reaction bottleneck for hydrogen production from electrolyzed water[4,5].At present,the most efficient OER electrocatalysts are mainly based on noble metal compounds (e.g., RuO2, IrO2, and Ir/C) because of their high catalytic activity and high level of stability [6,7]. However, the shortage of these expensive metal compounds limits their wide application [8]. Therefore, it is of great significance to explore highly competent, stable, and low-cost OER electrocatalysts such as transition-metal(e.g.,iron(Fe),cobalt(Co),and nickel(Ni))oxides[9,10],nitrides[11],borides[12],carbides[13],oxyhydroxides[14],hydroxides[15],chalcogenides[16,17],and phosphorus compounds [18,19]. Among these, Ni-based OER electrocatalysts not only are low in cost and abundant in reserves,but also exhibit good stability for the OER process in alkaline media [20]. However, the poor electronic conductivity of Ni-based OER materials makes their electrocatalytic performance far from satisfactory.

    Recently, binary metal-based catalysts with high intrinsic catalytic activity have been employed as efficient OER catalysts for water splitting, instead of single metal-based catalysts [21], due to their enhanced intrinsic catalytic properties [22]. Among the various metals that have been introduced in this area, metallic Fe has become a widely studied material by virtue of its remarkable catalytic performance, strong chemical stability, and low cost[23]. In addition, although a certain amount of progress has been made in the development of highly efficient OER catalysts operating under the conditions of real-world industrial applications(10.0 mol·L-1KOH, 80°C, and up to 500 mA·cm-2), their overall electrocatalytic efficiency remains poor and their synthetic methods are still complicated.

    Herein, we prepared a novel three-dimensional (3D) bimetallic oxyhydroxide hybrid consisting of crystalline Ni(OH)2and amorphous FeOOH grown on a Ni foam(NF)during a displacement reaction at room temperature,in which the NF was etched by Fe(NO3)3solution. Due to the synergy of the Fe and Ni catalytic sites, the NiFeOOH/NF hybrid exhibited admirable OER activity and stability in alkaline media,reaching the commercially required current densities of 500 and 1000 mA·cm-2at 1.51 and 1.55 V, respectively.Importantly, these measured potentials are among the lowest when compared with other reported Ni–Fe based electrocatalysts,as well as the benchmark Ir/C catalyst[24].The FeOOH and NiOOH phases were specifically OER-active of the NiFeOOH/NF hybrid, as discovered by in situ electrochemical Raman spectroscopy.Furthermore, the NiFeOOH/NF hybrid was found to have superior OER activity and corrosion resistance in a widely adopted electrolyte in commercial water–alkali electrolyzers—namely,10.0 mol·L-1KOH electrolyte at 80°C.

    2. Material and methods

    2.1. Catalyst preparation

    To prepare the(NiFeOOH)/NF,commercial NF was immersed in turn in 1.0 mol·L-1HCl,acetone,ethanol,and then deionized water for 10 min each in an ultrasonic machine. After these treatments,three pieces of NF were dipped into 0.2 mol·L-1of Fe(NO3)3solution with mechanical shaking for 3 min and then dehydrated at room temperature. The loading amount of NiFeOOH catalyst was approximately 10 mg·cm-2.

    2.2. Physical characterization

    The morphologies and microstructures of the samples were surveyed by field-emission scanning electron microscopy (FESEM,Supra 55, Hitachi, Japan) and transmission electron microscopy(TEM) measurements performed on a JEM-2100 electron microscope (JEM-2100, 200 kV, JEOL, Japan) with an expediting voltage of 200 kV.Raman spectra were recorded on a Raman scattering spectroscopy system(LabRAM HR Evolution,Horiba Jobin Yvon,France)with excitation by a diode laser (532 nm) in the backscattering geometry.Rigaku D/Max 2550/PC(Rigaku Corporation,Japan)was used to obtain the X-ray diffraction(XRD)patterns,and X-ray photoelectron spectroscopy(XPS,ESCALAB 250Xi,Thermo Fisher Scientific Inc.,USA)was performed using Al Kα radiation.

    2.3. Electrochemical measurements

    Electrochemical tests were performed in a three-electrode cell using 1.0 mol·L-1KOH as the electrolyte.The NiFeOOH/NF sample,a carbon rod,and an Ag/AgCl electrode acted as the working,counter,and reference electrodes,respectively.The mechanical robustness and stability were studied through multiple-current steps,multiple-potential steps, and amperometric current–time measurements. After the cyclic voltammetry (CV) cycles were stabilized, electrochemical measurements were performed. Linear sweep voltammetry (LSV) was used to acquire the OER catalytic activity with a scan rate of 5 mV·s-1. To ascertain the doublelayer capacitance (Cdl), CV scans between 0.21 and 0.31 V (vs Ag/AgCl)were conducted at 20,40,60,80,and 100 mV·s-1.The potentials versus reversible hydrogen electrode (RHE) in 1.0 mol·L-1at 25°C were calculated through the original Nernst equation:

