• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Manganese Coordination Polymer Based on Azobenzene Tetracarboxylate and Auxiliary Pyridine Ligand: Synthesis, Crystal Structure and Magnetic Property①

    2021-03-15 10:02:24FENGXunSHANGPeiWANGLiHONGMnZhouFANGHiPengZHAOXinLIZhongJun
    結(jié)構(gòu)化學(xué) 2021年2期

    FENG Xun SHANG Y-Pei WANG Li-Y HONG Mn-Zhou FANG Hi-Peng ZHAO Xin LI Zhong-Jun

    a (College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China)

    b (College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601, China)

    c (College of Chemistry, Zhengzhou University, Zhengzhou 450001, China)

    ABSTRACT A new manganese coordination polymer (CP) has been synthesized under hydrothermal conditions.It’s formula is {Mn2(Oaobtc)(bpe)(H2O)4]}n, where H4Oobtc represents oxide azobenzene 2,2?,3,3?-tetracarboxyl acid, and bpe is 1,2-bis(4-pyridine) ethylene. It was characterized by elemental analysis, infrared spectrum and X-ray single-crystal diffraction. The coordination polymer crystallizes in the monoclinic system, space group P21/c.The central ion was coordinated with H4Oobtc ligands using bridging model, and carboxylic group connects two adjacent Mn(II) ions into dimer units. The oxygen from carboxylates connect these dimer units into a one-dimensional (1D) chain, and N atoms from the bpe further expanded them into three-dimensional (3D)supramolecular edifice, eventually. Variable-temperature magnetic measurements of CP 1 indicate the presence of weak antiferromagnetic exchange between two nearest Mn(II) ions with J = -0.367 cm-1.

    Keywords: acetate bridging, manganese(II), X-ray crystal structure, oxidation azoxybenzene-2,2?,3,3?-tetracarboxyl acid, antiferromagnetic interaction; DOI: 10.14102/j.cnki.0254-5861.2011-2809

    1 INTRODUCTION

    Currently, transition metal coordination polymers (CPs)have recently attracted great attention due to their intriguing architectures and potential applications in functional ma terials[1,2]. The realization of compositionally and structurally designed CPs and their functions remains a significant challenge nowadays owing to the difficulty in fine-tuning properties and architectures of the final products. An effective synthetic approach to obtain functional compounds with predictable properties is to choose the candidate metal centers bearing specifying electronic configuration with coordination preferences and organic bridging linkers, even appropriate auxiliary ligands[3]. Among organic linkers, multicarboxylic acids can bind several metal centers with appropriate coordination geometry to construct polynuclear clusters or metal organic frameworks. Phenyl or pyridine based aromatic substituted multicarboxylates have been varied to be a functional ligand, which can construct one- to three-dimensional(3D) compounds, with catalysis, electrochemical, magnetism characters, etc[5-7]. The chemical modified ligands, such as compounds containing an azo (-N=N-) group as light-harvesting chromophore, are always employed to enhance/reduce the light adsorption, and then facilitate/delay energy transferring to luminescence centers to achieve efficient emission. Azomethines and azonium pyrrolidine derivative have been employed in light-emitting optical materials[8], and some of transition/lanthanide metal compounds containing this spacer separated aromatic tetracarboxylate have been documented[9,10]. On the other hand, bpe, as the N donor rigid ligand, has been proved to be a good candidate used as polymeric linkers for constructing fascinating coordination polymers in the field of potential functional materials[11]. The coordination of neutral ligands with metal centers can also largely change coordination environments, resulting in the tuning of magnetic property[12]. Single-molecule magnets(SMMs) containing transition metal have attracted a great deal of attention during the last two decades[13,14], because of their potential applications in information processing,quantum computing, high density data storage and molecular spintronics. Moreover, phenoxo functions and carboxylatebridged Mn(II) complexes are well recognized from magnetic point of view as the high-spin Mn(II) ion contains five unpaired electrons, and thus the assembly of Mn(II) with multicarboxylate is inclined to the formation of single-molecule magnets (SMMs)[15,16]. Binuclear Mn(II) complexes were treated as models for understanding the effect of structural parameters in determining the sign and magnitude of exchange coupling interactions between neighboring magnetic centers. In order to further study coordination behavior and role of bpe, and to further study the influence of magnetic properties, in this contribution a new manganese compound containing H4Oaobtc acid and bpe ligand has been obtained and systematically characterized.

