• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct identification of HMX via guest-induced fluorescence turn-on of molecular cage

    2021-03-14 02:31:56ChenWngJinShngLiTinHongweiZhoPengWngKiFengGuokngHeJeffersonZheLiuWeiZhuGungtoLi
    Chinese Chemical Letters 2021年12期

    Chen Wng,Jin Shng,Li Tin,Hongwei Zho,Peng Wng,Ki Feng,Guokng He,Jefferson Zhe Liu,Wei Zhu,Gungto Li,??

    a Department of Chemistry,Tsinghua University,Beijing 100084,China

    b School of Energy and Environment,City University of Hong Kong,Hong Kong,China

    c Department of Mechanical Engineering,The University of Melbourne,Parkville,VIC 3010,Australia

    d School of Biology and Biological Engineering,South China University of Technology,Guangzhou 510006,China

    e Institute of chemistry,Hebrew University of Jerusalem,Jerusalem 91904,Israel

    Keywords:Chemical sensing Explosive detection HMX Molecular cage Host-guest chemistry Fluorescence turn-on

    ABSTRACT Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is one of the most widely used powerful explosives.The direct and selective detection of HMX,without the requirement of specialized equipment,remains a great challenge due to its extremely low volatility,unfavorable reduction potential and lack of aromatic rings.Here,we report the first chemical probe of direct identification of HMX at ppb sensitivity based on a designed metal-organic cage (MOC).The cage features two unsaturated dicopper units and four electron donating amino groups inside the cavity,providing multiple binding sites to selectively enhance host-guest events.It was found that compared to other explosive molecules the capture of HMX inside the cavity would strongly modulate the emissive behavior of the host cage,resulting in highly induced fluorescence “turn-on” (160 folds).Based on the density functional theory (DFT) simulation,the mutual fit of both size and binding sites between host and guest leads to the synergistic effects that perturb the ligand-to-metal charge-transfer (LMCT) process,which is probably the origin of such selective HMX-induced turn-on behavior.

    Efficient explosive detection has drawn intense attentions due to increasing concerns of security [1,2].Especially,on-site or direct sensing of trace explosives is more appealing and essential in criminal sites and forensic analysis [3].Compared to nitroaromatics probes that are well-developed nowadays [4,5],detection of nitroamine that are more powerful and widely used in terrorism,e.g.,RDX and HMX [6–8],are still rare due to their ultralow volatility,unfavorable reduction potentials and weak electron withdrawing abilities.In particular,HMX possesses an even lower volatility of 0.1 ppt as compared to RDX (5 ppt),making it a great challenge to probe and identify trace HMX.One of the commonly utilized method for direct HMX sensing is specialized instrument analysis,including high-performance liquid chromatography (HPLC) [9],ion mobility spectrometry [10],voltammetry technique [11,12]and capillary electrophoresis [13].Yet,they are not quite suitable for on-site detection.Indirect detection through decomposition-mediated strategies (e.g.,radicals) [14]is another choice.The existing dilemma is,however,same reactive intermediates (NOx) are generated from decomposition of either HMX or RDX,thus hampering precise component identification and decreasing sensing selectivity.To the best of our knowledge,the direct and selective detection of trace HMX using chemical receptor has not been reported [1-14].Thus,development of chemical probes for direct detection and identification of HMX with enhanced selectivity is still an urgent task.

    Metal-organic cages (MOCs),discrete molecules assembled through coordination interactions between metal ions and organic ligands,have been recently considered as promising candidates in molecular recognition owing to their well-defined cavities and tunable functionalities [15–17].The rational design of individual building blocks allows fine tuning of cavity size and the integration of chemical functionalities and multiple interactions inside the cavities of MOCs,facilitating the selective binding of various guests,even at single molecule level.More importantly,guest molecules binding in molecular cages could in turn induce unusual phenomena that are hardly observed in guest-free state due to the amplified host-guest events in confined environment,such as guestinduced emission amplification [18],guest-induced rearrangement[19],stabilization of reactant transition state [20],enhancement of reaction selectivity [21].Taking advantages of these distinctive features of metal-organic cages,the rational design of ideal receptors for selective binding given target molecules should be possible.

