• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A unified theory of confidence intervals for high-dimensional precision matrix*

    2021-03-18 07:25:10WANGYueLIYangZHENGZemin

    WANG Yue, LI Yang, ZHENG Zemin

    (School of Management, University of Science and Technology of China, Hefei 230026, China)

    Abstract Precision matrix inference is of fundamental importance nowadays in high-dimensional data analysis for measuring conditional dependence. Despite the fast growing literature, developing approaches to make simultaneous inference for precision matrix with low computational cost is still in urgent need. In this paper, we apply bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional precision matrix based on the recent de-biased nodewise Lasso estimator, which does not require the irrepresentability condition and is easy to implement with low computational cost. Furthermore, we summary a unified framework to perform simultaneous confidence intervals for high-dimensional precision matrix under the sub-Gaussian case. We show that as long as some precision matrix estimation effects are satisfied, our procedure can focus on different precision matrix estimation methods which owns great flexibility. Besides, distinct from earlier Bonferroni-Holm procedure, this bootstrap method is asymptotically nonconservative. Both numerical results confirm the theoretical results and computational advantage of our method.

    Keywords precision matrix; high dimensionality; bootstrap-assisted; confidence intervals; simultaneous inference; de-biased

    Nowadays, high-dimensional data which are referred to as smallnlargepdata, develop extremely rapidly. Graphical models have been extensively used as a solid tool to measure conditional dependence structure between different variables, ranging from genetics, proteins and brain networks to social networks, online marketing and portfolio optimization. It is well known that the edges of Gaussian graphical model (GGM) are encoded by the corresponding entries of the precision matrix[1]. While most of the existing work concentrates on the estimation and individual inference of precision matrix, simultaneous inference methods are generally reckoned to be more useful in practical applications because of the valid reliability assurance. Therefore, it is in urgent need to develop approaches to make inference for groups of entries of the precision matrix.

    Making individual inference for the precision matrix has been widely studied in the literature. Ref.[2] first advocated multiple testing for conditional dependence in GGM with false discovery rates control. It’s a pity that this method can not be applied to construct confidence intervals directly. To address this issue, based on the so-called de-biased or de-sparsified procedure, Refs.[3-4]designed to remove the bias term of the initial Lasso-type penalized estimators and achieved asymptotically normal distribution for each entry of the precision matrix. Difference lies in that Ref.[3] adopted graphical Lasso as initial Lasso-type penalized estimator but Ref.[4] focused on nodewise Lasso. They both followed the way of Refs.[5-8]which proposed de-biased steps for inference in high-dimensional linear models.

    While most recent studies have focused on the individual inference in high-dimensional regime, the simultaneous inference remains largely unexplored. Refs.[9-11]creatively proposed multiplier bootstrap method. Based on the individual confidence interval, Ref.[12] proposed simultaneous confidence intervals via applying bootstrap scheme to high-dimensional linear models. Distinct from earlier Bonferroni-Holm procedure, this bootstrap method is asymptotically nonconservative because it considers the correlation among the test statistics. More recently, Ref.[13] considered combinatorial inference aiming at testing the global structure of the graph at the cost of heavy computation and only limited to the Gaussian case.

    Motivated by these concerns, we develop a bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional precision matrix, based on the de-biased nodewise Lasso estimator. Moreover, we summary a unified framework to perform simultaneous inference for high-dimensional precision matrix. Our method imitates Ref.[12] but generalizes bootstrap-assisted scheme to graphical models and we conclude general theory that our method is applicative as long as precision matrix estimation satisfies some common conditions. The major contributions of this paper are threefold. First of all, we develop a bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional precision matrix, which is adaptive to the dimension of the concerned component and considers the dependence within the de-biased nodewise Lasso estimators while Bonferroni-Holm procedure cannot attain. Second, our method is easy to implement and enjoy nice computational efficiency without loss of accuracy. Last, we provide theoretical guarantees for constructing simultaneous confidence intervals of the precision matrix under a unified framework. We prove that our simultaneous testing procedure asymptotically achieves the preassigned significance level even when the model is sub Gaussian and the dimension is exponentially larger than sample size.

