• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag2CO3-catalyzed efficient synthesis of internal or terminal propargylicamines and chalcones via A3-coupling under solvent-free condition

    2021-03-14 02:31:54NingoLiShitngXuXueynWngLiXuJieQioZhiwuLingXinhuXu
    Chinese Chemical Letters 2021年12期

    Ningo Li,Shitng Xu,Xueyn Wng,Li Xu,Jie Qio,c,Zhiwu Ling,Xinhu Xu,?

    a Basic Medical College,Shanxi Medical University,Taiyuan 030001,China

    b College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China

    c Key Laboratory of Cellular Physiology,Ministry of Education,Shanxi Medical University,Taiyuan 030001,China

    Keywords:Ag-catalyzed A3-coupling Solvent-free Propargylamines Chalcones

    ABSTRACT Several simple,fast and practical protocols have been developed to synthesize internal or terminal propargylamines and chalcones via A3-coupling reaction of aldehydes,amines,and alkynes catalyzed by an easily available catalyst Ag2CO3 under solvent-free condition.The reaction proceeded smoothly to deliver various products in good-to-excellent yields with good functional group tolerance.Gram-scale preparation,bioactive molecule synthesis and asymmetric substrates have been demonstrated.Furthermore,plausible mechanisms for the synthesis of different products have been proposed.

    Propargylamines and chalcones are widely used as valuable compounds in organic synthesis,medicinal chemistry,and material science due to their importance as versatile synthetic blocks,biological activities and functional materials [1].As a consequence,the preparation of propargylamines and chalcones has been intensively studied in the past decades [2].In general,there are three main methods to prepare propargylamines (Scheme 1).The traditional method is nucleophilic addition of alkynyl–metal reagents to imines for the preparation of propargylamines (Scheme 1a).However,highly reactive reagents such asn-butyllithium or Grignard reagents used to prepare alkynyl–metal reagents are highly moisture sensitive and require harsh reaction conditions [3].Transitionmetal-catalyzed A3-coupling reaction of aldehydes,amines and alkynes is perhaps more attractive strategy [4].Several transition metal catalysts such as AgI,AuBr,InCl3,CoCl2(PPh3)2,FeCl3,Mn(OAc)2,and metal nanometerials have been used in such threecomponent reactions (Scheme 1b) [5].Nonetheless,some drawbacks such as high reaction temperature,using the toxic solvents,utilizing inert gas protection,long reaction time,laborious preparation of metal nanomaterial and moderate yields are rather common among these methods.Furthermore,most of the synthesized propargylamines are internal alkyne structures,and the synthesis of terminal propargylamines was rarely reported [6].Alternatively,Li’s group and other groups developed several methods based on copper-catalyzed oxidative coupling of terminal alkyne and amines followed by C-C bond formation to construct propargylamine (Scheme 1c) [7].But the peroxidetert–BuOOH is indispensable during the catalytic process.

    For the preparation of chalcones,the main methods are the Claisen-Schmidt condensation or hydration-condensation of aromatic alkynes with aldehydes (Scheme 1d) [8].However,low selectivity and harsh reaction conditions limited their application.Therefore,further development of a simple,fast and practical approach to synthesize internal or terminal propargylamines and chalcones is very necessary in organic synthesis.

    In recent years,silver salts as common catalysts are widely used in organic synthesis and industry due to the advantages of high catalytic activity and easy availability [9].Furthermore,solventfree synthetic reactions have attracted increasing attention from chemists [10].In this paper,we reported Ag2CO3as a commercial catalyst for the efficient preparation of internal or terminal propargylamines and chalconesviaA3coupling reaction of aldehydes,amines and alkynes under solvent-free condition (Scheme 1e).Compared to the reported methods [5],the present protocols provided several simple,fast,cost-effective and practical ways for the preparation of various propargylamines and chalcones.

    Scheme 1.Synthesis of propargylamines and chalcones.