    ERHE=EAg/AgCl+0.0591pH+0.098 V

    3. Results and discussion

    A simple immersion and shocking process was employed to synthesize the 3D NiFeOOH/NF hybrid. The 3D NF sample was introduced into the Fe(NO3)3solution, followed by mechanical shaking for 3 min. NF and Fe3+undergo a redox reaction to form the NiFeOOH/NF hybrid, which consists of crystalline Ni(OH)2and amorphous FeOOH [25]. We systematically identified the effects of different Fe(NO3)3concentrations to achieve the highest OER activity;the optimized concentration was 0.2 mol·L-1(Appendix A Fig. S1). A low-resolution FESEM image of the NiFeOOH/NF material showed that the NiFeOOH hybrid was uniformly grown on the 3D NF sample(Figs.1(a)and(b)).Moreover,elemental mapping of the NiFeOOH/NF hybrid (Fig. 1(c) and Appendix A Fig. S2)showed that the Fe, Ni, and oxygen (O) elements were homogeneously distributed over the 3D surface area. The NiFeOOH/NF exhibited interplanar spacings of 0.460 and 0.270 nm, which were ascribed to the (001) and (100) planes of Ni(OH)2in highresolution TEM (HRTEM) images (Fig. 1(d) and Appendix A Fig. S3). The corresponding selected-area electron diffraction(SAED) pattern affirmed that the Ni(OH)2in the NiFeOOH/NF hybrid was crystalline (Fig. 1(e)). The XRD pattern of the NiFeOOH/NF hybrid showed the existence of crystalline Ni(OH)2(Joint Committee on Powder Diffraction Standards (JCPDS) 14–0117) and the Ni substrate (JCPDS 70–0989) (Fig. 1(f)) [26]. No characteristic diffraction peaks of FeOOH species were observed due to its amorphous structural features and high dispersion on the surface of NF [27]. The presence of amorphous FeOOH film in the NiFeOOH/NF hybrid was further revealed by Raman spectroscopy (see below).

    Given these findings, it can be concluded that the NiFeOOH/NF hybrid was composed of Ni(OH)2with moderate crystallinity and amorphous FeOOH. The cohabiting of the O, Fe, and Ni elements was analyzed by XPS measurements (Appendix A Fig. S4). The high-revolution Fe 2p signals of the NiFeOOH/NF hybrid were located at 711.8 and 724.6 eV, which are related to the Fe 2p3/2and Fe 2p1/2states, respectively, with two satellite peaks at 717.1 and 732.2 eV (Fig. 1(g)) [14,28–30]. The high-revolution Ni 2p XPS spectrum showed the Ni 2p3/2and Ni 2p1/2peaks centered at approximately 855.9 and 873.5 eV,respectively,which were attributed to Ni2+(Fig.1(h))[31–34].The high-revolution O 1s XPS spectrum of the NiFeOOH/NF hybrid exhibited three peaks located at 529.4, 531.4, and 532.8 eV, which were assigned to the Fe–O and Fe–OH bonds in the FeOOH structure and to the H–O–H bonds in the H2O species, respectively (Fig. 1(i)) [24,35].

    The OER electrocatalytic activity of the NiFeOOH/NF hybrid was examined using a three-electrode system in 1.0 mol·L-1KOH solution. For comparison, commercial Ir/C/NF, NF, and carbon paper(CP) immersed in Fe(NO3)3solution (Fe(NO3)3/CP) were also studied (Fig. 2(a)). In contrast to the control samples, the NiFeOOH/NF hybrid exhibited an extraordinary OER activity with low potentials of 1.46, 1.51, and 1.55 V to achieve 100, 500, and 1000 mA·cm-2,respectively.It is noteworthy that the NiFeOOH/NF hybrid can supply a current density of up to 1400 mA·cm-2at a small potential of 1.57 V. This extraordinary catalytic behavior means that the NiFeOOH/NF hybrid satisfies the commercial criteria of OER electrocatalysis under basic electrolyte conditions. The NiFeOOH/NF hybrid clearly exhibited a much smaller potential of 1.51 V in comparison with Fe(NO3)3/CP (1.71 V) at 500 mA·cm-2(Fig. 2(b)). This potential of the NiFeOOH/NF hybrid is much lower than that of most reported Ni–Fe-based electrocatalysts,as well as that of commercial Ir/C/NF, which is 1.59 V at 500 mA·cm-2.

    Fig. 1. (a, b) FESEM images of NiFeOOH/NF. (c) Corresponding elemental mapping images of Ni, O, and Fe elements in NiFeOOH/NF. (d) HRTEM image of NiFeOOH/NF.(e) SAED pattern of NiFeOOH/NF. (f) XRD pattern of NiFeOOH/NF. XPS spectra of (g) Fe 2p, (h) Ni 2p, and (i) O 1s for NiFeOOH/NF. Sat: satellite peak.