    1 Methodology

    1.1 Model setting

    Under the graphical model framework, denote byXann×prandom design matrix withpcovariates. Assume thatXhas independent sub-Gaussian rowsX(i), that is, there exists constantKsuch that

    (1)

    1.2 De-biased nodewise Lasso

    Characterizing the distribution of Lasso-type estimator for precision matrix is difficult because Lasso-type estimator is biased due to thel1penalization. To address this problem, Refs.[3-4]adopted de-biasing idea which is to start with graphical Lasso or nodewise Lasso estimator and then remove its bias. This results in de-biased estimator generally taking the form

    Then we have the following estimation error decomposition

    Further we let

    1.3 Simultaneous confidence intervals

    (2)

    (3)

    c1-α,E=inf{t∈:e(WE≤t)≤1-α)},

    (4)

    Remark1.1Bonferroni-Holm adjustment states that if an experimenter is testingphypotheses on a set of data, then the statistical significance level for each independent hypothesis separately is 1/ptimes what it would be if only one hypothesis were tested. However, the bootstrap uses the quantile of the multiplier bootstrap statistic to asymptotically estimate the quantile of the target statistic and takes dependence among the test statistics into account. Thus the original method with Bonferroni-Holm is on the conservative side, while the bootstrap is closer to the preassigned significance level.

    1.4 A unified theory for confidence intervals

    Define the parameter set

    λmax(Θ)≤L,

    2 Theoretical properties

    Before giving the theoretical properties, we list two technical conditions.

    Φ(z)|=0,

    Based on the asymptotic normality properties established in Proposition 2.1, we have the following simultaneous confidence intervals for multiple entriesΘjk.

    Theorem 2.1Assume that conditions (A1)-(A2) hold. Then for anyE?[p]×[p], we have

    (1-α)|=0,

    Next, we extend the above theory to more general case and conclude the unified theory for precision matrix inference.

    Theorem 2.2Assume that eventHholds. Then we have

    for anyE?[p]×[p], whereΘEdenotes the entries ofΘwith indices inE.

    Next, we extend the above theory to more general case and conclude the unified theory for precision matrix inference.

    Theorem 2.3Assume that eventHholds. Then we have

    (A)(Individual inference)

    Φ(z)|=0,

    (B)(Simultaneous inference)

    (1-α)|=0,

    for anyE?[p]×[p], whereΘEdenotes the entries ofΘwith indices inE.

    Theorem 2.3 presents general conclusions for both individual and simultaneous confidence intervals. That is, our inferential procedures work for any estimation methods for precision matrix as long as the estimation effect satisfies eventH.

    3 Numerical studies

    In this section, we investigate the finite sample performance of the methods proposed in Section 3 and provide a comparison to simultaneous confidence interval for de-biased graphical Lasso, denoted by S-NL and S-GL, respectively. We now present two numerical examples and evaluate the methods by estimated average coverage probabilities (avgcov) and average confidence interval lengths (avglen) over two cases: support setSand its complementSc. For convenience, we only consider Gaussian setting. The implementation for de-biased nodewise Lasso and de-biased graphical Lasso are suggested by Ref.[4]. Throughout the simulation, the level of significance is set atα=0.05 and the coverage probabilities and interval lengths calculated by averaging over 100 simulation runs and 500 Monte Carlo replications. For extra comparison, we also record individual confidence intervals for de-biased nodewise Lasso and de-biased graphical Lasso, denoted by I-NL and I-GL, respectively.

    3.1 Numerical example 1: band structure

    We start with a numerical example which has the similar setting as that in Ref.[3]. We consider the precision matrixΘwith the band structure, whereΘjj=1,Θj,j+1=Θj+1,j=ρforj=1,2,…,p-1, andzero otherwise. We sample the rows of then×pdata matrixXas i.i.d.copies from the multivariate Gaussian distributionN(0,Σ) whereΣ=Θ-1. We fix the sample sizen=100 and consider a range of dimensionalityp=300,500 and link strengthρ=0.2,0.3,0.4,0.5, respectively. The results are summarized in Table 1.

    In terms of avgcov and avglen, it is clear that our proposed S-NL method outperforms other alternative methods with higher avgcov and shorter avglen in most settings. Although the avglen overScmay be a little longer in some cases, it is amazing that the coverage probabilities inSapproach the nominal coverage 95%. On the other hand, the advantage becomes more evident aspandρincrease. Compared with individual confidence intervals, simultaneous confidence intervals have longer lengths and lower coverage probabilities. This is reasonable because multiplicity adjustment damages partial accuracy which is inevitable.