    Herein we developed a non-fluorescent M2L4molecular cage(cage A),acting as a remarkable receptor for direct and selective sensing of HMX with exceptionally high fluorescence turnon behavior (Scheme 1).The cage A was decorated with unsaturated Cu2+and amino groups to amplify the guest binding events and induce detectable outputs.After binding HMX,the emission of HMX@cage A complex is enhanced remarkably up to 160-folds with a detection limit of 3.5 ppb.No response to RDX and PETN,and only minute response to TNT were detected,demonstrating the unique sensing selectivity towards HMX.DFT simulation was carried out to understand the mechanism behind.Compared with the cases of TNT and RDX,DFT simulation showed that HMX exhibits the largest charge transfer to Cu2+,indicating the strongest modulation of the Cu2+single occupied molecular orbitals (SOMO),correlating well with experimental results.Therefore,the origin of such fluorescence enhancement probably is the mutual fit of both size and binding sites between host and guest,thus leading to the guest-induced perturbation of the ligand-to-metal chargetransfer (LMCT) process.To the best of our knowledge,this is the first chemical receptor for direct and selective detection of HMX based on a fluorescence turn-on approach.It should be noted that,compared to traditional turn-off MOCs explosive sensors [22–24],the turn-on approach would significantly improve the sensitivity as well as the selectivity of the probe,making it a preference for HMX detection.

    Scheme 1.Schematic illustration of the direct identification of HMX within the cage A and structures of ligand and metal (S in copper unit represents the additionally coordinated solvent molecules H2O and CH3OH),and the target molecules include nitroaromatic TNT and nitroamines RDX,HMX and PETN.

    Fig.1.ESI-MS spectra of host-guest complexes.TNT@cage A (a),RDX@cage A (b),HMX@cage A (c) and PETN@cage A (d).

    The ligand 3,3′-((2-amino-5-isopropyl-1,3-phenylene)bis(ethyne-2,1-diyl))dibenzoic acid (L-NH2) was synthesized from 2,6-dibromo-4-isopropylaniline (for the synthetic route,see Fig.S1 in Supporting information) to create the M2L4cage A (Scheme 1).Through slowly layering methanol ontoN,N-diethylformamide(DEF) solution that contains Cu2(OAc)4(1 equiv.) and ligand L-NH2(2 equiv.) at room temperature [25,26],the molecular cage[Cu4(L-NH2)4(S)4]·xS with a yield of 80% was harvested after 5 days.Single-crystal X-ray analysis reveals the formation of a M2L4lantern-type structure with two paddlewheel dicopper motifs bridged by four ligands L-NH2(Fig.S2 and Table S1 in Supporting information).The distance between two Cu2+is 9.394 ?A,and the distance between two opposing aniline rings is 11.973 ?A.The cage crystals are soluble and stable in DEF/dichloromethane solution.The intense peak at 1962.20 in electrospray ionization mass (ESIMS) spectrum further confirmed the composition of [Cu4L4]+Na+(Fig.S3 and discussion in Supporting information).

    In our work,we selected two kinds of explosives as targets,including nitroaromatic TNT and nitroamines RDX,HMX and PETN (Scheme 1).The host-guest interaction between the cage A and explosive molecules was first studied by ESI-MS technique.In Figs.1a-c,the intense peaks atm/z2295.73,2262.50,and 2357.62 in ESI-MS spectra were observed,which are assigned correspondingly to [Cu4L4@C7H5N3O6]·4CH3OH+H+species,[Cu4L4@C3H6N6O6]·2H2O·2CH3OH+H+and[Cu4L4@C4H8N8O8]·H2O·2CH3OH+K+species,proving the 1:1 stoichiometric host-guest complexation.However,the intense peak atm/z1962.20 in Fig.1d shows that PETN was not encapsulated in the cage A,probably due to the steric hindrance between PETN and the cage A.However,due to the paramagnetic property of copper(II),NMR analysis could not be performed.

