• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A compact fluorescence/circular dichroism dual-modality probe for detection,differentiation,and detoxification of multiple heavy metal ions via bond-cleavage cascade reactions

    2021-03-14 02:31:44JunweiChenWngHongjunTongChoSongHuijunYjunZhngFengGoHunXuWeiWngKiynLou
    Chinese Chemical Letters 2021年12期

    Junwei Chen,N Wng,Hongjun Tong,Cho Song,Huijun M,Yjun Zhng,Feng Go,Hun Xu,Wei Wng,c,?,Kiyn Lou,??

    a State Key Laboratory of Bioengineering Reactor,Shanghai Key Laboratory of New Drug Design,and Shanghai Key Laboratory of Chemical Biology,School of Pharmacy,East China University of Science &Technology,Shanghai 200237,China

    b School of Pharmacy,Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province,Shaanxi Institute of International Trade &Commerce,Xi’an 712046,China

    c Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson AZ 85721-0207,United States

    Keywords:Fluorescent probe Circular dichroism Heavy metal ions Dual-modality Detoxification Cascade reaction Divergent responses

    ABSTRACT Selective detection of multiple analytes in a compact design with dual-modality and theranostic features presents great challenges.Herein,we wish to report a coumarin-thiazolidine masked D-penicillamine based dual-modality fluorescent probe COU-DPA-1 for selective detection,differentiation,and detoxification of multiple heavy metal ions (Ag+,Hg2+,Cu2+).The probe shows divergent fluorescence (FL) /circular dichroism (CD) responses via divergent bond-cleavage cascade reactions (metal ion promoted C-S cleavage and hydrolysis at two distinctive cleavage sites):FL “turn-off” and CD “turn-on” for Ag+ (no hydrolysis),FL “turn-on” and CD “turn-off” for Hg2+ (imine hydrolysis),and FL “self-threshold ratiometric” and CD “turn-off” for excess Cu2+ (lactone and imine hydrolysis),providing the first example of a fluorescence/CD dual-modality probe for multiple species with complimentary responses.Moreover,the bond-cleavage cascade reactions also lead to the formation of D-penicillamine heavy metal ion complexes for potential detoxification treatments.

    A sensing or theranostic probe is generally designed for the detection of a single analyte [1–5].Recently,multi-functional fluorescent imaging probes capable of sensing two or more targets have emerged as a powerful tool for the interrogation of biological systems [6,7],which are often associated with cascade signaling events and activity-based sensing (ABS) tactic [3–5].A straightforward approach for the design of such probes for multiply analytes employs different fluorescence responsive sensing units into a single molecule (Scheme S1a in Supporting information) [8–11].However,probes designed in this way tend to have a large molecular weight and size,which could potentially cause undesired physicochemical properties,poor cell membrane permeability and/or cell toxicity.A compact probe adopting a single sensing moiety would be more desirable,but presents great challenges to design,which utilizes multiple reactive sites and divergent cascade reaction pathways for multiple analyte detection and differentiation.Recently,elegantly designed multiple reactive sites with divergent bond-formation cascade reactions were adopted for simultaneous sensing of cysteine,homocysteine,and glutathione(Scheme S1b in Supporting information) [12–14].However,this bond-formation and analyte binding strategy is not suitable for analytes that may quench fluorophore’s fluorescence,such as heavy metal ions.Herein,as a proof-of-concept study,we wish to demonstrate that multiple bond-cleavage sites with divergent analyte promoted bond-cleavage cascade reactions can be utilized to design a compact probe for detection and differentiation of multiple analytes (Scheme 1,Scheme S1c in Supporting information).

    Towards this end,a coumarin-thiazolidine masked Dpenicillamine based fluorescent probe COU-DPA-1 was rationally designed for selective detection and differentiation of three heavy metal ions:Ag+,Hg2+,and Cu2+(Scheme 1).The compact probe contains three cleavage sites:an initial C-S bond and two subsequent hydrolysis sites including a coumarin lactone and an imine.We envisioned that the heavy metal ion promoted C-S cleavage and potential imine complexation (Schemes S2a and b in Supporting information) [15–18],imine hydrolysis (Scheme S2c in Supporting information) [19],or lactone and imine hydrolysis(Scheme S2d in Supporting information) [20,21],of the chiral probe may lead to divergent fluorescence (FL)/circular dichroism(CD) dual-modality responses (Scheme 1),in which enhanced CD signals come from exciton coupling between two neighboring fluorophores in formation of metal ion complexes [22].Moreover,the cascade bond-cleavage reactions may release the drug D-penicillamine [23,24]for potential treatments of Ag+or Hg2+poisoning [25,26],or excess Cu2+in disease conditions [27,28].