    Table 1 Averaged coverage probabilities and lengths over the support set S and its complement Sc in Section 3.1

    3.2 Numerical example 2: nonband structure

    For the second numerical example, we use the same setup as simulation example 1 in Ref.[16] to test the performance of S-NL in more general cases. We generate the precision matrix in two steps. First, we create a band matrixΘ0the same as that in Section 3.1. Second, we randomly permute the rows and columns ofΘ0to obtain the precision matrixΘ. The final precision matrixΘno longer has the band structure. Then we sample the rows of then×pdata matrixXas i.i.d. copies from the multivariate Gaussian distributionN(0,Σ) whereΣ=Θ-1. Throughout this simulation, we fix the sample sizen=200, dimensionalityp=1 000 and consider a range ofρ=0.2,0.3,0.4,0.5.

    Simulation results summarized in Table 2 also illustrate that our method can achieve the preassigned significance level asymptotically and behaves better than others in most cases. Moreover, we can see our method is very robust especially in largeρ.

    4 Discussions

    In this paper, we apply bootstrap-assisted procedure to make valid simultaneous inference for high-dimensional precision matrix based on the recent de-biased nodewise Lasso estimator. In addition, we summary a unified framework to perform simultaneous confidence intervals for high-dimensional precision matrix under the sub-Gaussian case. As long as some estimation effects are satisfied, our procedure can focus on different precision matrix estimation methods which owns great flexibility. Further, this method can be expended to more general settings, such as functional graphical model where the samples are consisted of functional data. We leave this problem for further investigations.

    Table 2 Averaged coverage probabilities and lengths over the support set S and its complement Sc in Section 3.2

    ≤4,

    A.2 Proof of Theorem 2.1

    Without loss of generality, we setE=[p]×[p]. For any (j,k)∈E, define

    (1-α)|=0,

    which conclude the proof.

    A.3 Proof of Theorem 2.3

    To enhance the readability, we split the proof into three steps by providing the bound on bias term, establishing asymptotic normality and verifying the variance consistency.

    Step 1

    ∶=Z+Δ1+Δ2.

    Step 2The proof is the direct conclusion of Theorem 1 of Ref.[4].

    Step 3The proof is the direct conclusion of Lemma 2 of Ref.[4].

    The subsequent proof is similar to Theorem 2.1, thus we omit the details.

    A.4 Lemmas and their proofs

    The following lemmas will be used in the proof of the main theorem.

    Lemma A.1Assume that conditions (A1)-(A4) hold. Then for anyE?[p]×[p] we have

    where {Yijk}(j,k)∈Eare Gaussian analogs of {Zijk}(j,k)∈Ein the sense of sharing the same mean and covariance fori=1,2,…,n.

    ProofThe proof is based upon verifying conditions from Corollary 2.1 of Ref.[9]. To be concrete, we require to prove the following condition (E.1).

    which conclude the proof.

    Lemma A.2LetVandYbe centered Gaussian random vectors inpwith covariance matricesΣVandΣYrespectively. Suppose that there are some constants 00 depending only onc1andC1such that

    ProofThe proof is the same as Lemma 3.1 of Ref.[9]

    where π(ν):=C2ν1/3(1∨log(|E|/ν))2/3.

    Lemma A.4Assume that conditions (A1)-(A4) hold. Then for any (j,k)∈Ewe have

    Proof

    Bounds for|TE-T0|: Recall that

    It follows from Theorem 2.1 that

    (1),

    whereξ1=O(slogp/n)=o(1) andξ2=o(1).

    Bounds for|WE-W0|:

    which conclude the proof.

    Lemma A.5

    Proof

    For the second part, it is obvious that

    |I2|≤Op(logp/n),

    which is a direct result of eventH.

    Combining them together, we conclude =Op(s2logplog(np)/n)=op(1).

    Lemma A.6Assume that conditions (A1)-(A4) hold. Let

    ProofThe proof is the same as Lemma L.3 of Ref.[13], which follows by invoking the inequality

    and Proposition 5.16 in Ref.[17] and the union bound.

    Lemma A.8Letα,β∈psuch that ‖α‖2≤M,‖β‖2≤M. LetXisatisfy the sub-Gaussian setting with a positive constantK. Then for anyr≥2, we have

    (2M2K2)r≤r!/2.