    Thus,the host-guest interaction was carefully investigated and confirmed by UV–vis titration.As shown in Fig.2a,the cage A solution exhibits obvious ligand-based charge-transfer bands at 378 nm in DEF solution.Upon addition of RDX and HMX,the intensity of absorption at visible area decreases while TNT increases the absorption at visible area,which could be attributed to the chargetransfer interaction between the amino group of cage A and TNT(Figs.2a and b).After the addition of TNT into the solution of the cage A,the color changes from colorless to deep red,indicating the guest-binding behavior inside the cavity (Fig.S4 in Supporting information).In the case of RDX and HMX,two isosbestic points are observed at 355 nm and 413 nm,together with the decrease of the absorption peak at 378 nm (Figs.2c and d),indicative of the prospective guest binding within the cage.The decrease of the absorption band at 378 nm might be due to the partial blockage of ligand-to-metal charge transfer (LMCT) upon interaction between HMX or RDX and metal ion center of the cage,thus leading to the strong modulation of the single occupied molecular orbitals (SOMO) of Cu2+and further modulation of the fluorescence.The detailed mechanism would be discussed in the following context.However,the UV–vis spectra of the cage A titrated by PETN did not change due to the size-selectivity of the cage,which is consistent with the ESI-MS results.The binding affinity of TNT@cage A was calculated to be 1.43×104L/mol by assuming a 1:1 binding model.For RDX and HMX,the cage A shows a moderate binding affinity of 1.03×104L/mol and 1.60×103L/mol,respectively (Fig.S5 in Supporting information).It should be noted that the substrate with higher binding constant does not necessarily indicate the better sensitivity.Both size-and shape-dependence determine the selectivity and sensing ability with our cage,which is an efficient sensing strategy towards selective explosive molecules trapping.

    Fig.2.(a) The UV–vis spectra of the cage A and the formed explosive@cage A complexes in DEF solvent;(b) UV–vis spectra as obtained during the titration of the cage A (10-5 L/mol) with 10-3 L/mol TNT in DEF/CH2Cl2 solution;(c) UV–vis spectra as obtained during the titration of the cage A (10-5 L/mol) with 10-3 L/mol RDX in DEF/CH2Cl2 solution,inset shows zoomed in spectrum;(d) UV–vis spectra as obtained during the titration of the cage A (10-5 L/mol) with 10-3 L/mol HMX in DEF/CH2Cl2 solution,inset shows zoomed in spectrum.

    Fig.3.(a) Emission spectra,as obtained during the titration of cage (10-7 L/mol)with 10-5 L/mol HMX in DEF solution when excited at 390 nm;inset shows the titration isotherm;(b) Fluorescence enhancement of HMX@cage A,TNT@cage A,RDX@cage A and PETN@cage A as compared to pure cage in DEF solution,inset shows the fluorescence response of the cage toward HMX,TNT,RDX and PETN after fluorescence titrations reach saturation;(c) Fluorescent images of HMX@cage A,TNT@cage A,RDX@cage A under UV light (365 nm).

    To further study the sensing ability and selectivity of the designed cage A,we investigated the fluorescence behavior of the host-guest complexes through fluorescence titration.As expected,irradiation of the cage A in pure DEF solution gave no emission due to fluorescence quenching by Cu2+ions,while the ligand LNH2exhibited high fluorescence at 445 nm (Fig.S6 in Supporting information).Interestingly,high fluorescence enhancement at 445 nm could be observed upon addition of HMX into the solution of the cage,together with a blue-shift of emission (Fig.3a).The limit of detection (LOD) was calculated to be 3.5 ppb from 3σ/S.In contrast,the titration of the cage with TNT in DEF solution led to a little increase of the emission band at 445 nm,while RDX and PETN caused almost no change in fluorescence spectra(Fig.S7 in Supporting information).The emission band at 445 nm of HMX@cage A in DEF solution showed a significant fluorescence enhancement up to 160-folds,whereas the cage A exhibited no fluorescence response to RDX and PETN,and only minute response to TNT (Figs.3b and c).Controlled fluorescence and absorbance experiments were also carried out that pure ligand L-NH2was mixed with explosives (Figs.S8 and S9 in Supporting information).No fluorescence and absorbance changes were observed,indicating the crucial role of mutual fit of HMX in MOC’s confined cavity to induce amplified detectable sensing signals.In Fig.3c,the fluorescent image of HMX@cage A in DEF solution shows a significant fluorescence enhancement as compared to TNT@cage A and RDX@cage A under irradiation.The quantum yields of the cage A in the absence and presence of HMX were measured to be 0.004 and 0.062,respectively.Luminescence lifetimes were also measured.The lifetime of cage A is 4.02 ns.In the presence of HMX,the lifetime is 2.73 ns,therefore the type of luminescence is fluorescence (Figs.S10 and S11 in Supporting information).In fact,due to the designable features of metal-organic cages,cages can be facilely modified to be hydrophilic through the appropriate selection or modification of ligands or metal ions for further investigation of the sensing performance and improvement of practical applications.