    The reaction kinetic activity of the NiFeOOH/NF hybrid was further evaluated using its Tafel slope; Fig. 2(c) and Fig. S5 in Appendix A exhibit the Tafel slope of 58.4 mV·dec–1,which is lower than the 60.9 mV·dec–1Tafel slope of Ir/C/NF and the 96.3 mV·dec–1Tafel slope of Fe(NO3)3/CP. This finding implies that the NiFeOOH/NF hybrid possesses fast OER kinetics and inherent outstanding activity toward the OER process. It is notable that the matching Tafel slope and the potential of the NiFeOOH/NF hybrid are almost at the minimum at 100 mA·cm-2. In addition, the Tafel slope is low in comparison with those of previously reported Ni–Fe-based electrocatalysts (Fig. 2(d) and Appendix A Table S1).These results further demonstrate the outstanding OER performance of the NiFeOOH/NF hybrid. Fig. 2(e) presents the multistep chronopotentiometric curve acquired for the NiFeOOH/NF hybrid under alkaline conditions; with a varying current density from 200 to 1200 mA·cm-2, the voltage remains constant for the remaining 200 s.These factors confirm the exceptional mechanical robustness and excellent mass transport of the NiFeOOH/NF hybrid[36,37].

    Electrochemical durability is a key performance indicator of electrocatalysts. In cyclic voltammogram testing, the polarization curve of the NiFeOOH/NF hybrid after the 500-cycle test remained almost unchanged when compared with the initial one (Fig. 2(f)),indicating the high electrochemical stability of the NiFeOOH/NF hybrid [38]. A chronopotentiometry test over 10 h of continuous reaction further demonstrated the long-term durability of the NiFeOOH/NF hybrid. Notably, the NiFeOOH/NF hybrid also exhibited good stability under 1000 mA·cm-2at 2.0 V after chronoamperometry testing for over 10 h (Fig. 2(f) and Appendix A Fig. S6).

    To further explore the effect of sample preparation conditions on the OER performance, mechanical shocks were applied for different time intervals during the synthesis process.Electrochemical tests of the NiFeOOH/NF hybrids prepared using mechanical shocks applied with different time intervals were performed. The NiFeOOH/NF hybrid exhibited a larger current density and smaller onset potential than the hybrid samples prepared with the mechanical shocking time intervals of 0.5,1.0,and 5.0 min(Appendix A Fig. S7). Similarly, the NiFeOOH/NF (3 min) hybrid exhibited the greatest electrochemical double-layer capacitance(Cdl)value of 14.61 mF·cm-2in comparison with the other control NiFeOOH/NF(0.5, 1.0, and 5.0 min) hybrid samples. These results suggest that the NiFeOOH/NF hybrid featured the most highly exposed active surface areas among all the studied samples (Fig. 3(a) and Appendix A Fig. S8) [39]. Furthermore, electrochemical impedance spectroscopy (EIS) of the NiFeOOH/NF hybrid revealed the minimum charge transfer resistance and the fastest electron-transfer ability among all the studied NiFeOOH/NF hybrid samples (Fig. 3(b)). In the inset of Fig. 3(b), where the Rsis the solution resistance,constant-phase element (CPE1) is related to the double-layer capacitance and Rctis charge-transfer resistance. Importantly, this simple immersion and shocking method were further developed to synthesize a sequence of Co(NO3)2/NF,Cu(NO3)2/NF,Mg(NO3)2/NF,Ni(NO3)2/NF, and Zn(NO3)2/NF compounds. To further identify the effect of the possible synergy between the different metals on OER efficiency, a battery of electrochemical tests was performed. The results showed that the NiFeOOH/NF hybrid possessed the best OER performance(Fig.3(c)and Appendix A Fig.S9).In other words,the introduction of the Fe species plays a crucial role in boosting the OER performance, due to the synergistic effect of the Ni and Fe catalytic sites.

    Fig. 2. (a) OER LSV curves of Fe(NO3)3/CP, NiFeOOH/NF, Ir/C/NF, and NF. (b) Required potentials to achieve 100, 500, and 1000 mA·cm-2 for NiFeOOH/NF, Ir/C/NF, and Fe(NO3)3/CP, respectively. (c) Tafel plots for OER over NiFeOOH/NF, Ir/C/NF, and Fe(NO3)3/CP. (d) Tafel slopes and potentials required for a 100 mA·cm-2 comparison of NiFeOOH/NF and other Ni-based OER electrocatalysts (LDH: layered double hydroxide; CN–G: N-doped graphitic carbon). (e) Multicurrent process curve of NiFeOOH/NF.(f) OER LSV curves and durability test after 500 cycles for NiFeOOH/NF (inset: chronopotentiometric curve for NiFeOOH/NF in 1.0 mol·L-1 KOH at a current density of 1000 mA·cm-2 (without iR correction)).

    Fig. 3. (a, b) Electrochemical active surface areas (ECSAs) and Nyquist plots of NiFeOOH/NF against the shock time. (c) Polarization curves of Co(NO3)2/NF, Cu(NO3)2/NF,NiFeOOH/NF,Mg(NO3)2/NF,Ni(NO3)2/NF,Zn(NO3)2/NF,and NF.(d)Operando Raman spectra of NiFeOOH/NF with different applied potentials.(e)Raman spectra of NiFeOOH/NF before and after OER tests. (f) High-resolution Ni 2p XPS spectra of NiFeOOH/NF before and after the OER test.