    ProofThe proof is the same as Lemma 5 of Ref.[3]. Since ‖α‖2≤M,‖β‖2≤Mand sub-Gaussian assumption with a constantK, we obtain

    By the inequalityab≤a2/2+b2/2 (for anya,b∈) and Cauchy-Schwarz inequality we have

    By the Taylor expansion, we have the inequality

    Next it follows

    Therefore, we have

    久久久欧美国产精品| 老女人水多毛片| 免费黄频网站在线观看国产| 亚洲成色77777| 男女啪啪激烈高潮av片| 国产精品人妻久久久影院| 免费观看性生交大片5| 亚洲欧美日韩另类电影网站| 两个人免费观看高清视频| 99视频精品全部免费 在线| 亚洲美女黄色视频免费看| 激情五月婷婷亚洲| 99热全是精品| 欧美激情 高清一区二区三区| 九草在线视频观看| 男女免费视频国产| 午夜激情久久久久久久| 熟女人妻精品中文字幕| 热99久久久久精品小说推荐| 国产精品国产三级专区第一集| 日韩av免费高清视频| 中文字幕精品免费在线观看视频 | 免费看av在线观看网站| 高清视频免费观看一区二区| 街头女战士在线观看网站| 男女高潮啪啪啪动态图| 水蜜桃什么品种好| 免费看不卡的av| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx在线观看| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 老司机影院毛片| 视频区图区小说| 日日爽夜夜爽网站| 久久久久久久久久久丰满| 伦精品一区二区三区| 久久久午夜欧美精品| 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 在线观看人妻少妇| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 大片免费播放器 马上看| 国产爽快片一区二区三区| 亚洲在久久综合| 91aial.com中文字幕在线观看| 国产高清国产精品国产三级| 美女视频免费永久观看网站| videosex国产| 一本—道久久a久久精品蜜桃钙片| 精品卡一卡二卡四卡免费| 熟妇人妻不卡中文字幕| 人体艺术视频欧美日本| 久久久久视频综合| 99久国产av精品国产电影| 少妇精品久久久久久久| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 狠狠精品人妻久久久久久综合| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久av不卡| 十八禁高潮呻吟视频| 亚洲经典国产精华液单| 日韩不卡一区二区三区视频在线| 国产精品久久久久久av不卡| 亚洲第一av免费看| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 晚上一个人看的免费电影| 欧美日本中文国产一区发布| 亚洲av.av天堂| 一级毛片我不卡| av黄色大香蕉| 美女大奶头黄色视频| 国产亚洲午夜精品一区二区久久| 婷婷色av中文字幕| 欧美激情国产日韩精品一区| 亚洲精品日韩av片在线观看| 美女内射精品一级片tv| 日本欧美视频一区| 国产极品天堂在线| 一级二级三级毛片免费看| 国产69精品久久久久777片| 伦精品一区二区三区| 一区在线观看完整版| av在线播放精品| 在线亚洲精品国产二区图片欧美 | 老司机亚洲免费影院| 大又大粗又爽又黄少妇毛片口| 国产成人精品无人区| 少妇的逼好多水| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 久久精品国产自在天天线| 黄色毛片三级朝国网站| 亚洲不卡免费看| 国产av精品麻豆| 一本—道久久a久久精品蜜桃钙片| 国产精品熟女久久久久浪| 亚洲丝袜综合中文字幕| 免费高清在线观看视频在线观看| 免费观看无遮挡的男女| 国产高清三级在线| 伊人亚洲综合成人网| av一本久久久久| av女优亚洲男人天堂| av在线app专区| 一个人看视频在线观看www免费| .