    2 EXPERIMENTAL

    2. 1 Materials and physical measurements

    All reagents and solvents were of AR grade and used without further purification. Elemental analyses for C, H and N were carried out on an Elementar Vario EL elemental analyzer. Diffraction studies on single crystals were conducted on a Bruker diffractometer applying graphite-monochromated MoKα radiation (λ = 0.71073 ?). The infrared spectra(4000~400 cm-1) were recorded by using KBr pellet on an Avatar TM 360 E.S.P. FTIR spectrometer. Thermogravimetry and differential thermal analysis were recorded using a Thermogravimetric analyses (TGA) in nitrogen at a heating rate of 10 °C·min-1using a TG/DTA 6300 integration thermal analyzer. XRPD measurements were carried out at room temperature using a Bruker D8 Advance powder diffractometer with CuKα radiation (λ = 1.5408 ?) with a scan speed of 0.2 s per step and a step size of 0.02 (2θ). The crushed crystalline powder samples were scanned at 40 kV and 40 mA from 5 to 50°. Temperature dependent magnetic susceptibilities were recorded on a MPMS magnetometer from 2 to 300 K with an applied field of 2 kOe. Pascal’s constants were used to estimate the correction for the underlying diamagnetism of the sample.

    2. 2 Synthesis and crystallization of compound[Mn2(Oaobtc)(bpe)(H2O)4]}n (1)

    H4aobtc acid (0.1 mmol, 0.038 g) and bpe (0.1 mmol, 0.019 g) were mixed and dissolved in 30 mL aqueous solution of water/DMF (v/v = 2.0, 12 mL). After that they were mixed with an aqueous solution (10 mL) of Mn(CH3COO)2·4H2O(0.049 g, 0.2 mmol). After stirring for 20 min in air, the pH value was adjusted to 6.5 with acetic acid, and the mixture was placed into a 25 mL Teflon-lined autoclave under autogenous pressure being heated at 120 °C for 48 h, then the autoclave was cooled over a period of 24 h at a rate of 5°C·h-1. After filtration, the products were washed with distilled water and dried. The black block-shaped crystals suitable for X-ray diffraction had been obtained. Yield: 36 mg(48% based on manganese element). Elemental analysis for C14H12MnN2O7(calcd. C, 44.81; H, 3.22; N, 7.47%). Found:C, 44.59; H, 3.40; N, 7.39%.

    2. 3 Single-crystal X-ray structure determination

    One crystal with dimensions of 0.22 × 0.18 × 0.15 mm3was selected for measurement. A total of 6817 reflections were collected at room temperature for the φ-ω scan technique in the range of 3.38≤θ≤26.83°. Structure was solved by direct methods and subsequently completed by Fourier recycling by using the SHELXTL software packages. The obtained models were refined with version 2014 of SHELXL against F2on all data by full-matrix least squares[17,18]. A full-matrix leastsquares refinement on F2was carried out using SHELXL-97.The final R = 0.0444, wR = 0.1215 (w = 1/[σ2(Fo2) +(0.0502P)2+ 4.8549P], where P = (Fo2+ 2Fc2)/3), S = 1.159,F(000) = 2016, T = 291(2) K, (Δρ)max= 0.46 and (Δρ)mix=-0.72 e/?3. In both systems, all non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were set in calculated positions and refined isotropically by using the riding model. Residual peaks in difference Fourier map could be assigned as positions of hydrogen atoms belonging to water molecules. The selected bond lengths and bond angles are reported in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Compound 1

    3 RESULTS AND DISCUSSION

    3. 1 Infrared spectra of 1

    As illustrated in Fig. 1, in IR spectra of the title compound,the weaker and broad peak in the frequency region of 3450~3500 cm-1is attributed to O···H bonding stretching vibration of coordination water molecules. The sharp bands in the ranges of 1600~1500 and 1460~1350 cm-1are attributed to asymmetric and symmetric stretching vibrations of carboxylic groups from Oaobtc ligand, respectively. No peaks exist at about 1710 cm-1, which indicates the tetracarboxylic acid molecules in this complex have been completely deprotonated.The ligand bpe showed its backbone vibration peaks v(C=N)at 1510 cm-1[19].

    Fig. 1. Fourier transforms infrared spectrum of coordination polymer 1

    3. 2 Structure description for[{Mn2(Oaobtc)(bpe)(H2O)4]}n] (1)

    The perspective view of the molecular structure of coordination polymer 1 is illustrated in Fig. 2. The title compound crystallizes in monoclinic system, space group P21/c. The asymmetric unit contains one Mn(II) cation, half an oaobtc ligand, half of bpe ligand and two coordinated water molecules. Remarkably, during the hydrothermal condition,H4aobtc acid has been oxidized into H4Oaobtc acid possible due to the presence of Mn(II) cation as catalysis[20]. All four carboxylic groups of H4aobtc acid ligand are deprotonated,and exhibit a bridging ligand linking Mn(II) ions using a monodentate model, rather than chelating coordination fashion as presented in Fig. 2a. It is noted that different acid/base conditions result in discrepancy deprotonation degree in tetracarboxylic groups in ligand, which is beneficial to modulate the structure[21]. The Mn(II) ion is hexacoordinated with a pseudo octahedral geometry, bearing a N1O5donor set around it. Among the donor set, the two O atoms coordinated to Mn(II) from terminal H2O ligand and other two O atoms of carboxylic moieties from Oaobtc are located in equatorial plane. The N atom from bridging bpe and one O atom derivated from carboxylic groups of Oaobtc anion ligand are located in axis positions, completing the octahedron coordination geometry. The Mn-O distances range from 2.137(2) to 2.291(2) ? (Table 2 and Fig. 1). In contrast,average Mn-N distance is found to be 2.262(2) ?, consistent with other Mn(II) complexes reported previously[2,16]. The O-Mn-O angles vary from 85.64(10) to 173.05(10)°, which are comparable to the geometry observed in related Mn(II)complexes[12,13].