    Scheme 1.Probe design of COU-DPA-1 with three different bond-cleavage sites and divergent cascade reaction pathways.

    The probe COU-DPA-1 was synthesized from 7-diethylaminocoumarin-3-aldehyde (1) and D-penicillamine (2)at refluxing condition in a mixture of methanol and water(Scheme S3 in Supporting information).The probe COU-DPA-1 contains inseparable mixture oftrans-andcis-isomers in about 3:2 ratio.As C-S cleavage of the two isomers of the probe affords the same Schiff base ligand COU-DPA-1′,the probe was directly used without separation of its isomers.Four reference probes COU-DPA-2~COU-DPA-5 were also synthesized (Schemes S4-S7 in Supporting information).All these reference probes were structurally characterized by1H NMR,13C NMR,and HRMS.More details can be found in Part II in Supporting information.

    With the probe COU-DPA-1 in hand,its initial fluorescence responses upon 17 metal ions (Li+,Na+,K+,Mg2+,Ca2+,Co2+,Fe2+,Fe3+,Ni2+,Zn2+,Pb2+,Cd2+,Al3+,Cr3+,Ag+,Hg2+,Cu2+) were tested.Only three heavy metal ions (Ag+,Hg2+,Cu2+) gave immediate fluorescence turn-off responses (Fig.1a,Fig.S2 in Supporting information).UV spectra showed red-shift of absorption from 399 nm to around 450 nm (Fig.S3 in Supporting information),whileN-acetylated derivative COU-DPA-4 did not show any appreciable fluorescence and absorption spectra changes at the same condition (Fig.S10 in Supporting information),indicating CS cleavage and formation of metal ion complexed COU-DPA-1′is responsible for the initial fluorescence turn-off responses.For Ag+at extended incubation,there were almost no fluorescence emission and no apparent UV–vis spectra changes (Figs.S4a and b in Supporting information).At incubation time of 30 s,Job’s plot indicated that the fluorescence drop corresponded to the formation of 1:1 complex (Fig.S4d in Supporting information).From known polymeric structure of the 1:1 D-penicillamine Ag+complex [29],we proposed that the Ag+forms similar polymeric structures with COU-DPA-1′(Scheme 2).For Hg2+,when the hydrolysis reaction product was selectively excited at 477 nm,it gave fluorescence turn-on response at 502 nm (Fig.1c) with slight blue shift of absorption from 453 (Fig.S3b in Supporting information) to 446 nm(Fig.S5d in Supporting information).Evidences from comparison of normalized fluorescence spectra (Fig.S5e in Supporting information) and1H NMR (Fig.S12 in Supporting information) and HRMS(Fig.S14 in Supporting information) studies of the reaction mixture confirmed that the product was the aldehyde 1.The hydrolysis reaction involved formation of 2:1 COU-DPA-1′Hg2+complex from the Job’s plot (Fig.S5f in Supporting information),which was proposed to be a bidentate (N,S) coordination complex similar to a known D-penicillamine Hg2+complex (Scheme 2) [30].The probe’s limits of detection (LOD) for Ag+and Hg2+were 1.9 and 10 nmol/L,respectively (Figs.S4c and S5c in Supporting information).