    In our work,numerous attempts were made to obtain the crystal structure of host-guest complex under different conditions (e.g.,solvent,temperature) to clarify host–guest interactions at molecular level,but unfortunately failed.Thus,DFT simulations were carried out to further study the inclusion of the explosives in the cage A and the possible fluorescence turn-on mechanism.The simulated geometries of the cage and host-guest complexes provide the 1:1 binary complexation (Fig.4).In all three explosives,nitro groups are found to point toward amino groups of the cage.Particularly,in the case of HMX,two nitro groups point to amino groups and the other two nitro groups point to the Cu2+center of the cage A (Fig.4d).Compared with RDX and TNT,HMX induces much stronger charge transfer within the cage,and the charge transfer to Cu2+center was much larger than that to amino groups,indicating a stronger modulation to the Cu2+single occupied molecular orbitals (SOMO) (Table 1).In fact,the electronic structures of Cu2+in MOC could be easily modulated through the coordination with solvent or some special molecules at the apical position in d9Cu2+,which involved a transformation of octahedral structure [27].After interacting with HMX,the SOMO of Cu2+might be disturbed and the major non-radiative processes,which presumably associated with electron transfer from the organic ligand-fluorophore to the low-lying Cu2+SOMO,were turned off,thus leading to guestinduced fluorescence turn-on for HMX sensing.The blue-shift of HMX@cage A might be caused by HMX-induced conformation change of the complex structure [28].Furthermore,X-ray photoelectron spectroscopy (XPS) measurement was performed on the sample of HMX@cage A.It was found that the valence of Cu2+in the host-guest complexes did not change,indicating no redox reaction occurred between explosives and the cage A (Table S2 in Supporting information).This result excludes the fluorescence turn-on possibility from the Cu(I)-based fluorophore which shows strong fluorescence.It should be noted that the calculated binding energies were performed in vacuum while the UV–vis titration was carried out in the presence of solvents.Due to the effects of solvation,the calculated and experimental binding properties cannot be compared directly.

    Fig.4.DFT simulation of the molecular cage A and difference-electron density of different host-guest complexes.Simulated molecular M2L4 (a),difference-electron density of HMX@cage A (b),TNT@cage A (c) and RDX@cage A (d) complexes with electron accumulation represented by red and depletion by dark blue.The isosurfaces are plotted at 0.001207 e-/bohr3 for difference-election density results.

    Table 1 Charge transfer and binding energy between the cage A and different guests.The values of charge transfer are given in electron charge.

    Compared with explosive sensors reported so far,our constructed cage exhibited enhanced sensitivity and selectivity [12].

    Our results indicate that through the rational design and synthesis of metal-organic cages,the cage strategy can be further developed and fulfill the requirement of direct and selective sensing various specific analytes,particularly those difficult to be detected by conventional approaches.For specific targets,the cage can be designed with multiple endo-functional sites and different cavity sizes,facilitating selective sensing.In addition,the cage can be further endowed withexo-reactive sites to couple with plasmonic nanostructures [26,29],utilizing significantly enhanced surface plasmon to amplify the output signals and achieve higher sensitive sensing or even single-molecule recognition,which is of great importance to chemical analysis.

    In summary,the first chemical receptor for direct identification of HMX with sensitivity down to ppb was developed based on the highly induced fluorescence turn-on behavior (160-fold) of a molecular cage.The unprecedented sensing features of the described receptor are attributed to synergistic effects of mutual size fit and HMX-induced perturbation of the ligand-to-metal chargetransfer (LMCT) process.With the very promising results achieved,we believe our work would establish a new approach for direct and selective detection of trace HMX,and the findings in this work could promote new sensing mechanism for developing fluorescent materials with remarkable sensing properties.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was made possible as a result of a generous grant from the National Natural Science Foundation of China (NSFC,Nos.21773135,22032003,21821001),the Ministry of Science and Technology (MOST,No.2017YFA0204501),and the Deutsche Forschungsgemeinschaft (DFG,German Research Foundation,No.TRR61).The authors wish to acknowledge Professor Wei Zhu for his helpful discussions regarding the experimental design.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.051.