    Fig. 2. (a) View of the coordination environment of Mn(II) ion in asymmetric unitof coordination polymer 1. Color codes: dark green, Mn; blue, N; red, O; gray black, C.(b) View of dimer in the asymmetric unit of 1 with some hydrogen atoms omitted for clarity

    It is notable that the bond angles of N(8)-Mn(1)-O(2),N(3)-Mn(1)-O(5) and O(1)-Mn(1)-O(5) are 173.05(10),91.80(10) and 172.67(9)°, which means the Mn(II) ion is located in a slightly distorted octahedron coordination environment. Interestingly, the acetate group from Oaobtc exhibits u2-cis, trans-bridge modes to connect the two adjacent Mn(II) ions into a binuclear unit with the Mn··· Mn distance of 5.374 ?, as displayed in Fig. 1b. The angle for Mn(1)1-O(6)-Mn(1) is 150. 34°, which provides steric relief for the binding of solvent water molecules; it also separates the Mn centers quite far way. These binuclear units are further connected into an infinite 1D zigzag chain approximately along the ac plane, as displayed in Fig. 3a. In fact,Oaobtc acts as a terminal ligand rather than exhibits a bridge model connecting dimer units into infinite 1D chains.Moreover, the ancillary ligand bpe molecules act as cross bridging, and link neighboring metal-organic chains into a regular 2D layer with the interchain Mn···Mn separation of 13.862 ?, as displayed in Fig. 3b. In such a manner, a square(4, 4) grid layer with dangling pyridine arms is generated.This layer skeleton is close to other Mn(II) coordination polymers containing bpe ligand[12,16,21]. In fact, this liner ligand can also exhibit a monodentate linker or non-coordinating modes[22]due to its various bridging fashions and strong coordination tendency. It is able to generate 1D robust chain, or to be pillar ligand to construct high-dimensional architecture, exhibiting strong luminescence since the ethylene bonds of the dyes are preorganized for stereospecific [2+2] photocycloaddition (PCA) induced by visible light[22]. The coordination fashion in this case is also found in relevant transition metal compounds based on phthalate and bipyridinyl ligands[12], but it is essentially different from either relevant silver coordination polymer or dinuclear manganese(III) complexes with pentaanionic pentadentate ligands including alkoxo, amido, and phenoxo donors[24,25].The 2D networks with non-penetrating feather above mentioned are further inter connected into a 3D supramolecular framework edifice through carboxylate and with hydrogen bonding, as shown in Fig. 4.

    Fig. 3. (a) Perspective view of 1D alternate zigzag chains along the b axis.(b) Perspective view of (4, 4) grid layer along the b axis in coordination polymer 1

    Fig. 4. Projection of the 3D packing crystal structure of 1 along the c axis

    3. 3 X-ray diffraction powder pattern and thermogravimetry analysis

    To verify the phase purity of coordination polymer 1, the bulk sample was characterized by PXRD at room temperature.As depicted in Fig. 5a, the peak positions of the experimental patterns for compound 1 (final bulk material) are nearly identical to the correspondingly simulated ones generated from single-crystal X-ray diffraction data, although some minor Bragg peak positions have been shifted in comparison to the simulated ones due to discrepancy between powder and crystalline materials. The TGA experiment was performed under N2atmosphere at a heating rate of 10 ℃·min?1in the temperature range of 20~900 ℃. As reported in Fig. 5b, the initial weight loss process takes place at about 150 ℃,corresponding to release of two water molecules (calcd.9.58%). Subsequently, upon further heating it till beyond 200 ℃, compound 1 decomposes and significant weight loss of 35.23% is found in a temperature range of 260~400 ℃,which corresponds to destruction of one Oaobtc ligand (calcd.51.2%). As the temperature is increased beyond 600 °C, the further weight loss till 900 ℃ may be roughly in accordance to the release of bpe ligand.