    The probe’s fluorescence responses for Cu2+at extended incubation showed non-typical ratiometric responses dependent on the equivalence of Cu2+to the probe (Fig.1e).At less than 0.5 equiv.,the decrease of the probe’s fluorescence at 488 nm was identified as typical turn-off response.Only when the probe’s concentration was over 0.5 equiv.,the product’s fluorescence emission at 449 nm started to appear.Accordingly,the ratiometric ratio ofI449/I488increased from 0.2 to 2.0 (Figs.1g and h).We termed this nontypical ratiometric fluorescence response as “self-threshold ratiometric fluorescence response”,as there exists a threshold concentration of the analyte for the ratiometric response.We rationalized that the initial complex formed between the probe and less than 0.5 equiv.Cu2+is non-fluorescent and resistance to hydrolysis as evidenced by only slight blue-shift of absorption peak from 452 nm to 445 nm at extended incubation (Fig.S6c in Supporting information).Excess Cu2+over 0.5 equiv.leads to its binding to the second Cu2+binding site and self-threshold ratiometric fluorescence response.From comparison with normalized fluorescence and absorption spectra of an aldehyde 1′sample (Figs.S6g and h in Supporting information) from basic hydrolysis of the aldehyde 1 [20]and the aldehyde 1′identified from HRMS of the reaction mixture (Fig.S15 in Supporting information),we proposed that the second Cu2+binding site of COU-DPA-1′functions as a trident(O,N,O) ligand and forms 2:1 complex with additional 0.5 equiv.Cu2+to promote both lactone and imine hydrolysis (Scheme 2).Job’s plot also confirmed that a total of 1 equiv.Cu2+was required for formation of the aldehyde 1′(Fig.S6f in Supporting information).The second Cu2+binding site with 0.5 equiv.Cu2+seems to involve the carboxylate anion,as the methyl ester probe COU-DPA-5 did not give the similar saddle-like absorption curve when incubation with excess Cu2+(Fig.S11c in Supporting information).Further studies showed that Cu2+-promoted lactone hydrolysis is affected by substituents on the coumarin fluorophore.While 7-azetidinyl substituted probe COU-DPA-3 showed a similar self-threshold ratiometric fluorescence response for Cu2+different from turn-on response for Hg2+(Fig.S9 in Supporting information),the julolidine coumarin probe COU-DPA-2 showed fluorescence turn-on responses for both Cu2+and Hg2+due to formation of the same aldehyde 2 as product without lactone hydrolysis (Fig.S8 in Supporting information).

    We then examined the probe’s CD responses for the three heavy metal ions (Fig.2).The probe (10 μmol/L) alone in PBS buffer showed very low CD signals.Upon addition of the three metal ions,intense bisignate CD signals (CD turn-on) due to metal ion complexation induced exciton coupling were observed.For Ag+,the initial CD signals did not decrease over 30 min (Fig.2a),indicating formation rather stable silver ion complex with COU-DPA-1′.Moreover,the observed positive Cotton effect indicated that the neighbouring COU-DPA-1′chromophore form clockwise orientation in Ag+complex polymeric structures according to the Exciton Chirality Rule [22],different from the anti-clockwise orientation in complexation with Hg2+and Cu2+as indicated from the negative Cotton effect.Notably,CD and fluorescence signals compensate each other for improved sensing.For example,although the CD responses for Hg2+and excess amount of Cu2+can be differentiated by their zero-crossing wavelengths (Figs.2b and c),they were better differentiated by distinct fluorescence responses (Figs.1c and e).While fluorescence response cannot differentiate between Ag+and less than 0.5 equiv.Cu2+,the two ions can be clearly differentiated by their distinct CD responses (Figs.2a and d).Combined evidences from fluorescence emission (Fig.1e),absorption (Fig.S6c)and CD (Fig.2d) spectra,it was proposed that the reduction of Cu2+to Cu+by the thiol group [31]is possibly responsible for the observed reduction of CD signals (Scheme 2),during which a 1:1 complex was formed without neighbouring ligand and associated exciton coupling.Evidence from electron paramagnetic resonance(EPR) studies also suggested that a reduction reaction could happened (Fig.S13 in Supporting information).