    在线观看免费日韩欧美大片 | 国产精品99久久99久久久不卡 | 久久久久网色| 搡老乐熟女国产| 国内揄拍国产精品人妻在线| 亚洲精品aⅴ在线观看| 日韩av在线免费看完整版不卡| 大话2 男鬼变身卡| 在线观看av片永久免费下载| 男女免费视频国产| av在线蜜桃| 日韩av不卡免费在线播放| 22中文网久久字幕| 纵有疾风起免费观看全集完整版| 国产爱豆传媒在线观看| 日本免费在线观看一区| 亚洲欧美一区二区三区黑人 | 免费看日本二区| 久久精品国产亚洲av天美| 特大巨黑吊av在线直播| 熟妇人妻不卡中文字幕| 久久精品国产鲁丝片午夜精品| 久久精品国产a三级三级三级| 丝瓜视频免费看黄片| 精品人妻一区二区三区麻豆| 亚洲精品456在线播放app| 在线亚洲精品国产二区图片欧美 | 中文精品一卡2卡3卡4更新| 2018国产大陆天天弄谢| 精品午夜福利在线看| 777米奇影视久久| xxx大片免费视频| 九色成人免费人妻av| 亚洲自偷自拍三级| 亚洲国产欧美在线一区| 国产国拍精品亚洲av在线观看| 国产精品三级大全| av一本久久久久| 国产精品欧美亚洲77777| 狂野欧美激情性xxxx在线观看| 欧美一区二区亚洲| 六月丁香七月| 中文乱码字字幕精品一区二区三区| 久久久久网色| 麻豆乱淫一区二区| 亚洲精品中文字幕在线视频 | 亚洲高清免费不卡视频| 成年美女黄网站色视频大全免费 | 我要看日韩黄色一级片| 成人特级av手机在线观看| 久久久精品94久久精品| 久久影院123| 久久人人爽av亚洲精品天堂 | 国产探花极品一区二区| 五月开心婷婷网| 午夜福利在线观看免费完整高清在| 中文字幕av成人在线电影| 国产精品成人在线| 亚洲精品乱久久久久久| 精品午夜福利在线看| 久久人人爽人人爽人人片va| 国国产精品蜜臀av免费| 综合色丁香网| 亚洲aⅴ乱码一区二区在线播放| 91久久精品国产一区二区成人| 青春草亚洲视频在线观看| 超碰av人人做人人爽久久| 成人18禁高潮啪啪吃奶动态图 | 香蕉精品网在线| 高清在线视频一区二区三区| 日日啪夜夜爽| 国产精品人妻久久久久久| www.av在线官网国产| 夜夜看夜夜爽夜夜摸| 亚洲精品自拍成人| 观看av在线不卡| 少妇人妻 视频| 成人特级av手机在线观看| 日本av手机在线免费观看| 一二三四中文在线观看免费高清| 深爱激情五月婷婷| 美女福利国产在线 | 香蕉精品网在线| 国产大屁股一区二区在线视频| 久久这里有精品视频免费| www.av在线官网国产| 午夜福利网站1000一区二区三区| 亚洲真实伦在线观看| 亚洲av.av天堂| 一级毛片电影观看| 偷拍熟女少妇极品色| 国产免费视频播放在线视频| 最近手机中文字幕大全| 一本一本综合久久| 男女下面进入的视频免费午夜| 国产精品一区二区在线不卡| 久久久午夜欧美精品| 精品国产乱码久久久久久小说| 亚洲自偷自拍三级| 我的老师免费观看完整版| 亚洲第一区二区三区不卡| 国产精品国产av在线观看| 国产久久久一区二区三区| 极品少妇高潮喷水抽搐| 又黄又爽又刺激的免费视频.| 新久久久久国产一级毛片| 国产淫语在线视频| 成人高潮视频无遮挡免费网站| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 久久99热这里只有精品18| 高清av免费在线| 日韩强制内射视频| 99久国产av精品国产电影| 亚洲av不卡在线观看| 午夜免费观看性视频| 国产成人freesex在线| 成人毛片a级毛片在线播放| 少妇丰满av| 日韩av免费高清视频| 91精品国产国语对白视频| 亚洲精品第二区| 久久久久久人妻| 久久精品熟女亚洲av麻豆精品| 日本黄色日本黄色录像| 欧美区成人在线视频| 日日啪夜夜撸| 七月丁香在线播放| 99九九线精品视频在线观看视频| 大香蕉97超碰在线| 最近2019中文字幕mv第一页| 亚洲美女搞黄在线观看| 国产精品国产av在线观看| 大香蕉久久网| 日本-黄色视频高清免费观看| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 高清av免费在线| 日韩成人av中文字幕在线观看| 王馨瑶露胸无遮挡在线观看| 精品久久久精品久久久| 国产 精品1| 99热这里只有是精品在线观看| av线在线观看网站| 亚洲av中文字字幕乱码综合| 三级经典国产精品| 麻豆成人av视频| 国产伦在线观看视频一区| 国产一区二区三区综合在线观看 | 国产精品.久久久| 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 黄片wwwwww| 大码成人一级视频| 激情五月婷婷亚洲| 久久 成人 亚洲| 99热全是精品| 亚洲精品一区蜜桃| 免费人成在线观看视频色| 欧美一级a爱片免费观看看| 小蜜桃在线观看免费完整版高清| av福利片在线观看| 久久久午夜欧美精品| 亚洲一级一片aⅴ在线观看| 伦理电影免费视频| 一本久久精品| 天堂俺去俺来也www色官网| 又黄又爽又刺激的免费视频.