    Fig. 5. (a) Comparison of stimulated (blue) and experimental (red) powder XRD patterns of coordination polymer 1. (b) Thermogravimetric curves for coordination polymer 1

    3. 4 Magnetic property

    The plot of χMT and χMvs. T susceptibility for coordination polymer 1 is presented in Fig. 6. The value of χMT at 300 K amounts to 8.83 cm3· mol?1·K, which is slightly higher than the expected spin-only value for two high-spin Mn(II) ions(8.75 cm3·mol?1·K)[26]. As the temperature is lowered, the χMT value is almost constant in region of 150~300 K and then rapidly decreases to 1.32 cm3·mol?1·K at 1.9 K, indicating the presence of possible antiferromagnetic interactions within the coordination polymer. According to the structure analysis mentioned above, the intramolecular MnI··I· MnIIseparation is 13.08 ?, while the shortest intermolecular MnII···MnIIdistance is 5.374 ?. It could be presumed that the main magnetic interactions between two MnIIcenters should happen within 1D chain through acetate bridging. Meanwhile,considering the magnetic interaction between manganese pairs within these 1D zigzag chains, two coupling parameters J and zJ? may be considered to interpret two possible magnetic interactions in 1. Here, J is the exchange coupling parameter between adjacent MnII-MnIIwithin dimer and zJ? accounts for interactions between the chains. The magnetic data were thus approximately analyzed by an isotropic Heisenberg model for the uniform chains generated by Hiller et al[27], for high spin S = 5/2. In order to quantitatively understand the magnitude of the spin-exchange interaction,the following Eq. (1) is induced from the spin Hamiltonian ?= -J?1?2to evaluate exchange-coupled high-spin dinuclear Mn(II) complex[4,12,28].

    Where x = |J |/KT. An additional coupling parameter, zJ′,was added in Eq. (2) to take into account the magnetic behavior between the 1-D chains as a molecular field approximation[29]to explain the actual magnetic property of 1.

    Fig. 6. Temperature dependence of χMT(□) and χM(○) versus T for coordination polymer 1.The solid line represents the best fit obtained from the Hamiltonian given in the text

    The least-squares fitting of magnetic susceptibilities leads to J = ?0.367, g = 2.02, zJ?= ?0.22 cm?1, and R = 1.16 × 10-3(R = Σ[(χM)obs- (χM)calc]2/Σ[(χM)obs]2). The small negative values of J and zJ' further corroborate the presence of weak antiferromagnetic interactions between Mn(II) ions and the interactions between 1D chains. It is interesting to compare the magnetic properties with analogous complexes containing Mn clusters previously reported. For example, isophthalato bridged trimanganese clusters, {[Mn3(H2O)2(H-bpp)2(5-brip)4]·bpp = 1,3-bi(4-pyridyl) propane, which contains 4,5-bromoisopthaliac acid and bpe (J = ?1.67 cm?1, g =2.00)[30]. The coupling interaction in this case is weaker than that of tetranuclear cluster, [Mn4(tbip)4(bbp)2(H2O)2] (J =?0.49 cm-1, g = 2.26, H2tbip = 5-tert-butyl-isophthalic acid,bbp = 1,3-bis(benzimidazol)propane); and[C(NH2)3]8[(MnII)4-(cit)4]·8H2O (J = ?0.82 cm-1, g = 1.92, cit = citrate)[31]. It is found that a moderate strong antiferromagnetic coupling interaction was mediated through the methanolato oxygen bridge between two Mn(III) ions and the exchange parameter.It gives result as J = ?3.6 cm?1[32]. The domain antiferromagnetic interactions obtained for the title compound are also comparable to 1D chain Mn(II) coordination polymers containing 2,2?:6?,2??-terpyridine-4?-carboxylic acid and 4?-(4-carboxyphenyl)-2,2?:6?,2??-terpyridine[4], in which the best fitting parameters are J = -0.88 cm3·K·mol-1and g =2.046. It is also weaker than that of oxalate bridged Mn binuclear complex containing N3O-donor chelate ligand,[{(bpppa)Mn}2(μ-C2O4)](ClO4)2with J = ?2.95 cm?1, g = 2.0 and zJ?≈ 0 cm?1[33].

    4 CONCLUSION

    In summary, we have presented a new manganese coordiantion polymer constructed by azoxybenzenetetracarboxylic acid along with linear bpe ligand. The auxiliary N-donor ligands, coordination modes of metal ions and configurations of multicarboxylate ligands play synergistic roles in governing the final coordination polymer edifice. The magnetic properties study indicate the exitence of moderate intramolecular antiferromagnetic couplings. This work not only enriches the coordination chemistry of later transition metal cation, but also maybe provides a useful reference for the design and synthesis of other discrete magnetic materials base on aromatic polycarboxylic acid ligands.