    This study was commenced by optimizing the reaction conditions using benzaldehyde 1a,piperidine 2a and phenylacetylene 3a as model substrates (Table 1).A mixture of 1a (1 mmol),2a(1.2 mmol),3a (1.5 mmol) and Ag2CO3(0.03 mmol) in toluene(3.0 mL) was stirred at 80 °C for 12 h.The reaction took place and gave 72% isolated a yield of 4a (entry 1).When we employed H2O,CHCl3,THF and CH3CN as the solvents,lower yields were observed (entries 2–5).Interestingly,the solvent-free reaction proceeded rapidly in good yields (entry 6).As the temperature continued to increase at 100 °C,the yield of 4a increased to 93%.The highest yield was achieved during the temperature at 110 °C and the reaction time was only 10 min (entries 7–9).When the loading amount of Ag2CO3was reduced,yield of 4a decreased to 83% (entry 10).We also examined other silver salts such as Ag2O,AgBF4,AgNO3,Ag2SO4,AgOTf and AgI,but moderate yields were observed (entries 11–16).Therefore,the optimal reaction conditions were as follows:aldehydes (1.0 mmol),amines (1.2 mmol),alkynes(1.5 mmol),and Ag2CO3(0.03 mmol) at 110 °C under solvent-free condition.

    Table 1 Optimization of reaction conditions.a

    With the optimal reaction conditions in hand,the substrate scope of the A3coupling reaction was investigated with respect to aldehydes,amines and terminal alkynes (Scheme 2).First,several aldehydes bearing electron-rich (Me,OMe and OH) and electron-deficient (F,Cl) substituents on the aromatic ring were successfully converted into the corresponding propargylamines in up to 99% yield (4b-4h).Among them,slight decreases in reactivity were observed for 4c and 4h,probably because the relatively strong electron-donating effect and steric hindrance impeded the nucleophilic addition of phenylacetylene to an imine.The reactivity of theorthoposition is lower than that ofparaandmetafor chlorine-substituted benzaldehyde (4e-4g).When 5-bromothiophene-2-carbaldehyde,[1,1′-biphenyl]-4-carbaldehyde andN-(4-formylphenyl)acetamide were subjected to this process,the desired products 4i,4j and 4k were obtained in 87%,90% and 88% yield,respectively,showing good tolerance.Moreover,the cyclohexanecarbaldehyde was also effective to generate the target product with 91% yield (4l).

    Scheme 2.Reaction scope of aldehydes,secondary amines or terminal alkynes.Conditions:Catalyst Ag2CO3 (3 mol%),aldehydes (1,1.0 mmol),secondary amines(2,1.2 mmol),terminal alkynes (3,1.5 mmol),solvent-free,110 °C,isolated yields.

    Scheme 3.Reaction scope of aldehydes,secondary amines or alkynylsilanes.Conditions:Catalyst Ag2CO3 (3 mol%),aldehydes (1,1.0 mmol),secondary amines (2,1.2 mmol),alkynylsilanes (5,1.5 mmol),solvent-free,110 °C,isolated yields.

    Next,a variety of terminal alkynes and secondary amines were screened under optimal condition.As for electron-deficient and electron-rich phenylacetylenes with different substituents (F,Cl,OMe,Me,Et andn-C5H11),regardless of the location at theortho-,meta-,orpara-position,the products were obtained in good to excellent yields (4m-4t).3,3-Diethoxyprop-1–yne with acetal group could also be tolerated to afford the desired product 4u in 85%yield.However,it is important to point out that trimethyl(prop–2-yn-1-yloxy)silane did not produce the corresponding product,instead desilylation of the TMS group (4v).Furthermore,the reaction using heterocyclic secondary amines such as pyrrolidine,azepane,morpholine,and thiomorpholine proceeded smoothly resulting in the desired products in high yields (4w-4z).

    Guided by removing the silyl group of the product 4t,we investigated another A3-coupling reaction of benzaldehyde,piperidine and trimethyl(phenylethynyl)silane utilizing Ag2CO3-catalyzed activation of the C–Si bond (optimal conditions in Table S1,Supporting information).Gratifyingly,above Ag2CO3catalytic system can promote the reaction to proceed smoothly producing the corresponding propargylamines.As illustrated in Scheme 3,both aromatic aldehydes with electron-withdrawing (F,NO2) and electron-donating (OMe) groups can react smoothly with piperidine and trimethyl(phenylethynyl)silane to obtain propargylamines(4a′–4c′).Meanwhile,alkynylsilanes possessing chlorine and alkyl groups atpara-position underwent the reaction smoothly delivering the target products in excellent yields (4d′–4f′).Alkyl pivalaldehyde and hex–1-yn-1-yltrimethylsilane can be transformed to the corresponding products with 80% and 87% yield (4g′,4h′).In addition,noncyclic secondary amines were also effective to generate the target products in good yields (4i′,4j′).Thus,the above results prove that Ag2CO3can be used as an effective catalyst to synthesize propargylamines easily and quickly,and showed great advantages over the reported catalytic systems [5].