    In order to evaluate any changes in the composition and structure of the NiFeOOH/NF hybrid throughout the OER operation,in situ electrochemical Raman spectroscopy was performed(Fig. 3(d)). At a voltage of 1.1 V, the Raman spectrum presented three main peaks at 422, 520, and 714 cm-1belonging to the FeOOH species. This finding suggests that the active sites were amorphous FeOOH during the initial OER process [2]. As the voltage increased, the peaks of the FeOOH species gradually weakened. When the voltage was increased to 1.5 V, the peaks of the Ni(OH)2species gradually appeared at 450 and 500 cm-1[25].With further gradual increase of the voltage, two main peaks at 479 and 560 cm-1were observed, which were attributed to the typical peaks of NiOOH species. Furthermore, the Ni(OH)2structure was transformed into the compound NiOOH species at a potential of greater than 1.7 V. The Raman spectra of FeOOH and NiOOH before and after the OER process were also compared,and the results were in accord with the in situ Raman observations (Fig. 3(e)). Therefore, it can be concluded that the amorphous FeOOH and NiOOH phases in the NiFeOOH/NF hybrid are the actual catalytically active phases, which facilitate the high OER efficiency [40].

    To further comprehend the conversion behavior of the NiFeOOH/NF hybrid during the OER operation,the XPS proportions of the NiFeOOH/NF hybrid before and after the OER processes were determined. Compared with the XPS spectra before the OER process (Fig. 3(f)), the high-revolution Ni 2p spectra of the NiFeOOH/NF hybrid after the OER process showed three peaks located at 851.9, 855.2, and 872.8 eV, which were attributed to Ni0, Ni2+2p3/2,and Ni2+2p1/2, respectively [41]. Moreover, the two satellite peaks situated at 856.5 and 874.7 eV were ascribed to Ni3+2p3/2and Ni3+2p1/2,respectively[31].These results reveal that transformation of the oxidation states from Ni2+to Ni3+occurred during the OER process; they also confirm that the NiOOH species act as catalytically active centers for the OER.

    Along with the high catalytic activity and good stability of the NiFeOOH/NF hybrid,an industry-relevant electrolyte in an operating environment of 10.0 mol·L-1KOH at 80°C is needed by the OER electrode.As shown in Fig.4(a),the NiFeOOH/NF hybrid presented ultrahigh current densities of 100,500,and 1000 mA·cm-2at 1.47,1.51, and 1.53 V, respectively. Moreover, the NiFeOOH/NF hybrid delivered a current density of up to 3000 mA·cm-2at a low potential of 1.58 V. The NiFeOOH/NF hybrid also exhibited durable stability with a small potential of 1.61 V to achieve 500 mA·cm-2in 10.0 mol·L-1KOH at 80°C after chronoamperometry testing for over 10 h (Fig. 4(b)). Thus, the NiFeOOH/NF hybrid satisfies the commercial criteria for OER electrocatalysis under harsh industrial conditions.As shown in Fig.4(c),the NiFeOOH/NF hybrid required the much smaller potentials of 1.51 and 1.53 V to achieve 500 and 1000 mA·cm-2in 10.0 mol·L-1KOH at 80°C, compared with 1.65 and 1.70 V for Fe(NO3)3/CP,and 1.73 and 1.80 V for NF,respectively[27].This simple method was further applied to commercial stainless steel (Figs. 4(d) and (e)) [42]. The Fe(NO3)3/SUS 304 delivered enhanced electrocatalytic activities as compared with SUS 304,which could be attributed to the displacement reaction of a small amount of Ni species contained in stainless steel with Fe3+in the Fe(NO3)3solution. These results demonstrate that the immersion of SUS 304 into Fe(NO3)3solution improved the electrocatalytic activity and corrosion resistance of SUS 304 toward the OER process in a basic electrolyte.

    Fig. 4. (a) OER LSV curves of NiFeOOH/NF, Fe(NO3)3/CP, and NF in 10.0 mol·L-1 KOH at 80°C. (b) Chronopotentiometric curve for NiFeOOH/NF at 500 mA·cm-2 (without iR correction);inset:image of the O2 gas evolution on NiFeOOH/NF.(c)Comparison of the potentials required at 500 and 1000 mA·cm-2 for NiFeOOH/NF,Fe(NO3)3/CP,and NF in 10.0 mol·L-1 KOH at 80°C.(d)OER LSV curves of Fe(NO3)3/SUS 304 and SUS 304 in 10.0 mol·L-1 KOH at 80°C.(e)Chronopotentiometric curves for SUS 304 and Fe(NO3)3/SUS 304 at 500 mA·cm-2 (without iR correction), in 10.0 mol·L-1 KOH at 80°C.