    欧美精品高潮呻吟av久久| 日本黄色日本黄色录像| 久久人妻福利社区极品人妻图片| 日本撒尿小便嘘嘘汇集6| 国产99久久九九免费精品| 97人妻天天添夜夜摸| tube8黄色片| videosex国产| 色婷婷av一区二区三区视频| 美女福利国产在线| 精品电影一区二区在线| 国产一区二区激情短视频| 国产精品成人在线| 欧美久久黑人一区二区| 热re99久久精品国产66热6| 亚洲片人在线观看| 大型av网站在线播放| 国产精品九九99| 欧美日韩亚洲综合一区二区三区_| 超色免费av| av福利片在线| 日韩有码中文字幕| 一区在线观看完整版| 欧美人与性动交α欧美精品济南到| 精品熟女少妇八av免费久了| 精品一区二区三区四区五区乱码| 国产精品秋霞免费鲁丝片| 国产单亲对白刺激| 熟女少妇亚洲综合色aaa.| 国产精品一区二区在线不卡| 欧美精品av麻豆av| 黑人欧美特级aaaaaa片| 丁香六月欧美| 美女国产高潮福利片在线看| 国产不卡av网站在线观看| 夜夜爽天天搞| 正在播放国产对白刺激| 国产99白浆流出| 亚洲av美国av| 日本一区二区免费在线视频| 天天躁日日躁夜夜躁夜夜| 亚洲av成人不卡在线观看播放网| 欧美日韩乱码在线| 美女扒开内裤让男人捅视频| 欧美精品啪啪一区二区三区| 国产不卡一卡二| 男女免费视频国产| x7x7x7水蜜桃| 在线观看免费午夜福利视频| 午夜激情av网站| 欧美乱码精品一区二区三区| 看黄色毛片网站| 亚洲成人手机| 国产精品乱码一区二三区的特点 | 99re6热这里在线精品视频| 成人免费观看视频高清| 一个人免费在线观看的高清视频| 极品教师在线免费播放| 免费观看人在逋| 成人手机av| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 亚洲精品中文字幕在线视频| 自线自在国产av| 亚洲国产毛片av蜜桃av| videos熟女内射| 99国产极品粉嫩在线观看| 18禁观看日本| 在线观看一区二区三区激情| 精品国产一区二区三区四区第35| 人妻 亚洲 视频| 18禁美女被吸乳视频| 欧美日韩成人在线一区二区| 人人妻人人澡人人看| 国产精品 欧美亚洲| 日日爽夜夜爽网站| 国产精品1区2区在线观看. | 美女高潮喷水抽搐中文字幕| 51午夜福利影视在线观看| av福利片在线| 国产高清国产精品国产三级| 老司机深夜福利视频在线观看| 女人被躁到高潮嗷嗷叫费观| 中文字幕制服av| 午夜影院日韩av| 欧美激情 高清一区二区三区| 欧美日韩成人在线一区二区| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 成在线人永久免费视频| 亚洲免费av在线视频| 国产精品久久久久成人av| 亚洲欧美色中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 后天国语完整版免费观看| 国产精品久久视频播放| 欧美人与性动交α欧美精品济南到| 精品一区二区三区四区五区乱码| 精品第一国产精品| 亚洲欧美激情在线| 国产成人精品在线电影| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 国产一区二区激情短视频| 久久这里只有精品19| 国产亚洲精品一区二区www | 国产激情欧美一区二区| 亚洲国产精品sss在线观看 | 日韩一卡2卡3卡4卡2021年| av电影中文网址| 巨乳人妻的诱惑在线观看| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 久久久久久久国产电影| 高清黄色对白视频在线免费看| 亚洲国产中文字幕在线视频| 美女视频免费永久观看网站| 性色av乱码一区二区三区2| 亚洲avbb在线观看| 欧美日韩亚洲高清精品| 久久人妻福利社区极品人妻图片| 正在播放国产对白刺激| av天堂在线播放| 精品免费久久久久久久清纯 | 捣出白浆h1v1| 日本wwww免费看| 欧美 亚洲 国产 日韩一| 一a级毛片在线观看| 免费看十八禁软件| 在线国产一区二区在线| 国产高清激情床上av| 国产精华一区二区三区| 成人精品一区二区免费| 80岁老熟妇乱子伦牲交| 日本一区二区免费在线视频| 国产精品98久久久久久宅男小说| 午夜福利,免费看| 午夜老司机福利片| 九色亚洲精品在线播放| 久久久久精品人妻al黑| 老司机午夜福利在线观看视频| 精品福利观看| 91精品三级在线观看| 精品一区二区三区四区五区乱码| 久久国产精品影院| 啦啦啦 在线观看视频| 日韩一卡2卡3卡4卡2021年| 色老头精品视频在线观看| 黄片小视频在线播放| 