    Although the preparation of the propargylamines with internal alkyne structure has a certain practicability,terminal propargylamines may provide a wider range of applications due to the unique reactivity of sp C-H bond.Therefore,we chose TMS–acetylene as the coupling reagent by direct sp C-Si cleavage with aldehydes and amines to synthesize terminal propargylamines catalyzed by Ag2CO3.As illustrated in Scheme 3,all the aldehydes and secondary amines substrates showed high reactivity delivering the terminal propargylamines in high yields (4k′–4p′).It was noteworthy that alkynylsilane containing TES could also be converted to the corresponding terminal propargylamine 4k′(removing TES),which is in sharp contrast with that AgI-catalyzed A3-coupling reaction in the previous reported method (retaining TES) [5a].Surprisingly,when using 3-(trimethylsilyl)propiolic acid as a substrate,the results showed the product 4k′was also the terminal propargylamine,which was first disclosed by us.Likewise,substrates aldehydes and secondary amines were readily converted into valuable terminal alkynes in satisfied yields (4q′–4t′).Hence,both TMS–acetylene and 3-(trimethylsilyl)propiolic acid could be used as good coupling partners for the preparation of terminal propargylamines through A3-coupling reaction catalyzed by Ag2CO3without using excessive F-reagent [11].

    Accidentally,we extended the reaction time over 2 h for the reaction of benzaldehyde,piperidine and phenylacetylene catalyzed by Ag2CO3at 110 °C under solvent-free condition.The other product was (E)-chalcone,instead of stopping at the A3-coupling step.So we developed a novel method based on Ag2CO3-catalyzed the reaction of aldehydes,piperidine and terminal alkynes to obtain valuable chalcones (optimal conditions in Table S3,Supporting information).As shown in Scheme 4,we obtained moderate-to-good yields of (E)-chalcones.Aromatic aldehydes and phenylacetylenes with electron-withdrawing groups (CN,F,Cl and Br) show excellent diastereoselectivity (6b–6f,6h-6j).On the contrary,phenylacetylenes with electron-donating groups (Me,Et,n-Pr,t-Bu) show good diastereoselectivity except for CH3atmetaposition (6k–6l).In addition,theπ-extended 2-naphthyl aldehyde is also a suitable substrate for this transformation (6g).Unfortunately,aliphatic aldehydes and aliphatic alkynes were not active in this transformation.

    As a practical synthetic protocol,both the operational simplicity and scalability have great significance for the synthesis of propargylamines and chalcones in the laboratory,and even in the field of the pharmaceutical industry.Therefore,both large-scale preparation and bioactive molecule synthesisviaA3-coupling reaction were further investigated.Pleasingly,10 mmol of benzaldehyde (1a) was employed to react with piperidine (2a) and phenylacetylene (3a) under standard conditions and 92% yield of 4a was obtained (Scheme 5a),which is a positive aspect for industrial application.Importantly,the above catalysis system could be used for bioactive molecule synthesis such as ethisterone andNethyl-3-carbazolecarboxaldehyde to afford the corresponding products with yields of 88% and 92% (4u′,4v′) (Scheme 5b),respectively.Furthermore,we screened the compound 4v′for antiproliferative activities in two human cancer cell lines (colorectal carcinoma HCT116 cells and hepatoma HepG2 cells) using the CCK-8 assay.Consequently,compound 4v′showed good inhibitory activity for these two human cancer cell lines at the relatively low μmol/L level,with IC50values of 61.01 μmol/L and 72.58 μmol/L,respectively (Supporting information).A further bioactivity investigation is still underway in our laboratory.Moreover,the diastereoselectivity of Ag2CO3-catalyzed A3-coupling reaction was investigated by using benzaldehyde,(S)-N-benzyl-1-phenylethylamine and phenylacetylene as model substrates.It was worth noting that(S)-N-benzyl-1-phenylethylamine showed good diastereoselectivity(2.5:1).Meanwhile,when (S)-N-benzyl-1-phenylethylamine was reacted with formaldehyde and phenylacetylene,the desired products 4x′,which had no racemization,were afforded in 98% yield(Scheme 5c).