    4. Conclusions

    In conclusion, a novel 3D NiFeOOH/NF hybrid electrocatalyst composed of crystalline Ni(OH)2and amorphous FeOOH was prepared by means of a simple displacement reaction. The NiFeOOH/NF hybrid showed a strong OER performance,which was evidenced by achieving 500 and 1000 mA·cm-2at 1.51 and 1.55 V, respectively, under alkaline conditions. These indicators are superior not only to most reported Ni–Fe-based OER electrocatalysts, but also to the commercial Ir/C catalyst. The achieved OER performance can largely be ascribed to the synergy of the Fe and Ni species.Throughout OER operation,the FeOOH and NiOOH species act as active phases in the NiFeOOH/NF hybrid, as shown by in situ electrochemical Raman spectroscopy. In addition, the NiFeOOH/NF hybrid exhibited excellent OER performance under widely adopted harsh electrolyte conditions that are typical for commercial water–alkali electrolyzers. The developed NiFeOOH/NF hybrid introduced here may open an avenue for synthesizing bimetallic oxyhydroxide toward practical applications for clean hydrogen production, along with electrochemical exploration such as CO2reduction and O2reduction reactions.

    Acknowledgements

    Y.Hou expresses appreciation for the assistance of the National Natural Science Foundation of China (21922811, 21878270, and 21961160742),the Zhejiang Provincial Natural Science Foundation of China (LR19B060002), the Fundamental Research Funds for the Central Universities (2020XZZX002-09), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2019R01006), the Startup Foundation for Hundred-Talent Program of Zhejiang University. K. Ostrikov acknowledges partial assistance from the Australian Research Council.

    Compliance with ethics guidelines

    Jiaxin Yuan, Xiaodi Cheng, Chaojun Lei, Bin Yang, Zhongjian Li,Kun Luo, K.H. Koko Lam, Lecheng Lei, Yang Hou, and Kostya Ken Ostrikov declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2020.01.018.