    Fig.1.(a) Fluorescence spectra of the probe COU-DPA-1 (1 μmol/L, λex=396 nm) upon addition of Ag+ ion (0–5.0 equiv.,incubation time=30 s).(b) Black column:I488 of the probe COU-DPA-1 (1 μmol/L, λex=396 nm) or in response to 50 equiv.of other metal ions;red column: I488 of the probe in response to 5 equiv.Ag+ or 5 equiv.Ag+ in the presence of other metal ions (50 equiv.each) for 30 s.(c) Fluorescence spectra of probe COU-DPA-1 (1 μmol/L, λex=477 nm) upon addition of increased concentrations of Hg2+ (0–1.0 equiv.,incubation time=15 min).(d) Black column: I502 of probe COU-DPA-1 (1 μmol/L,λex=477 nm) or in response to 5 equiv.other metal ions;red column: I502 of probe in response to 0.5 equiv.Hg2+ or 0.5 equiv.Hg2+ in the presences of other metal ions (5 equiv.each) for 15 min.(e) Fluorescence spectra of probe COU-DPA-1 (1 μmol/L, λex=360 nm) upon addition of Cu2+ ion (0–10 equiv.,incubation time=30 min).(f) Black column: I449/I488 of the probe COU-DPA-1 (1 μmol/L, λex=360 nm) or the probe in response to 50 equiv.other metal ions;red column: I449/I488 of the probe (1 μmol/L, λex=360 nm) in response to 5 equiv.Cu2+or 5 equiv.Cu2+ in the presence of other metal ions (50 equiv.each,red columns) for 30 min.(g,h) Fluorescence intensity ratio (I449/I488) versus the equivalence of Cu2+([Cu2+]/[COU-DPA-1]).

    Scheme 2.Proposed metal ion binding promoted divergent cascade reaction of the Schiff base ligand COU-DPA-1′ in PBS buffer (pH 7.4).

    Fig.2.Time-dependent CD spectra of the probe COU-DPA-1 (10 μmol/L) upon addition of 5 equiv.Ag+ (a),0.5 equiv.Hg2+ (b),5 equiv.Cu2+ (c),and 0.5 equiv.Cu2+ (d).The corresponding CD response of its enantiomer COU-LPA-1 in can be found in Fig.S16 (Supporting information).

    Fig.3.Fluorescence images of HeLa cells preincubated with COU-DPA-5 (20 μmol/L) and then incubated with increasing concentrations of Hg2+ (0,10,20,and 50 μmol/L)for 30 min.

    Based on the above studies,the probe’s divergent reaction pathway after C-S cleavage was shown in Scheme 2.Besides,its selectivity for the three heavy metal ions at both their specific fluorescence (Figs.1b,d and e) and CD (Fig.S17 in Supporting information) detection conditions was high.

    We further examined the potential use of the probe COU-DPA-1 in biological system.Unfortunately,the fluorescence “turn-off” response for Ag+and the short excitation wavelength in UV region for Cu2+was not ideal for cell imaging applications.The probe was tested for fluorescence imaging of Hg2+and was capable of imaging increased Hg2+levels inside HeLa cells from increased Hg2+concentrations in the cell culture media (Fig.3).Similarly,the methyl ester probe COU-DPA-5 can also detect increased Hg2+and Cu2+levels inside HeLa cells (Figs.S19 and S20 in Supporting information).

    Finally,we examined the probe COU-DPA-1 for potential detoxification treatments of the heavy metal ions using the MCF-7 cells as the model cell line (see Supporting information part VII for more details).Both D-penicillamine and the probe COU-DPA-1 showed no significant toxicity up to 100 μmol/L (Fig.S21 in Supporting information).Among the three heavy metal ions,Hg2+is the most toxic with IC50=7.52 ± 0.59 μmol/L (Fig.S21b).When MCF-7 cells were pretreated with 8 μmol/L toxic Hg2+for 2 h,followed by addition of different concentrations (0~16 μmol/L) of the probe COU-DPA-1 and D-penicillamine to mimic acute heavy metal poisoning and detoxification treatments,increased cell viabilities were observed for both the probe and D-penicillamine treated cells,indicating that the probe showed protective effects against Hg2+-induced cytotoxicity (Fig.4).Cell detoxification effects of the probe against Ag+and Cu2+were also observed (Fig.S23 in Supporting information).

    In conclusion,as a proof-of-concept study,we have successfully developed a compact dual-modality probe COU-DPA-1 with complimentary divergent fluorescence/circular dichroism responses for the three heavy metal ionsviadivergent cascade bond-cleavage reactions (metal ion promoted C-S cleavage and hydrolysis at two distinctive cleavage sites):FL “turn-off” and CD “turn-on” for Ag+(no hydrolysis),FL “turn-on” and CD “turn-off” for Hg2+(imine hydrolysis),and FL “self-threshold ratiometric” and CD “turn-off”for excess Cu2+(lactone and imine hydrolysis),providing the first example of a fluorescence/CD dual-modality probe for differentiation of multiple species with complimentary responses.The bond-cleavage cascade reactions also lead to the formation of Dpenicillamine heavy toxic metal complexes for detoxification treatments.The design principle by offering a way of creating compact probesviabond-cleavage cascade reactions and incorporating chirality and drug-release into the probe design may inspire future development of other chiral theranostic sensing systems for multiple analytes detection and disease treatments.