    Scheme 4.Reaction scope of aldehydes or terminal alkynes.Conditions:Catalyst Ag2CO3 (3 mol%),aldehydes (1,1.0 mmol),piperidine (2a,1.2 mmol),terminal alkynes (3,1.5 mmol);solvent-free;110 °C,5 h;Isolated yields;The ratio of E/Z was estimated by the integral area of aromatic ring hydrogen atom of the product in 1H NMR.

    Besed on previously well-documented results [5a,6a,12],plausible mechanisms for the synthesis of different products are proposed in Scheme 6.The Ag2CO3activated the C–H bond of terminal alkyne or C-Si bond of alkynylsilane to generate the silver acetylide intermediate,which reacted with the iminium ion I formed by aldehydes and piperidine to afford the propargylamines and releases the silver ion for further reaction (Path A).The alkynyl carbon bonded to 3-(trimethylsilyl)propiolate attacked the iminium ion I to form intermediate II,which decarboxylated to give the propargylamine with TMS group.At last,the Ag2CO3activated CSi bond,delivering the desired terminal propargylamine (Path B).Ag2CO3-catalyzed A3coupling resulted in the formation of propargylamine,which was deprotonated by excessive base piperidine in the coordination of silver with the triple bond to form intermediate III.Subsequent protonation generated allenylamine intermediate IV,which was further hydrolyzed to give preference to the thermodynamically more stableEconfiguration product 6 (Path C).

    Scheme 5.(a) Large-scale synthesis of 4a.(b) Bioactive molecule synthesis.(c) Investigation of substrate-controlled asymmetric Ag2CO3-catalyzed A3-coupling.

    Scheme 6.Plausible mechanisms.

    In conclusion,we have developed several simple,efficient and practical methods for preparing internal or terminal propargylamines and chalconesviaA3coupling of aldehydes,amines and alkynes using easily available Ag2CO3as a catalyst under solventfree condition.The Ag2CO3can effectively activate not only C–H bond in terminal alkyne,but C-Si bond in alkynylsilane to afford the corresponding products.Both TMS–acetylene and 3-(trimethylsilyl)propiolic acid could be used as good coupling partners delivering the terminal propargylamines.Besides,the above methods showed broad substrate group with good functional group tolerance and could be applied to synthesize 1-(1,3-diphenylprop-2-yn-1-yl)piperidine 4a in gram scale.Multifunctional compounds such as ethisterone andN-ethyl-3-carbazolecarboxaldehyde could also achieve the corresponding transformation and compound 4v′showed good inhibitory activity against CHT116 cells and HepG2 cells.The stereoselectivity of A3-coupling reaction was also investigated.Given the operational simplicity,easily available commercial catalysts,short reaction time,high-efficiency and the diversity of products,these developed methods are expected to be ideal for organic intermediate synthesis and fine chemical production.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We are grateful for the financial support from the National Natural Science Foundation of China (Nos.21802093,21536003),Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2019L0408),and the PhD Start-up Foundation of Shanxi Medical University (No.03201501) for the financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.04.026.