    中文乱码字字幕精品一区二区三区 | av播播在线观看一区| 亚洲18禁久久av| 能在线免费看毛片的网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲性久久影院| 欧美又色又爽又黄视频| 99九九线精品视频在线观看视频| 超碰97精品在线观看| 赤兔流量卡办理| 欧美精品一区二区大全| 亚洲国产欧美人成| 久久久久性生活片| 国产探花极品一区二区| 日韩中字成人| 精品久久久久久久末码| 真实男女啪啪啪动态图| 永久免费av网站大全| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 亚洲人成网站高清观看| ponron亚洲| 久久人人爽人人爽人人片va| 最近2019中文字幕mv第一页| 久久久久久久久中文| 天天躁夜夜躁狠狠久久av| 搡老妇女老女人老熟妇| 久久久久性生活片| 色5月婷婷丁香| 日本五十路高清| or卡值多少钱| 成年免费大片在线观看| 特大巨黑吊av在线直播| 国产男人的电影天堂91| 在线a可以看的网站| 三级毛片av免费| 亚洲精品乱久久久久久| 日本色播在线视频| 日韩 亚洲 欧美在线| 少妇的逼好多水| 中文字幕av成人在线电影| 色5月婷婷丁香| 精品久久久久久成人av| 日韩强制内射视频| 亚洲成人精品中文字幕电影| 国产成人午夜福利电影在线观看| 精品人妻一区二区三区麻豆| 2021少妇久久久久久久久久久| 国产精品熟女久久久久浪| 99热这里只有是精品在线观看| 99久国产av精品国产电影| 国产亚洲最大av| 26uuu在线亚洲综合色| a级一级毛片免费在线观看| 欧美xxxx性猛交bbbb| 日本av手机在线免费观看| 午夜a级毛片| 天天躁夜夜躁狠狠久久av| 两性午夜刺激爽爽歪歪视频在线观看| 九九爱精品视频在线观看| 久久国内精品自在自线图片| 国产高清国产精品国产三级 | 国产精品女同一区二区软件| 婷婷六月久久综合丁香| 欧美精品一区二区大全| 少妇熟女aⅴ在线视频| 又黄又爽又刺激的免费视频.| 久久人人爽人人片av| 精品免费久久久久久久清纯| 日日撸夜夜添| 日韩av在线免费看完整版不卡| 国产毛片a区久久久久| 亚洲在线自拍视频| 国产视频内射| 日本一二三区视频观看| 深爱激情五月婷婷| 亚洲av.av天堂| 国产av在哪里看| 插逼视频在线观看| 一个人看视频在线观看www免费| 日韩欧美国产在线观看| 日韩一区二区三区影片| 能在线免费看毛片的网站| 久久久精品欧美日韩精品| 精品久久久久久电影网 | 日韩高清综合在线| 国产精品精品国产色婷婷| 国产精品一及| 亚洲真实伦在线观看| 国产精品久久久久久久电影| 国产成人freesex在线| 成人综合一区亚洲| 亚洲av电影不卡..在线观看| 成人av在线播放网站| 女人十人毛片免费观看3o分钟| 变态另类丝袜制服| 亚洲美女视频黄频| 日本五十路高清| 免费观看在线日韩| 久久久久免费精品人妻一区二区| 真实男女啪啪啪动态图| 一级av片app| 乱系列少妇在线播放| 18禁裸乳无遮挡免费网站照片| 日日干狠狠操夜夜爽| 九色成人免费人妻av| 精品久久久久久电影网 | 午夜激情欧美在线| 春色校园在线视频观看| 69人妻影院| 男女国产视频网站| 97超视频在线观看视频| 午夜a级毛片| 亚洲欧美日韩无卡精品| ponron亚洲| 日本免费在线观看一区| 黄色一级大片看看| 91精品一卡2卡3卡4卡| 午夜精品一区二区三区免费看| 国产精品久久电影中文字幕| 2021少妇久久久久久久久久久| 变态另类丝袜制服| 国产精品国产三级国产av玫瑰| 婷婷色综合大香蕉| 村上凉子中文字幕在线| 日韩一本色道免费dvd| 三级国产精品欧美在线观看| av福利片在线观看| 日本熟妇午夜| 亚洲欧美成人精品一区二区| 啦啦啦观看免费观看视频高清| 乱码一卡2卡4卡精品| 欧美极品一区二区三区四区| 国产乱来视频区| 人妻少妇偷人精品九色| 亚洲综合精品二区| 少妇猛男粗大的猛烈进出视频 | 国产高清三级在线| 欧美另类亚洲清纯唯美| 51国产日韩欧美| 春色校园在线视频观看| 一边摸一边抽搐一进一小说| 一级二级三级毛片免费看| 99热网站在线观看| 日韩中字成人| 久久国产乱子免费精品| 2022亚洲国产成人精品| 又粗又爽又猛毛片免费看| 亚洲中文字幕一区二区三区有码在线看| 老司机影院毛片| 黄色日韩在线| 亚洲成色77777| www.av在线官网国产| 国产伦在线观看视频一区| 中文字幕av在线有码专区| 大又大粗又爽又黄少妇毛片口| 一级爰片在线观看| 国产成人a区在线观看| 十八禁国产超污无遮挡网站| 别揉我奶头 嗯啊视频| 国产91av在线免费观看| 欧美极品一区二区三区四区| 亚洲欧美精品综合久久99| 久久精品国产99精品国产亚洲性色| 国产精品国产三级国产专区5o | 国产av码专区亚洲av| 熟女电影av网| 免费观看在线日韩| 国产一区二区三区av在线| 少妇丰满av| 又粗又硬又长又爽又黄的视频| 少妇裸体淫交视频免费看高清| 成人性生交大片免费视频hd| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久成人av| 老司机福利观看| 精品人妻一区二区三区麻豆| 高清在线视频一区二区三区 | 少妇熟女aⅴ在线视频| www.av在线官网国产| 99久久九九国产精品国产免费| 久久鲁丝午夜福利片| 国语自产精品视频在线第100页| 免费av不卡在线播放| 在线观看66精品国产| 亚洲中文字幕日韩| av在线蜜桃| 精品一区二区三区人妻视频| 精品一区二区三区人妻视频| 午夜福利网站1000一区二区三区| 国产精品一区二区性色av| 午夜福利高清视频| 亚洲精品久久久久久婷婷小说 | 成年女人永久免费观看视频| 狂野欧美激情性xxxx在线观看| 丰满乱子伦码专区| 变态另类丝袜制服| 噜噜噜噜噜久久久久久91| 欧美性猛交╳xxx乱大交人| 久久久精品94久久精品| 高清av免费在线| 变态另类丝袜制服| 狂野欧美激情性xxxx在线观看| 久久久精品94久久精品| 舔av片在线| 一区二区三区免费毛片| 我的女老师完整版在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品熟女久久久久浪| 好男人在线观看高清免费视频| 成人性生交大片免费视频hd| 麻豆精品久久久久久蜜桃| 韩国高清视频一区二区三区| 欧美一区二区亚洲| 精品久久久久久久久亚洲| 国产 一区精品| 久久精品夜夜夜夜夜久久蜜豆| av免费观看日本| 亚洲怡红院男人天堂| 丰满人妻一区二区三区视频av| 日韩欧美三级三区| 久久精品综合一区二区三区| 视频中文字幕在线观看| 久久精品久久精品一区二区三区| 午夜福利在线观看吧| 国产片特级美女逼逼视频| 国产乱来视频区| 国产精品久久电影中文字幕| 最近最新中文字幕大全电影3| 成人综合一区亚洲| 亚洲无线观看免费| 国产精品1区2区在线观看.