国产成人av教育| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 国产成人欧美在线观看 | 操出白浆在线播放| 国产精品一区二区精品视频观看| 成人亚洲精品一区在线观看| 夫妻午夜视频| 亚洲伊人色综图| 久久久久久久精品吃奶| 淫妇啪啪啪对白视频| 丝瓜视频免费看黄片| 亚洲七黄色美女视频| 国产日韩一区二区三区精品不卡| 悠悠久久av| 亚洲久久久国产精品| 久久香蕉国产精品| 美女国产高潮福利片在线看| 热re99久久精品国产66热6| 久久狼人影院| 久久精品熟女亚洲av麻豆精品| 99精品欧美一区二区三区四区| cao死你这个sao货| 夜夜夜夜夜久久久久| 亚洲精品久久午夜乱码| 日本黄色视频三级网站网址 | 在线观看日韩欧美| 国产片内射在线| 欧美性长视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 很黄的视频免费| 9热在线视频观看99| 欧美黑人欧美精品刺激| 国产区一区二久久| 免费在线观看影片大全网站| 狠狠狠狠99中文字幕| 久久人人爽av亚洲精品天堂| 欧美在线黄色| 国产麻豆69| 一边摸一边抽搐一进一出视频| 天堂动漫精品| 国产精品永久免费网站| www.自偷自拍.com| 国产精品成人在线| 欧美日韩av久久| 韩国精品一区二区三区| 91国产中文字幕| 一本综合久久免费| 欧美激情极品国产一区二区三区| 在线播放国产精品三级| 一级a爱片免费观看的视频| 桃红色精品国产亚洲av| 岛国在线观看网站| 精品国产一区二区三区久久久樱花| 色尼玛亚洲综合影院| 伊人久久大香线蕉亚洲五| 交换朋友夫妻互换小说| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 久久99一区二区三区| 丁香六月欧美| 一本一本久久a久久精品综合妖精| 在线av久久热| 久久久久久久国产电影| 电影成人av| 亚洲av片天天在线观看| 天堂动漫精品| 777米奇影视久久| 欧美日韩亚洲高清精品| 一级片免费观看大全| 色尼玛亚洲综合影院| 高清在线国产一区| 一区二区三区精品91| 亚洲一区高清亚洲精品| 一级毛片精品| 一区二区三区激情视频| 欧美老熟妇乱子伦牲交| 久久久久国内视频| 男女高潮啪啪啪动态图| 中文亚洲av片在线观看爽 | 人人妻人人澡人人看| 成人精品一区二区免费| 丝瓜视频免费看黄片| 久久精品人人爽人人爽视色| 制服诱惑二区| 正在播放国产对白刺激| 中文亚洲av片在线观看爽 | 精品一区二区三区av网在线观看| 国产亚洲一区二区精品| 19禁男女啪啪无遮挡网站| 国产麻豆69| 久热爱精品视频在线9| 亚洲九九香蕉| 一级毛片女人18水好多| 免费在线观看完整版高清| 99久久综合精品五月天人人| videos熟女内射| 成人黄色视频免费在线看| 欧美日韩av久久| 黑丝袜美女国产一区| 人人澡人人妻人| 国产又爽黄色视频| 首页视频小说图片口味搜索| 亚洲伊人色综图| 欧美日韩视频精品一区| 亚洲成人免费电影在线观看| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 五月开心婷婷网| 久久国产精品人妻蜜桃| 久热这里只有精品99| 视频区图区小说| 王馨瑶露胸无遮挡在线观看| 夜夜夜夜夜久久久久| 午夜久久久在线观看| 777久久人妻少妇嫩草av网站| 一进一出好大好爽视频| cao死你这个sao货| 久久人妻av系列| 久久久久久久国产电影| 亚洲av第一区精品v没综合| 中出人妻视频一区二区| 国产精品免费视频内射| 一本一本久久a久久精品综合妖精| 高清黄色对白视频在线免费看| 国产熟女午夜一区二区三区| 黄片播放在线免费| 精品人妻1区二区| 国产精品 国内视频| 欧美大码av| 91字幕亚洲| 国产男女超爽视频在线观看| 校园春色视频在线观看| 欧美精品亚洲一区二区| 12—13女人毛片做爰片一| 天堂中文最新版在线下载| 久久精品国产99精品国产亚洲性色 | 久久精品亚洲av国产电影网| 亚洲欧美日韩高清在线视频| 亚洲精品在线观看二区| 男女下面插进去视频免费观看| 高清av免费在线| 国产精品国产高清国产av | 日本一区二区免费在线视频| 成年版毛片免费区| videosex国产| 欧美黄色淫秽网站| 岛国在线观看网站| 黄片小视频在线播放| 成人手机av| 欧美精品av麻豆av| 欧美日韩黄片免| 视频区欧美日本亚洲| 精品午夜福利视频在线观看一区| 黄网站色视频无遮挡免费观看| 美女高潮到喷水免费观看| 亚洲一区高清亚洲精品| av线在线观看网站| 三级毛片av免费| 国产视频一区二区在线看| 欧美精品人与动牲交sv欧美| 777久久人妻少妇嫩草av网站| 男女之事视频高清在线观看| 