国产精品久久| 男女啪啪激烈高潮av片| 搡女人真爽免费视频火全软件| 少妇人妻 视频| 在线观看国产h片| 高清欧美精品videossex| 美女cb高潮喷水在线观看| 晚上一个人看的免费电影| 国产高清三级在线| 国产白丝娇喘喷水9色精品| 国产永久视频网站| 亚洲国产av影院在线观看| 伦理电影免费视频| 免费观看的影片在线观看| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 免费观看av网站的网址| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 国产精品一区www在线观看| 国产毛片在线视频| 免费观看a级毛片全部| 男男h啪啪无遮挡| 91成人精品电影| 人成视频在线观看免费观看| 久久青草综合色| 欧美成人午夜免费资源| 久久热精品热| 少妇猛男粗大的猛烈进出视频| 老女人水多毛片| 伊人亚洲综合成人网| 人人澡人人妻人| 中文字幕免费在线视频6| 在线天堂最新版资源| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 伦理电影大哥的女人| 十分钟在线观看高清视频www| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 日韩中文字幕视频在线看片| 嘟嘟电影网在线观看| 久久久久久久久久人人人人人人| 亚洲精品国产色婷婷电影| 亚洲av综合色区一区| videosex国产| 少妇的逼好多水| 超碰97精品在线观看| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 日韩成人伦理影院| 亚州av有码| 97精品久久久久久久久久精品| 亚洲精品美女久久av网站| 日日撸夜夜添| 蜜桃国产av成人99| 欧美三级亚洲精品| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂| 日韩人妻高清精品专区| 中文字幕av电影在线播放| 少妇精品久久久久久久| 五月伊人婷婷丁香| 简卡轻食公司| 免费高清在线观看日韩| 欧美性感艳星| 中文字幕制服av| 亚洲av日韩在线播放| 国产精品女同一区二区软件| 97在线人人人人妻| 国产 一区精品| 日韩免费高清中文字幕av| 国产成人午夜福利电影在线观看| 久久久久久久久大av| 热99国产精品久久久久久7| 欧美激情 高清一区二区三区| 亚洲怡红院男人天堂| 亚洲欧美中文字幕日韩二区| 亚洲人成77777在线视频| 有码 亚洲区| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 美女福利国产在线| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人与动物交配视频| 熟女电影av网| 中文字幕av电影在线播放| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 少妇人妻精品综合一区二区| 日本免费在线观看一区| 一区二区三区四区激情视频| 欧美变态另类bdsm刘玥| 日韩中文字幕视频在线看片| 免费看av在线观看网站| 欧美xxⅹ黑人| 亚洲高清免费不卡视频| 麻豆成人av视频| 97超视频在线观看视频| 纯流量卡能插随身wifi吗| 纵有疾风起免费观看全集完整版| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 国产成人精品婷婷| 高清在线视频一区二区三区| 国产 一区精品| 女性被躁到高潮视频| 亚洲在久久综合| 自拍欧美九色日韩亚洲蝌蚪91| 999精品在线视频| 亚洲第一区二区三区不卡| 综合色丁香网| 18+在线观看网站| 亚洲国产av影院在线观看| 久久精品国产亚洲网站| 成人毛片60女人毛片免费| av国产精品久久久久影院| 国产色婷婷99| 女人精品久久久久毛片| 热re99久久精品国产66热6| 大陆偷拍与自拍| 18禁在线播放成人免费| 80岁老熟妇乱子伦牲交| 久久久久久伊人网av| 日本黄色片子视频| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| www.av在线官网国产| 男女边吃奶边做爰视频| 在线观看一区二区三区激情| 男人操女人黄网站| 下体分泌物呈黄色| 日本-黄色视频高清免费观看| 国产黄片视频在线免费观看| 国产伦理片在线播放av一区| 久久久精品94久久精品| 国产免费又黄又爽又色| 桃花免费在线播放| 欧美亚洲日本最大视频资源| 亚洲av中文av极速乱| 一级毛片我不卡| 十八禁网站网址无遮挡| 国产精品一区二区在线不卡| h视频一区二区三区| 精品久久久久久久久亚洲| 丰满少妇做爰视频| 国产成人精品一,二区| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 欧美精品亚洲一区二区| 99久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久久久精品久久久久真实原创| 国模一区二区三区四区视频| 国产亚洲av片在线观看秒播厂| 全区人妻精品视频| 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 黑人巨大精品欧美一区二区蜜桃 | 日本-黄色视频高清免费观看| 国产精品国产三级国产av玫瑰| 欧美 亚洲 国产 日韩一| 秋霞伦理黄片| 日韩一本色道免费dvd| av天堂久久9| 久久精品国产亚洲av天美| 免费观看在线日韩| 日韩强制内射视频| 一区二区日韩欧美中文字幕 | 中文字幕最新亚洲高清| 两个人免费观看高清视频| 爱豆传媒免费全集在线观看| 老女人水多毛片| 