| 欧美三级亚洲精品| 中文字幕av成人在线电影| 日本色播在线视频| 国产成人91sexporn| 又粗又硬又长又爽又黄的视频| 成人午夜高清在线视频| 美女cb高潮喷水在线观看| 国产久久久一区二区三区| videos熟女内射| 特级一级黄色大片| 嫩草影院入口| 国产一区亚洲一区在线观看| 欧美性猛交黑人性爽| av视频在线观看入口| 日本欧美国产在线视频| 精品无人区乱码1区二区| 亚洲av电影不卡..在线观看| 亚洲人成网站高清观看| 日韩欧美在线乱码| 亚洲av二区三区四区| av在线蜜桃| 亚洲自拍偷在线| 亚洲av男天堂| 久久精品影院6| 欧美性猛交╳xxx乱大交人| 精品久久久久久久末码| 精品一区二区三区视频在线| 国产精品伦人一区二区| 日韩欧美在线乱码| 免费观看a级毛片全部| 有码 亚洲区| 97热精品久久久久久| 久久久久性生活片| 亚洲在线观看片| 国语自产精品视频在线第100页| 国产乱人视频| 国产不卡一卡二| 国产精品日韩av在线免费观看| 亚洲高清免费不卡视频| 国产69精品久久久久777片| 看黄色毛片网站| 男女啪啪激烈高潮av片| av免费观看日本| 男女边吃奶边做爰视频| 久99久视频精品免费| 成人美女网站在线观看视频| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 天美传媒精品一区二区| 久久久色成人| 午夜精品国产一区二区电影 | 亚洲欧美日韩东京热| 亚洲av日韩在线播放| 国产一区二区在线观看日韩| 国产男人的电影天堂91| 国产黄色小视频在线观看| 亚洲欧美清纯卡通| 嘟嘟电影网在线观看| 99热精品在线国产| 国产精品.久久久| 波多野结衣高清无吗| 99久久中文字幕三级久久日本| 综合色丁香网| 在线免费十八禁| 亚洲国产精品成人久久小说| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 成人av在线播放网站| 欧美成人午夜免费资源| 免费av观看视频| 亚洲欧美精品自产自拍| 少妇丰满av| 青春草亚洲视频在线观看| 亚洲欧美清纯卡通| 午夜福利成人在线免费观看| 永久网站在线| 亚洲欧美精品专区久久| 亚洲18禁久久av| 日韩av在线大香蕉| 免费黄色在线免费观看| 日日摸夜夜添夜夜添av毛片| 热99在线观看视频| 九九热线精品视视频播放| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 搡女人真爽免费视频火全软件| 毛片女人毛片| 又爽又黄a免费视频| 国语自产精品视频在线第100页| 成人三级黄色视频| 91久久精品国产一区二区三区| 国产真实乱freesex| 日韩欧美在线乱码| 精品国产一区二区三区久久久樱花 | 97人妻精品一区二区三区麻豆| 变态另类丝袜制服| 天天躁日日操中文字幕| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 久久久久国产网址| 又粗又爽又猛毛片免费看| 草草在线视频免费看| or卡值多少钱| av国产久精品久网站免费入址| 99热这里只有是精品在线观看| 丝袜喷水一区| 日韩国内少妇激情av| 日本黄大片高清| 最新中文字幕久久久久| 听说在线观看完整版免费高清| 国产精品美女特级片免费视频播放器| 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产成人91sexporn| 2021少妇久久久久久久久久久| 男人狂女人下面高潮的视频| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 成人特级av手机在线观看| 久久99热6这里只有精品| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 97在线视频观看| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 99热网站在线观看| 97热精品久久久久久| 高清毛片免费看| 国内精品一区二区在线观看| 97人妻精品一区二区三区麻豆| 一夜夜www| 成人亚洲精品av一区二区| 女人久久www免费人成看片 | 亚洲在线观看片| 草草在线视频免费看| 男人狂女人下面高潮的视频| 久久久亚洲精品成人影院| 欧美激情在线99| av在线亚洲专区| 久久久久久久久久黄片| 韩国高清视频一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 床上黄色一级片| 精品久久久久久成人av| 国产伦在线观看视频一区| 日本色播在线视频| 国产精品女同一区二区软件| 成年av动漫网址| av播播在线观看一区| 中文乱码字字幕精品一区二区三区 | 18禁裸乳无遮挡免费网站照片| 午夜精品一区二区三区免费看| 看非洲黑人一级黄片| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 日本爱情动作片www.