    Fig.4.Cell viability of MCF-7 cells pretreated with 8 μmol/L Hg2+ for 2 h and then incubated with increasing concentration (0 to 16 μmol/L) of the probe COU-DPA-1 and D-penicillamine for 24 h.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work was supported by the National Natural Science Foundation of China (Nos.21577037 and 21738002),the State Key Laboratory of Bioreactor Engineering,Shanghai Natural Science Fund (No.20ZR1414700) and Shanghai Sailing Program (No.19YF1412500),Natural Science Basic Research Program of Shaanxi(No.2019JQ-924),Key Breeding Program by Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province (No.2019XT-1-03).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.047.

    av卡一久久| 考比视频在线观看| 狠狠婷婷综合久久久久久88av| 男人操女人黄网站| 欧美日韩视频高清一区二区三区二| 欧美精品亚洲一区二区| 久久精品国产亚洲av天美| 99re6热这里在线精品视频| 男女边摸边吃奶| 亚洲av男天堂| 能在线免费看毛片的网站| 欧美成人精品欧美一级黄| 午夜免费观看性视频| 欧美激情 高清一区二区三区| av视频免费观看在线观看| 精品久久久久久久久亚洲| 国产精品国产三级国产av玫瑰| 国产综合精华液| 亚洲欧美一区二区三区国产| 国产乱人偷精品视频| 久久毛片免费看一区二区三区| 女性生殖器流出的白浆| 日韩av不卡免费在线播放| 免费不卡的大黄色大毛片视频在线观看| 欧美性感艳星| 丰满少妇做爰视频| 丰满饥渴人妻一区二区三| 精品人妻一区二区三区麻豆| 免费少妇av软件| 午夜福利,免费看| 国产女主播在线喷水免费视频网站| 日本午夜av视频| 97超视频在线观看视频| 日本av手机在线免费观看| 女性被躁到高潮视频| 如何舔出高潮| 欧美精品高潮呻吟av久久| 热99久久久久精品小说推荐| 亚洲精品美女久久av网站| 免费大片黄手机在线观看| 久久国产精品大桥未久av| 永久免费av网站大全| 国产极品天堂在线| 日本爱情动作片www.在线观看| 性色av一级| 国产毛片在线视频| 精品久久久久久久久亚洲| 日本爱情动作片www.在线观看| 婷婷成人精品国产| 看十八女毛片水多多多| 国产成人91sexporn| 国模一区二区三区四区视频| 成人综合一区亚洲| 永久免费av网站大全| 午夜激情久久久久久久| 久久久久网色| kizo精华| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 高清在线视频一区二区三区| 亚洲国产精品一区二区三区在线| 欧美另类一区| 欧美亚洲日本最大视频资源| 日日摸夜夜添夜夜添av毛片| 97超碰精品成人国产| 亚洲av男天堂| 只有这里有精品99| 久久精品国产自在天天线| 一级片'在线观看视频| 天美传媒精品一区二区| 亚洲高清免费不卡视频| 大香蕉97超碰在线| 国产黄色视频一区二区在线观看| a级毛色黄片| 欧美 日韩 精品 国产| 纯流量卡能插随身wifi吗| 在线观看人妻少妇| 欧美激情国产日韩精品一区| 亚洲av欧美aⅴ国产| 亚洲国产av影院在线观看| 多毛熟女@视频| 亚洲婷婷狠狠爱综合网| 亚洲av成人精品一二三区| 五月伊人婷婷丁香| 久久人人爽人人爽人人片va| 性色avwww在线观看| 99久久人妻综合| 伦精品一区二区三区| 纵有疾风起免费观看全集完整版| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 国产片特级美女逼逼视频| 