国产极品粉嫩免费观看在线 | 人妻夜夜爽99麻豆av| 男男h啪啪无遮挡| 久久久久久久久久成人| 一级二级三级毛片免费看| 成年女人在线观看亚洲视频| 啦啦啦在线观看免费高清www| 午夜精品国产一区二区电影| 美女主播在线视频| 国产一级毛片在线| 视频在线观看一区二区三区| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 国产精品秋霞免费鲁丝片| 99热全是精品| 18在线观看网站| 曰老女人黄片| 成人毛片a级毛片在线播放| videossex国产| 黄色配什么色好看| 久久青草综合色| 国产又色又爽无遮挡免| 亚洲色图 男人天堂 中文字幕 | 久久韩国三级中文字幕| 在线观看免费视频网站a站| 亚洲精品乱久久久久久| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 91国产中文字幕| 久久精品夜色国产| 亚洲av国产av综合av卡| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 国内精品宾馆在线| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 免费观看的影片在线观看| 老司机影院毛片| 卡戴珊不雅视频在线播放| 亚洲在久久综合| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| 黄色怎么调成土黄色| 欧美激情 高清一区二区三区| 97在线视频观看| 男女无遮挡免费网站观看| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡 | 性色avwww在线观看| 国产成人精品福利久久| 91精品伊人久久大香线蕉| 大香蕉久久网| 午夜福利视频精品| 国产成人精品在线电影| 能在线免费看毛片的网站| 波野结衣二区三区在线| 一本久久精品| 亚洲欧美一区二区三区黑人 | 91久久精品国产一区二区成人| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 久久久久久久久久久免费av| 大片免费播放器 马上看| 亚洲中文av在线| 久久 成人 亚洲| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| 国产 一区精品| 免费看av在线观看网站| 美女主播在线视频| 久久精品国产亚洲av天美| 亚洲欧洲国产日韩| 精品亚洲成a人片在线观看| 日日撸夜夜添| 国产色婷婷99| 欧美另类一区| 日韩在线高清观看一区二区三区| 综合色丁香网| 国产精品.久久久| 国产成人a∨麻豆精品| 女人久久www免费人成看片| 久久97久久精品| 不卡视频在线观看欧美| 91久久精品国产一区二区成人| 女人久久www免费人成看片| 91精品伊人久久大香线蕉| 亚洲av二区三区四区| 美女福利国产在线| 99视频精品全部免费 在线| 国产在视频线精品| 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 最新的欧美精品一区二区| 免费黄色在线免费观看| 街头女战士在线观看网站| 婷婷色av中文字幕| 免费播放大片免费观看视频在线观看| 国产乱人偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| av在线app专区| 97超视频在线观看视频| av专区在线播放| 精品一区在线观看国产| 久久久久久久久久成人| 卡戴珊不雅视频在线播放| 夫妻性生交免费视频一级片| 国产精品久久久久成人av| 国产成人精品久久久久久| 热99国产精品久久久久久7| 纵有疾风起免费观看全集完整版| 秋霞在线观看毛片| 欧美人与性动交α欧美精品济南到 | 99精国产麻豆久久婷婷| 国产在视频线精品| 欧美精品人与动牲交sv欧美| 久久精品久久久久久久性| 欧美人与性动交α欧美精品济南到 | 亚洲精品乱久久久久久| 亚洲精品久久成人aⅴ小说 | 久久精品熟女亚洲av麻豆精品| 国产亚洲午夜精品一区二区久久| 久久av网站| 在线观看美女被高潮喷水网站| 国产欧美亚洲国产| 一区二区三区乱码不卡18| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 久久久久久久久久久久大奶| 热re99久久精品国产66热6| 日韩中字成人| 中文字幕人妻熟人妻熟丝袜美| 成人国产av品久久久| 亚洲丝袜综合中文字幕| 日本wwww免费看| 国产日韩欧美视频二区| 三级国产精品欧美在线观看| 国产亚洲一区二区精品| 日韩强制内射视频| 中文字幕人妻熟人妻熟丝袜美| 超色免费av| 国精品久久久久久国模美| 久久久欧美国产精品| 日韩av免费高清视频| 国产成人精品一,二区| 3wmmmm亚洲av在线观看| 国内精品宾馆在线| 九草在线视频观看| 欧美性感艳星| 韩国高清视频一区二区三区| 久久热精品热| a级毛片黄视频| 肉色欧美久久久久久久蜜桃| 校园人妻丝袜中文字幕| 赤兔流量卡办理| 