    久久午夜亚洲精品久久| 中文在线观看免费www的网站 | 亚洲 欧美 日韩 在线 免费| 亚洲自拍偷在线| 久久久久久久久久黄片| 国产成人精品久久二区二区91| 国产亚洲av嫩草精品影院| 欧美3d第一页| 午夜精品一区二区三区免费看| 久久久久国产精品人妻aⅴ院| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| 女警被强在线播放| 精品国产乱子伦一区二区三区| 精品福利观看| 亚洲乱码一区二区免费版| 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 国产乱人伦免费视频| 亚洲欧美日韩无卡精品| 91av网站免费观看| 欧美中文日本在线观看视频| 欧美性长视频在线观看| www日本黄色视频网| 听说在线观看完整版免费高清| 在线观看日韩欧美| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 日本免费a在线| 亚洲人成伊人成综合网2020| 黑人操中国人逼视频| 老熟妇仑乱视频hdxx| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全免费视频| 精品午夜福利视频在线观看一区| 九色国产91popny在线| 在线观看66精品国产| 在线观看一区二区三区| 久久亚洲真实| 久久国产精品人妻蜜桃| 一区二区三区高清视频在线| 国产一区二区在线av高清观看| 国产亚洲av嫩草精品影院| 久久久久精品国产欧美久久久| 国内精品一区二区在线观看| 草草在线视频免费看| а√天堂www在线а√下载| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av高清一级| 成人国语在线视频| 成人国产综合亚洲| 国产精品免费一区二区三区在线| 国产精华一区二区三区| 亚洲av成人精品一区久久| 国产精品1区2区在线观看.| 搡老岳熟女国产| 国产精品精品国产色婷婷| 国产成人aa在线观看| 免费在线观看日本一区| 又粗又爽又猛毛片免费看| av有码第一页| 国产视频内射| 91在线观看av| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 亚洲欧美精品综合久久99| 日韩国内少妇激情av| 国产男靠女视频免费网站| 免费在线观看完整版高清| 日韩高清综合在线| 99精品在免费线老司机午夜| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 国产真实乱freesex| 50天的宝宝边吃奶边哭怎么回事| 妹子高潮喷水视频| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 国产一级毛片七仙女欲春2| 天堂动漫精品| 欧美日韩一级在线毛片| 久久精品亚洲精品国产色婷小说| 国产精品香港三级国产av潘金莲| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 999久久久国产精品视频| 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 日韩欧美精品v在线| 18禁美女被吸乳视频| 色av中文字幕| 女同久久另类99精品国产91| 久久精品综合一区二区三区| 欧美一级毛片孕妇| 在线观看免费视频日本深夜| av有码第一页| 老司机福利观看| 白带黄色成豆腐渣| 老汉色av国产亚洲站长工具| 精品无人区乱码1区二区| 一本综合久久免费| 欧美黑人精品巨大| 午夜精品在线福利| 99国产精品99久久久久| 少妇人妻一区二区三区视频| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 91成年电影在线观看| 97超级碰碰碰精品色视频在线观看| 欧美高清成人免费视频www| 国产三级在线视频| 日韩高清综合在线| 亚洲成av人片在线播放无| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放 | www.999成人在线观看| 99在线视频只有这里精品首页| 成人欧美大片| 久久久国产欧美日韩av| av超薄肉色丝袜交足视频| 精品日产1卡2卡| 婷婷精品国产亚洲av| 久久中文看片网| 国产熟女午夜一区二区三区| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| cao死你这个sao货| 日本一本二区三区精品| 国产三级在线视频| 久久天躁狠狠躁夜夜2o2o| 50天的宝宝边吃奶边哭怎么回事| 男女午夜视频在线观看| 亚洲av熟女| 黄色丝袜av网址大全| 999精品在线视频| 91成年电影在线观看| 亚洲欧美精品综合久久99| 国产亚洲av高清不卡| 长腿黑丝高跟| 