无限看片的www在线观看| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频| 亚洲av成人av| 亚洲精品久久午夜乱码| 99在线人妻在线中文字幕 | 天天添夜夜摸| 丝袜美足系列| 91成年电影在线观看| 亚洲 欧美一区二区三区| 一本一本久久a久久精品综合妖精| 国产片内射在线| 久热这里只有精品99| 欧美另类亚洲清纯唯美| 午夜福利乱码中文字幕| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月 | 亚洲精品美女久久久久99蜜臀| 国产精品永久免费网站| 91麻豆精品激情在线观看国产 | 久久香蕉精品热| 午夜福利在线观看吧| 午夜激情av网站| 69av精品久久久久久| 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 国产成+人综合+亚洲专区| 日韩欧美一区视频在线观看| 亚洲综合色网址| 村上凉子中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 午夜福利视频在线观看免费| 很黄的视频免费| av线在线观看网站| 国产亚洲欧美98| 国产精品影院久久| 在线av久久热| 精品一区二区三卡| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免费看| svipshipincom国产片| 国产主播在线观看一区二区| 免费久久久久久久精品成人欧美视频| 免费少妇av软件| 精品午夜福利视频在线观看一区| 精品一品国产午夜福利视频| 伦理电影免费视频| 亚洲av美国av| 国产激情欧美一区二区| 91成年电影在线观看| 精品卡一卡二卡四卡免费| 国产精品一区二区在线观看99| 国产1区2区3区精品| 美女高潮到喷水免费观看| 看片在线看免费视频| www.999成人在线观看| 亚洲免费av在线视频| 色精品久久人妻99蜜桃| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 精品国产乱码久久久久久男人| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 18禁国产床啪视频网站| 久久香蕉激情| 欧美精品啪啪一区二区三区| 久久久水蜜桃国产精品网| 老司机福利观看| 悠悠久久av| 欧美精品人与动牲交sv欧美| 精品高清国产在线一区| 高清视频免费观看一区二区| 黄色a级毛片大全视频| 中文字幕人妻丝袜一区二区| 99国产精品99久久久久| 大陆偷拍与自拍| 9191精品国产免费久久| 中文字幕人妻丝袜制服| 精品福利观看| 91国产中文字幕| 在线观看www视频免费| 欧美日韩视频精品一区| 99久久人妻综合| 久久久久久亚洲精品国产蜜桃av| 国产淫语在线视频| av天堂久久9| 亚洲成av片中文字幕在线观看| 亚洲精品久久午夜乱码| 久久国产精品大桥未久av| 国产成+人综合+亚洲专区| 久久99一区二区三区| 国产乱人伦免费视频| 亚洲精品自拍成人| 免费在线观看影片大全网站| 99热网站在线观看| 巨乳人妻的诱惑在线观看| 法律面前人人平等表现在哪些方面| 热99久久久久精品小说推荐| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 色老头精品视频在线观看| 久久天躁狠狠躁夜夜2o2o| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 新久久久久国产一级毛片| 18禁裸乳无遮挡动漫免费视频| 美女午夜性视频免费| 国内久久婷婷六月综合欲色啪| 国产91精品成人一区二区三区| 夜夜躁狠狠躁天天躁| 成人免费观看视频高清| 久久精品亚洲熟妇少妇任你| 久久久久国内视频| 999久久久国产精品视频| 操美女的视频在线观看| 国产不卡一卡二| 久久久久精品国产欧美久久久| 人人妻人人爽人人添夜夜欢视频| 99国产精品99久久久久| 18禁美女被吸乳视频| 国产精品99久久99久久久不卡| 大香蕉久久成人网| 91字幕亚洲| 国产成人欧美在线观看 | 色综合欧美亚洲国产小说| 国产精品久久久人人做人人爽| 国产成人av激情在线播放| 亚洲av日韩精品久久久久久密| 亚洲专区字幕在线| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 国产精品一区二区在线不卡| 日韩熟女老妇一区二区性免费视频| 韩国av一区二区三区四区| 18禁美女被吸乳视频| 久热爱精品视频在线9| 后天国语完整版免费观看| 久久精品国产a三级三级三级| 91麻豆av在线| 