| 久久av网站| 国产爱豆传媒在线观看| 99久久中文字幕三级久久日本| 亚洲精品国产成人久久av| 99久国产av精品国产电影| 久久久久久久久久久丰满| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 国产午夜精品久久久久久一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边吃奶边做爰视频| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 成人亚洲精品一区在线观看 | 国产精品女同一区二区软件| 亚洲精品日本国产第一区| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 亚洲国产色片| 在线观看一区二区三区激情| 久久国产精品大桥未久av | 国产男人的电影天堂91| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 亚洲最大成人中文| 日韩伦理黄色片| 久久 成人 亚洲| 超碰97精品在线观看| 国产伦理片在线播放av一区| 高清午夜精品一区二区三区| 亚洲av中文av极速乱| 欧美国产精品一级二级三级 | 高清欧美精品videossex| 久久久a久久爽久久v久久| 久久久久久久久久人人人人人人| 黄片wwwwww| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 欧美变态另类bdsm刘玥| 国产av精品麻豆| 色婷婷av一区二区三区视频| 欧美日韩国产mv在线观看视频 | 观看av在线不卡| av一本久久久久| 国产淫片久久久久久久久| 少妇精品久久久久久久| 永久网站在线| 五月玫瑰六月丁香| 欧美xxxx黑人xx丫x性爽| 蜜桃亚洲精品一区二区三区| 看免费成人av毛片| av免费观看日本| 久久人人爽av亚洲精品天堂 | 亚洲av中文av极速乱| 久久ye,这里只有精品| 久久久久性生活片| 男人添女人高潮全过程视频| 免费观看av网站的网址| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| av在线app专区| h日本视频在线播放| 国产一区二区三区av在线| 搡老乐熟女国产| 三级国产精品片| 中国美白少妇内射xxxbb| 亚洲精品视频女| 伦理电影免费视频| 少妇 在线观看| 少妇的逼水好多| 久久热精品热| 欧美国产精品一级二级三级 | 麻豆乱淫一区二区| 夜夜爽夜夜爽视频| 夜夜看夜夜爽夜夜摸| 亚洲av.av天堂| 最后的刺客免费高清国语| av黄色大香蕉| 日本-黄色视频高清免费观看| 国产男人的电影天堂91| 国产黄色视频一区二区在线观看| 精品一品国产午夜福利视频| 午夜福利网站1000一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲成人手机| 观看免费一级毛片| 亚洲电影在线观看av| 18禁裸乳无遮挡动漫免费视频| 男女啪啪激烈高潮av片| 国产精品爽爽va在线观看网站| 少妇人妻精品综合一区二区| 国产伦精品一区二区三区四那| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| 我要看黄色一级片免费的| 亚洲人成网站在线播| 伊人久久精品亚洲午夜| 欧美日韩在线观看h| 午夜免费鲁丝| 晚上一个人看的免费电影| 日韩国内少妇激情av| 精品国产乱码久久久久久小说| 国产精品爽爽va在线观看网站| 欧美丝袜亚洲另类| 成人午夜精彩视频在线观看| 1000部很黄的大片| 爱豆传媒免费全集在线观看| 一本久久精品| 亚洲国产毛片av蜜桃av| 亚洲欧美精品自产自拍| 国产成人精品婷婷| 精品人妻熟女av久视频| 久久婷婷青草| 天天躁夜夜躁狠狠久久av| 久久ye,这里只有精品| 水蜜桃什么品种好| 国产av一区二区精品久久 | 久久99热这里只有精品18| 亚洲综合精品二区| 又爽又黄a免费视频| 寂寞人妻少妇视频99o| 日韩大片免费观看网站| 日本欧美国产在线视频| 男人添女人高潮全过程视频| 国产爱豆传媒在线观看| 一级毛片久久久久久久久女| 蜜桃亚洲精品一区二区三区| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久| 精品久久久久久久末码| 乱码一卡2卡4卡精品| 日本黄大片高清| 一级a做视频免费观看| 亚洲欧美一区二区三区国产| 国产精品人妻久久久久久| 深夜a级毛片| 91精品伊人久久大香线蕉| 一个人免费看片子| 在线观看av片永久免费下载| 久久综合国产亚洲精品| 香蕉精品网在线| 