校园春色视频在线观看| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影| 精品久久久久久久久久久久久| 妹子高潮喷水视频| 国产亚洲精品久久久久5区| 国产精品 欧美亚洲| 精品国产亚洲在线| 九九热线精品视视频播放| 亚洲成a人片在线一区二区| 曰老女人黄片| 亚洲国产欧美人成| 国产精品亚洲av一区麻豆| 午夜激情av网站| 男女床上黄色一级片免费看| 免费看日本二区| 麻豆成人av在线观看| 亚洲av美国av| 欧美3d第一页| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看 | 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩无卡精品| 麻豆国产av国片精品| 亚洲国产欧美网| 国产成人系列免费观看| 成人午夜高清在线视频| xxx96com| av国产免费在线观看| 一本久久中文字幕| 99国产精品一区二区三区| 少妇被粗大的猛进出69影院| 欧美日韩福利视频一区二区| 亚洲最大成人中文| 国产精品九九99| 99久久综合精品五月天人人| 日韩欧美 国产精品| 搡老妇女老女人老熟妇| 国产激情欧美一区二区| 婷婷六月久久综合丁香| 国产日本99.免费观看| 成年版毛片免费区| 免费高清视频大片| 美女 人体艺术 gogo| 亚洲自偷自拍图片 自拍| 男女做爰动态图高潮gif福利片| 在线观看日韩欧美| 国产精品亚洲一级av第二区| 俄罗斯特黄特色一大片| 最新美女视频免费是黄的| 国内少妇人妻偷人精品xxx网站 | 日韩欧美在线二视频| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 日本撒尿小便嘘嘘汇集6| 成人精品一区二区免费| 国产一级毛片七仙女欲春2| 丁香欧美五月| 精品免费久久久久久久清纯| 精品午夜福利视频在线观看一区| 超碰成人久久| 欧美在线黄色| 久久中文字幕人妻熟女| 这个男人来自地球电影免费观看| 国产单亲对白刺激| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 国产av一区二区精品久久| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清专用| 亚洲avbb在线观看| 亚洲午夜精品一区,二区,三区| ponron亚洲| 香蕉av资源在线| 毛片女人毛片| 国内精品一区二区在线观看| 舔av片在线| 久久午夜综合久久蜜桃| 久久久国产欧美日韩av| 热99re8久久精品国产| 色老头精品视频在线观看| 久久香蕉国产精品| 伦理电影免费视频| 亚洲国产看品久久| 国产69精品久久久久777片 | 精品乱码久久久久久99久播| 欧美中文综合在线视频| 国产三级在线视频| 亚洲人与动物交配视频| 国产视频一区二区在线看| 成在线人永久免费视频| 欧美性猛交黑人性爽| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 搞女人的毛片| 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 午夜免费成人在线视频| av福利片在线| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 视频区欧美日本亚洲| 婷婷六月久久综合丁香| 成年女人毛片免费观看观看9| 精品国产超薄肉色丝袜足j| 91av网站免费观看| 9191精品国产免费久久| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 国产一区在线观看成人免费| 欧美丝袜亚洲另类 | 此物有八面人人有两片| 午夜免费激情av| 超碰成人久久| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 精华霜和精华液先用哪个| 久99久视频精品免费| 久久国产精品影院| 夜夜爽天天搞| 香蕉久久夜色| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 久久中文看片网| 亚洲av电影不卡..