在线观看| 国产又黄又爽又无遮挡在线| av福利片在线观看| 国产精品一及| 亚洲国产最新在线播放| 国产 一区 欧美 日韩| 22中文网久久字幕| 国产精品日韩av在线免费观看| 最近的中文字幕免费完整| 亚洲欧美日韩东京热| 五月玫瑰六月丁香| 青春草国产在线视频| 三级经典国产精品| 我要看日韩黄色一级片| 午夜久久久久精精品| 高清午夜精品一区二区三区| 免费电影在线观看免费观看| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 一夜夜www| 十八禁国产超污无遮挡网站| 最近中文字幕2019免费版| 校园人妻丝袜中文字幕| 黄色欧美视频在线观看| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 99久久精品国产国产毛片| 国产精品国产高清国产av| 亚洲av电影在线观看一区二区三区 | 国产精品无大码| 久久久久网色| 亚洲av中文字字幕乱码综合| 亚洲国产精品专区欧美| 99久国产av精品| 永久网站在线| 日韩高清综合在线| 色综合色国产| 中文精品一卡2卡3卡4更新| 三级毛片av免费| 大香蕉久久网| 国产亚洲午夜精品一区二区久久 | 在线免费观看的www视频| 国产真实乱freesex| 日本黄色视频三级网站网址| 变态另类丝袜制服| av线在线观看网站| 午夜a级毛片| 嘟嘟电影网在线观看| 日本午夜av视频| 亚洲国产精品成人久久小说| 亚洲色图av天堂| 在线观看美女被高潮喷水网站| 男女那种视频在线观看| 日本五十路高清| 欧美色视频一区免费| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 国产精品一二三区在线看| 亚洲中文字幕一区二区三区有码在线看| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 男女下面进入的视频免费午夜| 麻豆av噜噜一区二区三区| 久久久亚洲精品成人影院| 少妇裸体淫交视频免费看高清| 亚洲国产精品久久男人天堂| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区| 日韩一本色道免费dvd| 麻豆av噜噜一区二区三区| 亚洲成av人片在线播放无| 国产亚洲91精品色在线| 十八禁国产超污无遮挡网站| 七月丁香在线播放| 最近最新中文字幕大全电影3| 亚洲av.av天堂| 国产在视频线在精品| 91av网一区二区| 色视频www国产| 中文字幕av成人在线电影| 老司机影院成人| 国产精品久久久久久久电影| 插阴视频在线观看视频| 亚洲电影在线观看av| 一区二区三区免费毛片| 免费无遮挡裸体视频| 我要搜黄色片| 亚洲无线观看免费| 日本免费a在线| 国产免费男女视频| 日本av手机在线免费观看| 国产精品99久久久久久久久| 久久久精品欧美日韩精品| 免费观看精品视频网站| 日韩三级伦理在线观看| av在线老鸭窝| 在线免费观看的www视频| 直男gayav资源| 美女国产视频在线观看| 国产av一区在线观看免费| 成人国产麻豆网| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 99国产精品一区二区蜜桃av| 欧美高清成人免费视频www| 国产成人福利小说| 日韩一区二区视频免费看| 国产私拍福利视频在线观看| 国产淫片久久久久久久久| .国产精品久久| 久久6这里有精品| 波多野结衣巨乳人妻| 国产男人的电影天堂91| 久久久久久久亚洲中文字幕| 国产一区二区三区av在线| 99久国产av精品国产电影| 在线观看66精品国产| 久久综合国产亚洲精品| 久久精品熟女亚洲av麻豆精品 | 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 久久精品影院6| 最近的中文字幕免费完整| 国产精品1区2区在线观看.| 天美传媒精品一区二区| 欧美潮喷喷水| 日本wwww免费看| 国产精品伦人一区二区| 日本黄色视频三级网站网址| 激情 狠狠 欧美| 亚洲人成网站在线播| 午夜日本视频在线| 简卡轻食公司| 精品少妇黑人巨大在线播放 | 婷婷色av中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久大av| av国产久精品久网站免费入址| 国产高清三级在线| 寂寞人妻少妇视频99o| 久久久久久国产a免费观看| 亚洲在线自拍视频| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o | 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 国产真实乱freesex| 中文字幕av成人在线电影| 免费黄色在线免费观看| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 麻豆久久精品国产亚洲av| 性色avwww在线观看| 精品不卡国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 成人亚洲欧美一区二区av| 在现免费观看毛片| 国产精品综合久久久久久久免费| 国产精品一区www在线观看| 久久久亚洲精品成人影院| 日韩高清综合在线| 女人久久www免费人成看片 | 国产伦一二天堂av在线观看| 深爱激情五月婷婷| 久久精品国产亚洲av涩爱| 舔av片在线| 中文字幕久久专区| 亚洲美女视频黄频| 中文字幕制服av| 91aial.com中文字幕在线观看| 国产视频内射| 日韩av在线免费看完整版不卡| 精品一区二区三区视频在线| 纵有疾风起免费观看全集完整版 | 日韩人妻高清精品专区| 成人特级av手机在线观看| 国产精品电影一区二区三区| 亚洲自偷自拍三级| 老师上课跳d突然被开到最大视频| 色综合亚洲欧美另类图片| 黑人高潮一二区| 精品99又大又爽又粗少妇毛片| 成人三级黄色视频| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 少妇的逼水好多| 国产成人福利小说| 亚洲图色成人| 国产av在哪里看| 国产精品嫩草影院av在线观看| 国产高清不卡午夜福利| 欧美xxxx黑人xx丫x性爽| 99视频精品全部免费 在线| 亚洲五月天丁香| 国产精品1区2区在线观看.| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 我要搜黄色片| www.av在线官网国产| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 国产高清国产精品国产三级 | 久久久久国产网址| 国产高清有码在线观看视频| 欧美日韩国产亚洲二区| 欧美zozozo另类| 日本免费在线观看一区| 国产视频内射| 免费播放大片免费观看视频在线观看 | 在线播放国产精品三级| 精品久久国产蜜桃| 91狼人影院| 亚洲高清免费不卡视频| av.在线天堂| 欧美xxxx性猛交bbbb| eeuss影院久久| 欧美成人免费av一区二区三区| 欧美bdsm另类| 乱码一卡2卡4卡精品| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 九色成人免费人妻av|