久久久久久久久久人人人人人人| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 舔av片在线| 欧美丝袜亚洲另类| 久久久久久久久久久免费av| 午夜激情久久久久久久| 国产人妻一区二区三区在| av视频免费观看在线观看| 免费观看a级毛片全部| 91久久精品国产一区二区成人| 97在线人人人人妻| 两个人的视频大全免费| 亚洲国产精品一区三区| 老司机影院成人| 亚洲性久久影院| 精品国产三级普通话版| 18禁裸乳无遮挡免费网站照片| av在线app专区| 欧美xxⅹ黑人| xxx大片免费视频| av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 日韩制服骚丝袜av| 国内精品宾馆在线| 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕| 亚洲,一卡二卡三卡| 丝袜喷水一区| freevideosex欧美| av国产精品久久久久影院| 国产成人a区在线观看| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 成人二区视频| 日本免费在线观看一区| 国产成人精品婷婷| 麻豆乱淫一区二区| 老司机影院毛片| 十分钟在线观看高清视频www | 久久久久久伊人网av| 免费观看的影片在线观看| 国产午夜精品一二区理论片| 亚洲成人中文字幕在线播放| 超碰av人人做人人爽久久| 国产在线一区二区三区精| 国产av精品麻豆| 成人特级av手机在线观看| 熟妇人妻不卡中文字幕| 成年美女黄网站色视频大全免费 | 18+在线观看网站| 又大又黄又爽视频免费| 免费观看的影片在线观看| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 一本久久精品| 国产成人一区二区在线| 亚洲伊人久久精品综合| 久久精品国产亚洲网站| 伦理电影大哥的女人| 久久久国产一区二区| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 久久影院123| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| av在线播放精品| 午夜免费观看性视频| 日本av免费视频播放| av不卡在线播放| 亚洲在久久综合| 国产成人精品婷婷| 欧美 日韩 精品 国产| 久久人妻熟女aⅴ| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 深夜a级毛片| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 久久国内精品自在自线图片| 国产欧美日韩精品一区二区| 精品久久久久久久久亚洲| 五月玫瑰六月丁香| 麻豆乱淫一区二区| 制服丝袜香蕉在线| 亚洲aⅴ乱码一区二区在线播放| av视频免费观看在线观看| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| av播播在线观看一区| 美女cb高潮喷水在线观看| 亚洲久久久国产精品| 日韩制服骚丝袜av| 亚洲国产最新在线播放| 国产精品人妻久久久久久| 免费播放大片免费观看视频在线观看| 丰满少妇做爰视频| 人妻 亚洲 视频| 日本wwww免费看| 99热6这里只有精品| 亚洲成人av在线免费| 丰满乱子伦码专区| 在线亚洲精品国产二区图片欧美 | 精品少妇久久久久久888优播| 午夜视频国产福利| 精品久久久久久电影网| 51国产日韩欧美| 成人亚洲精品一区在线观看 | 国产69精品久久久久777片| 免费观看av网站的网址| 日本av手机在线免费观看| 在线观看一区二区三区激情| 日本午夜av视频| 毛片女人毛片| 高清视频免费观看一区二区| 精品久久国产蜜桃| 97在线人人人人妻| 街头女战士在线观看网站| 亚洲综合精品二区| 国产伦理片在线播放av一区| 在线观看三级黄色| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| 能在线免费看毛片的网站| 久久鲁丝午夜福利片| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 精品一区二区三区视频在线| av天堂中文字幕网| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 亚洲av.av天堂| 中文字幕免费在线视频6| 国产极品天堂在线| 色婷婷久久久亚洲欧美| av天堂中文字幕网| 国产高清有码在线观看视频| 日韩电影二区| 十分钟在线观看高清视频www | 亚洲,一卡二卡三卡| 午夜视频国产福利| 日韩中文字幕视频在线看片 | 久久久久人妻精品一区果冻| 国产精品三级大全| 国产乱人偷精品视频| 国产精品成人在线| 