在线观看| 日韩欧美精品v在线| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| 少妇裸体淫交视频免费看高清 | 丰满的人妻完整版| 首页视频小说图片口味搜索| 999久久久国产精品视频| a在线观看视频网站| 亚洲最大成人中文| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| 黄色视频不卡| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 国产视频一区二区在线看| 一个人免费在线观看的高清视频| 女人被狂操c到高潮| 亚洲午夜精品一区,二区,三区| 一进一出好大好爽视频| 午夜免费激情av| 国产成人精品久久二区二区免费| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 91老司机精品| 亚洲av成人不卡在线观看播放网| 亚洲精品中文字幕一二三四区| 美女扒开内裤让男人捅视频| 成人国产综合亚洲| 丰满的人妻完整版| 国产精华一区二区三区| 成人永久免费在线观看视频| av在线播放免费不卡| 一级片免费观看大全| 女人被狂操c到高潮| 欧美日韩精品网址| 美女黄网站色视频| 精品一区二区三区四区五区乱码| 无限看片的www在线观看| 国产主播在线观看一区二区| 十八禁人妻一区二区| 可以在线观看毛片的网站| 日本五十路高清| 亚洲一码二码三码区别大吗| 国产久久久一区二区三区| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 无人区码免费观看不卡| 又黄又粗又硬又大视频| 国产精品免费一区二区三区在线| 伊人久久大香线蕉亚洲五| 草草在线视频免费看| 日本一二三区视频观看| 国产成人av激情在线播放| 久久精品人妻少妇| 色综合站精品国产| aaaaa片日本免费| 又黄又粗又硬又大视频| 丁香欧美五月| 最近最新中文字幕大全免费视频| 国产精品久久电影中文字幕| 午夜激情av网站| 国产私拍福利视频在线观看| 制服诱惑二区| 人人妻人人看人人澡| 丁香欧美五月| 亚洲五月婷婷丁香| 亚洲中文日韩欧美视频| 国产精品久久久久久精品电影| 久久草成人影院| 免费看a级黄色片| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 身体一侧抽搐| 亚洲人成电影免费在线| 嫩草影视91久久| 久久香蕉激情| 国内少妇人妻偷人精品xxx网站 | 日韩欧美在线二视频| 一a级毛片在线观看| 精品欧美一区二区三区在线| 五月伊人婷婷丁香| 色综合欧美亚洲国产小说| 村上凉子中文字幕在线| 性欧美人与动物交配| 国产野战对白在线观看| 精品久久蜜臀av无| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 日韩精品免费视频一区二区三区| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 50天的宝宝边吃奶边哭怎么回事| 九色成人免费人妻av| 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 日日摸夜夜添夜夜添小说| 国产精品九九99| 国产1区2区3区精品| 国产精品日韩av在线免费观看| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 久久久久九九精品影院| 两个人的视频大全免费| 国产精品美女特级片免费视频播放器 | 999精品在线视频| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 青草久久国产| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美白嫩少妇大欣赏| 亚洲专区中文字幕在线| 窝窝影院91人妻| 深夜精品福利| 国产激情偷乱视频一区二区| 久久久久久久午夜电影| 欧美日韩国产亚洲二区| 一夜夜www| 激情在线观看视频在线高清| 又大又爽又粗| 亚洲一区二区三区色噜噜| 别揉我奶头~嗯~啊~动态视频| 一区二区三区高清视频在线| 国产日本99.免费观看| 亚洲自拍偷在线| 欧美一级毛片孕妇| 免费av毛片视频| 一本精品99久久精品77| 变态另类丝袜制服| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 午夜激情av网站| 日韩高清综合在线| 999久久久精品免费观看国产| 麻豆成人午夜福利视频| 97碰自拍视频| 国产精品亚洲av一区麻豆| 五月伊人婷婷丁香| 午夜久久久久精精品| 一进一出好大好爽视频| 啦啦啦韩国在线观看视频| 色综合站精品国产| 超碰成人久久| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 国产精品美女特级片免费视频播放器 | 免费看a级黄色片| 成年女人毛片免费观看观看9| 男女下面进入的视频免费午夜| 久久久久精品国产欧美久久久| 美女高潮喷水抽搐中文字幕| 久久久久久久久中文| 少妇裸体淫交视频免费看高清 | 黄色视频,在线免费观看| 成人永久免费在线观看视频| 日本 欧美在线| 亚洲国产高清在线一区二区三| 十八禁人妻一区二区| 久久香蕉精品热| 国产熟女午夜一区二区三区| 午夜免费成人在线视频| 一卡2卡三卡四卡精品乱码亚洲| 国产av一区二区精品久久| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 