欧美黄色片欧美黄色片| 9191精品国产免费久久| 亚洲国产欧美一区二区综合| 飞空精品影院首页| 操美女的视频在线观看| 黄色女人牲交| 看免费av毛片| 少妇裸体淫交视频免费看高清 | 嫩草影视91久久| 国产精品亚洲av一区麻豆| 日韩欧美一区视频在线观看| 欧美最黄视频在线播放免费 | 99riav亚洲国产免费| 国产欧美日韩一区二区三区在线| 国产亚洲欧美98| 一区二区日韩欧美中文字幕| 免费在线观看日本一区| 黄频高清免费视频| 亚洲熟女毛片儿| 午夜老司机福利片| 久久狼人影院| 久久青草综合色| 精品国产乱码久久久久久男人| 国产精品98久久久久久宅男小说| 一级作爱视频免费观看| 久久国产乱子伦精品免费另类| 欧洲精品卡2卡3卡4卡5卡区| 19禁男女啪啪无遮挡网站| av不卡在线播放| 18禁裸乳无遮挡免费网站照片 | 国产av又大| av中文乱码字幕在线| 免费久久久久久久精品成人欧美视频| 国产欧美日韩精品亚洲av| 在线观看舔阴道视频| 亚洲国产欧美一区二区综合| 三上悠亚av全集在线观看| 国产成人欧美在线观看 | 亚洲国产欧美网| 久久久久久久精品吃奶| 国产成人欧美| 精品午夜福利视频在线观看一区| 国产精品二区激情视频| 老司机深夜福利视频在线观看| 欧美日韩成人在线一区二区| 国产男靠女视频免费网站| 色尼玛亚洲综合影院| 国产三级黄色录像| 老熟妇乱子伦视频在线观看| 麻豆国产av国片精品| 国产成人系列免费观看| 50天的宝宝边吃奶边哭怎么回事| 狠狠婷婷综合久久久久久88av| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 欧美日韩国产mv在线观看视频| 1024视频免费在线观看| 韩国精品一区二区三区| 男女高潮啪啪啪动态图| 午夜福利在线免费观看网站| 国产精品1区2区在线观看. | 精品国产亚洲在线| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出 | 亚洲国产看品久久| 啦啦啦在线免费观看视频4| 天堂中文最新版在线下载| 热re99久久精品国产66热6| 首页视频小说图片口味搜索| 人人妻人人爽人人添夜夜欢视频| 亚洲自偷自拍图片 自拍| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| 黄色a级毛片大全视频| 少妇裸体淫交视频免费看高清 | 久久久久视频综合| 日本精品一区二区三区蜜桃| 热99国产精品久久久久久7| 国产精华一区二区三区| 欧美精品高潮呻吟av久久| 淫妇啪啪啪对白视频| 天堂中文最新版在线下载| 亚洲精品国产区一区二| 777米奇影视久久| 亚洲熟妇熟女久久| 久久久久国产精品人妻aⅴ院 | 女人高潮潮喷娇喘18禁视频| 夫妻午夜视频| 免费高清在线观看日韩| 亚洲熟女毛片儿| 女人被狂操c到高潮| 人妻一区二区av| 99国产精品一区二区三区| 国产熟女午夜一区二区三区| 精品一品国产午夜福利视频| 国产成人精品久久二区二区免费| 又大又爽又粗| 国产野战对白在线观看| 夜夜躁狠狠躁天天躁| 亚洲一码二码三码区别大吗| 少妇粗大呻吟视频| 免费av中文字幕在线| 视频区欧美日本亚洲| 精品少妇一区二区三区视频日本电影| 精品久久久久久电影网| 在线视频色国产色| 法律面前人人平等表现在哪些方面| 国产一卡二卡三卡精品| 欧美精品av麻豆av| 亚洲av美国av| 日日夜夜操网爽| 亚洲中文av在线| 啦啦啦在线免费观看视频4| 90打野战视频偷拍视频| 天天躁日日躁夜夜躁夜夜| 亚洲av第一区精品v没综合| 成年版毛片免费区| 大香蕉久久成人网| 久久久久久人人人人人| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 久久精品国产综合久久久| 亚洲国产精品一区二区三区在线| 亚洲五月色婷婷综合| 在线观看免费午夜福利视频| 久久久国产欧美日韩av| 成人三级做爰电影| 日韩欧美三级三区| 热re99久久国产66热| 狠狠狠狠99中文字幕| 国产亚洲精品久久久久久毛片 | 老司机靠b影院| av片东京热男人的天堂| 久久亚洲精品不卡| 淫妇啪啪啪对白视频| 久久中文字幕人妻熟女| 老司机靠b影院| 国产精品永久免费网站| 免费观看人在逋| 日韩免费av在线播放| 制服人妻中文乱码| 亚洲一码二码三码区别大吗| av线在线观看网站| 高潮久久久久久久久久久不卡| 老鸭窝网址在线观看| 亚洲美女黄片视频| 中文字幕av电影在线播放| 亚洲人成电影观看| 午夜福利欧美成人| 精品卡一卡二卡四卡免费| 国产av又大| 国产精品国产av在线观看| av不卡在线播放| x7x7x7水蜜桃| 日本精品一区二区三区蜜桃|