久久久久国产精品人妻一区二区| 永久网站在线| 性色avwww在线观看| 亚洲av中文字字幕乱码综合| 国产男人的电影天堂91| 欧美极品一区二区三区四区| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 国产 一区 欧美 日韩| 婷婷色综合大香蕉| 国产精品一二三区在线看| 久久热精品热| 五月天丁香电影| 一级毛片黄色毛片免费观看视频| 18禁在线无遮挡免费观看视频| 久久久久国产网址| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 久久久久久久久大av| 亚洲人成网站在线播| 亚洲成人中文字幕在线播放| 99热这里只有是精品在线观看| 亚洲一区二区三区欧美精品| 毛片女人毛片| 夜夜看夜夜爽夜夜摸| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品精品| 色5月婷婷丁香| 国产高清国产精品国产三级 | 亚洲自偷自拍三级| 国产久久久一区二区三区| 精品国产乱码久久久久久小说| 欧美3d第一页| 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 女人久久www免费人成看片| 亚洲aⅴ乱码一区二区在线播放| 黄色一级大片看看| 久久 成人 亚洲| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 久久亚洲国产成人精品v| a级毛片免费高清观看在线播放| 国产精品国产av在线观看| 欧美国产精品一级二级三级 | 色5月婷婷丁香| 视频中文字幕在线观看| 直男gayav资源| 99热网站在线观看| 国产久久久一区二区三区| 日韩中字成人| 欧美日韩亚洲高清精品| 哪个播放器可以免费观看大片| 人妻系列 视频| 亚洲av国产av综合av卡| 99热6这里只有精品| 亚洲av中文av极速乱| 水蜜桃什么品种好| 1000部很黄的大片| 一本一本综合久久| 99视频精品全部免费 在线| 一二三四中文在线观看免费高清| 内射极品少妇av片p| 亚洲国产精品一区三区| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 秋霞伦理黄片| 亚洲国产欧美人成| 日韩一区二区视频免费看| 多毛熟女@视频| 久久精品熟女亚洲av麻豆精品| 免费不卡的大黄色大毛片视频在线观看| 国产乱人偷精品视频| av免费在线看不卡| 国产色爽女视频免费观看| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 久久久久久久精品精品| 欧美高清成人免费视频www| 少妇裸体淫交视频免费看高清| 亚洲国产日韩一区二区| av卡一久久| 久久久久久久久久成人| 免费观看性生交大片5| 人人妻人人澡人人爽人人夜夜| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 简卡轻食公司| 亚洲av欧美aⅴ国产| 国产美女午夜福利| 精品人妻偷拍中文字幕| 久久精品夜色国产| 国产极品天堂在线| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 青春草国产在线视频| 久久久午夜欧美精品| 亚洲精品成人av观看孕妇| 久久久午夜欧美精品| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 老司机影院成人| av在线蜜桃| 少妇人妻精品综合一区二区| 自拍偷自拍亚洲精品老妇| 嘟嘟电影网在线观看| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 亚洲怡红院男人天堂| 亚洲精品一区蜜桃| 国产精品一及| 国产大屁股一区二区在线视频| 丰满人妻一区二区三区视频av| 老师上课跳d突然被开到最大视频| 18禁裸乳无遮挡动漫免费视频| 久久久久久久亚洲中文字幕| 日韩三级伦理在线观看| 中文在线观看免费www的网站| 99久久中文字幕三级久久日本| 97在线人人人人妻| 2018国产大陆天天弄谢| 少妇的逼水好多| 午夜免费鲁丝| 国产伦在线观看视频一区| 亚洲,一卡二卡三卡| 九九在线视频观看精品| av国产久精品久网站免费入址| 岛国毛片在线播放| videossex国产| 国产av码专区亚洲av| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 人妻系列 视频| 精品国产乱码久久久久久小说| videos熟女内射| 日韩av免费高清视频| 亚洲精华国产精华液的使用体验| 成人18禁高潮啪啪吃奶动态图 | 精品久久国产蜜桃| 国产精品人妻久久久久久| av国产精品久久久久影院| av福利片在线观看| 简卡轻食公司| 国产精品福利在线免费观看| 老熟女久久久|