91在线观看av| 一级片免费观看大全| 在线观看www视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 亚洲av成人精品一区久久| 欧美一区二区国产精品久久精品 | 国产高清videossex| 88av欧美| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 日韩国内少妇激情av| 久久亚洲真实| 999精品在线视频| 久久久久性生活片| 久久这里只有精品中国| 最新美女视频免费是黄的| 久久久水蜜桃国产精品网| 高潮久久久久久久久久久不卡| 19禁男女啪啪无遮挡网站| 波多野结衣巨乳人妻| 免费观看人在逋| 国产精品一区二区三区四区免费观看 | 久久久久亚洲av毛片大全| 成年女人毛片免费观看观看9| 久久婷婷人人爽人人干人人爱| 国产成人av激情在线播放| 露出奶头的视频| 99国产精品一区二区三区| 久久精品91无色码中文字幕| 国产一区二区三区视频了| 99热6这里只有精品| 一级a爱片免费观看的视频| 欧美国产日韩亚洲一区| 亚洲av成人av| 久久久久免费精品人妻一区二区| 一级片免费观看大全| 免费在线观看影片大全网站| 99热6这里只有精品| 一a级毛片在线观看| 最近最新中文字幕大全电影3| 欧美性猛交黑人性爽| 欧美激情久久久久久爽电影| 精品欧美国产一区二区三| 久久精品人妻少妇| 欧美极品一区二区三区四区| 88av欧美| 香蕉久久夜色| 高清毛片免费观看视频网站| 神马国产精品三级电影在线观看 | 88av欧美| 亚洲一区二区三区不卡视频| 欧美黑人巨大hd| 久久久久久人人人人人| 亚洲第一欧美日韩一区二区三区| 丰满人妻一区二区三区视频av | 精品欧美国产一区二区三| 国产av在哪里看| 日本在线视频免费播放| 色综合站精品国产| 欧美日韩精品网址| 欧美人与性动交α欧美精品济南到| 久久国产乱子伦精品免费另类| 国产激情久久老熟女| 长腿黑丝高跟| 亚洲最大成人中文| 后天国语完整版免费观看| 最好的美女福利视频网| 国产又黄又爽又无遮挡在线| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合一区二区三区| 可以在线观看的亚洲视频| av在线播放免费不卡| 啦啦啦观看免费观看视频高清| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三| 久久久久性生活片| 国产精品一及| 欧美日本视频| 一边摸一边抽搐一进一小说| 国产av在哪里看| 国产片内射在线| 午夜福利免费观看在线| av免费在线观看网站| 三级毛片av免费| 欧美黑人精品巨大| 国产成人精品久久二区二区免费| 麻豆av在线久日| 好男人电影高清在线观看| 亚洲男人的天堂狠狠| 国产av不卡久久| 国产精品国产高清国产av| 好男人在线观看高清免费视频| 18禁黄网站禁片免费观看直播| 淫妇啪啪啪对白视频| 男女之事视频高清在线观看| 亚洲精品中文字幕在线视频| 免费看日本二区| 免费高清视频大片| 久久久久国产精品人妻aⅴ院| 欧美色视频一区免费| 国产在线观看jvid| 一级毛片女人18水好多| 亚洲一码二码三码区别大吗| 一进一出抽搐gif免费好疼| 欧美成人免费av一区二区三区| 久久久水蜜桃国产精品网| 色老头精品视频在线观看| 可以在线观看的亚洲视频| 亚洲精品久久成人aⅴ小说| 男男h啪啪无遮挡| a级毛片在线看网站| 亚洲专区中文字幕在线| 日本三级黄在线观看| 视频区欧美日本亚洲| 久热爱精品视频在线9| xxxwww97欧美| 久久精品国产清高在天天线| 女人爽到高潮嗷嗷叫在线视频| 亚洲五月婷婷丁香| 美女免费视频网站| 亚洲 欧美一区二区三区| 男女视频在线观看网站免费 | 色av中文字幕| 国产精品日韩av在线免费观看| 久热爱精品视频在线9| 99久久精品国产亚洲精品| 久久中文看片网| 韩国av一区二区三区四区| 欧美乱妇无乱码| 国产一区在线观看成人免费| 国产在线精品亚洲第一网站| 久久久水蜜桃国产精品网| 韩国av一区二区三区四区| 男插女下体视频免费在线播放| 午夜福利18| √禁漫天堂资源中文www| 亚洲,欧美精品.| 国产成人精品久久二区二区免费| 18禁裸乳无遮挡免费网站照片| 村上凉子中文字幕在线| 精品国产乱子伦一区二区三区| 色播亚洲综合网| 91字幕亚洲| 精品第一国产精品| 欧美日韩亚洲综合一区二区三区_| 日本黄色视频三级网站网址| 可以免费在线观看a视频的电影网站| 19禁男女啪啪无遮挡网站| 亚洲色图av天堂| 在线看三级毛片| 亚洲男人天堂网一区| 曰老女人黄片| 国产麻豆成人av免费视频| 黄色女人牲交| 一本综合久久免费| 99精品久久久久人妻精品| 久久九九热精品免费| av国产免费在线观看| 波多野结衣巨乳人妻| a在线观看视频网站| 国产真人三级小视频在线观看| 男男h啪啪无遮挡| 欧美乱妇无乱码|