日韩伦理黄色片| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 日韩一区二区视频免费看| 国产永久视频网站| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 亚洲综合色网址| 黑人巨大精品欧美一区二区蜜桃 | 看免费成人av毛片| 亚洲国产精品专区欧美| 超碰97精品在线观看| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 男女边摸边吃奶| 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 一本大道久久a久久精品| 人妻制服诱惑在线中文字幕| 国产欧美日韩综合在线一区二区| 丝瓜视频免费看黄片| 国产极品粉嫩免费观看在线 | 免费高清在线观看日韩| 嫩草影院入口| 亚洲国产欧美日韩在线播放| 国产黄频视频在线观看| 国产视频内射| 大香蕉久久成人网| 妹子高潮喷水视频| 婷婷色麻豆天堂久久| 性色av一级| 18在线观看网站| a级毛色黄片| 国产午夜精品久久久久久一区二区三区| 在现免费观看毛片| 美女大奶头黄色视频| 人妻系列 视频| 大香蕉久久网| av国产精品久久久久影院| 欧美变态另类bdsm刘玥| 九色成人免费人妻av| tube8黄色片| 国产一区亚洲一区在线观看| h视频一区二区三区| 久久久久视频综合| 亚洲人成网站在线播| 只有这里有精品99| 亚洲五月色婷婷综合| 久久久午夜欧美精品| 蜜桃国产av成人99| 美女主播在线视频| 亚洲国产色片| 91午夜精品亚洲一区二区三区| 国产 精品1| 久久免费观看电影| 少妇 在线观看| 你懂的网址亚洲精品在线观看| 一本一本综合久久| 五月开心婷婷网| 天堂8中文在线网| 伊人久久精品亚洲午夜| 国产精品女同一区二区软件| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 久久影院123| 午夜福利,免费看| 综合色丁香网| 国产毛片在线视频| av一本久久久久| 久久精品国产亚洲av涩爱| 免费观看无遮挡的男女| 岛国毛片在线播放| 免费观看性生交大片5| 看免费成人av毛片| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡| 999精品在线视频| 国产色爽女视频免费观看| 少妇丰满av| 97在线人人人人妻| 日韩大片免费观看网站| 国产色婷婷99| 久久ye,这里只有精品| 在线精品无人区一区二区三| 亚洲,一卡二卡三卡| 久久精品人人爽人人爽视色| 卡戴珊不雅视频在线播放| 国产高清不卡午夜福利| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 最后的刺客免费高清国语| 欧美三级亚洲精品| 我要看黄色一级片免费的| 欧美三级亚洲精品| 午夜激情av网站| 亚洲一区二区三区欧美精品| 建设人人有责人人尽责人人享有的| 亚洲精品久久久久久婷婷小说| 五月天丁香电影| 黑丝袜美女国产一区| 熟女人妻精品中文字幕| 黄片无遮挡物在线观看| 飞空精品影院首页| 国产一区二区三区av在线| 亚洲av不卡在线观看| 国产伦精品一区二区三区视频9| 高清毛片免费看| 如日韩欧美国产精品一区二区三区 | 久久 成人 亚洲| 在线精品无人区一区二区三| 毛片一级片免费看久久久久| 99国产综合亚洲精品| 亚洲国产色片| 免费高清在线观看视频在线观看| 久热久热在线精品观看| 搡女人真爽免费视频火全软件| 丁香六月天网| 精品久久久久久久久av| 精品人妻熟女毛片av久久网站| 午夜福利影视在线免费观看| 美女大奶头黄色视频| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 午夜免费男女啪啪视频观看| 久久99热这里只频精品6学生| 国产av精品麻豆| 男人爽女人下面视频在线观看| 国产精品偷伦视频观看了| 十八禁高潮呻吟视频| 欧美少妇被猛烈插入视频| 人妻制服诱惑在线中文字幕| 久久国内精品自在自线图片| 蜜臀久久99精品久久宅男| 亚洲四区av| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 欧美日韩视频精品一区| 丁香六月天网| 国产精品三级大全| 黄色配什么色好看| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 纯流量卡能插随身wifi吗| 色吧在线观看| 精品一品国产午夜福利视频| 狂野欧美激情性xxxx在线观看| 亚洲成色77777| 久久久久国产精品人妻一区二区| 日韩不卡一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品一区三区| 人体艺术视频欧美日本| 亚洲精品第二区| 精品久久久久久电影网| 成人午夜精彩视频在线观看| 亚洲,一卡二卡三卡| 三级国产精品片| 少妇丰满av| 日韩精品免费视频一区二区三区 | 久久影院123| 成人亚洲欧美一区二区av|