国产乱人偷精品视频| 国产在线视频一区二区| 亚洲精品日韩在线中文字幕| 成人国产麻豆网| 精品久久久久久电影网| 观看美女的网站| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| 99精国产麻豆久久婷婷| 欧美日韩成人在线一区二区| 男女高潮啪啪啪动态图| 免费观看的影片在线观看| 在线观看www视频免费| 日本91视频免费播放| 久久鲁丝午夜福利片| 久久人妻熟女aⅴ| 亚洲欧美成人综合另类久久久| 国产亚洲最大av| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| 久久久欧美国产精品| 在线看a的网站| 少妇被粗大猛烈的视频| 18禁在线播放成人免费| 国产在视频线精品| 亚洲精品日本国产第一区| a级毛色黄片| 久久久久久久大尺度免费视频| 亚洲国产毛片av蜜桃av| 久久亚洲国产成人精品v| 91精品三级在线观看| 亚洲经典国产精华液单| 性高湖久久久久久久久免费观看| av.在线天堂| 亚洲精品久久久久久婷婷小说| 日韩伦理黄色片| 三级国产精品欧美在线观看| 亚洲第一区二区三区不卡| av有码第一页| 国产精品99久久久久久久久| 久久久久国产网址| 高清视频免费观看一区二区| 成人午夜精彩视频在线观看| 中文字幕人妻丝袜制服| 91国产中文字幕| 亚洲伊人久久精品综合| 色视频在线一区二区三区| 99热6这里只有精品| 日韩精品免费视频一区二区三区 | 欧美日韩视频高清一区二区三区二| 曰老女人黄片| 久久久久久久久久久丰满| 亚洲无线观看免费| 日韩av在线免费看完整版不卡| 各种免费的搞黄视频| 一二三四中文在线观看免费高清| 人妻少妇偷人精品九色| 97在线人人人人妻| 岛国毛片在线播放| av福利片在线| 国产黄片视频在线免费观看| 热re99久久精品国产66热6| 国产精品不卡视频一区二区| 日韩av不卡免费在线播放| 国产午夜精品久久久久久一区二区三区| 成人综合一区亚洲| 国产淫语在线视频| 99久久精品一区二区三区| av视频免费观看在线观看| 九九在线视频观看精品| 久久久久久久久大av| 一本大道久久a久久精品| 欧美一级a爱片免费观看看| 两个人的视频大全免费| 啦啦啦在线观看免费高清www| 亚洲国产精品成人久久小说| 久久久久久久亚洲中文字幕| 我的老师免费观看完整版| 久久久精品区二区三区| 99热6这里只有精品| 国产日韩欧美视频二区| 久久人人爽人人片av| 在线免费观看不下载黄p国产| 狂野欧美白嫩少妇大欣赏| 51国产日韩欧美| 秋霞在线观看毛片| 国产亚洲一区二区精品| 欧美xxxx性猛交bbbb| 久久精品夜色国产| 亚洲精品成人av观看孕妇| 久久人人爽人人片av| 性色av一级| 欧美 日韩 精品 国产| 内地一区二区视频在线| 熟妇人妻不卡中文字幕| 亚洲av在线观看美女高潮| 国产亚洲精品第一综合不卡 | 精品人妻一区二区三区麻豆| 亚洲成人av在线免费| 精品久久蜜臀av无| 欧美日韩av久久| 日韩视频在线欧美| 我的老师免费观看完整版| 有码 亚洲区| 一级黄片播放器| 日日摸夜夜添夜夜添av毛片| 国产熟女午夜一区二区三区 | 国产精品熟女久久久久浪| 国语对白做爰xxxⅹ性视频网站| 91精品伊人久久大香线蕉| 免费观看性生交大片5| 久久人人爽av亚洲精品天堂| 亚洲欧洲精品一区二区精品久久久 | 亚洲少妇的诱惑av| 午夜福利在线观看免费完整高清在| 精品国产乱码久久久久久小说| 久久久久久久精品精品| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 亚洲综合色惰| 国产成人aa在线观看| 热99久久久久精品小说推荐| 国产极品天堂在线| 亚洲av电影在线观看一区二区三区| 51国产日韩欧美| 97超碰精品成人国产| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 嘟嘟电影网在线观看| 考比视频在线观看| 国产黄色免费在线视频| 观看美女的网站| 蜜桃国产av成人99| 国产一区二区三区综合在线观看 | 日韩中字成人| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 亚洲精品日韩在线中文字幕| 黄片无遮挡物在线观看| 最新中文字幕久久久久| 精品久久久久久电影网| 大片电影免费在线观看免费| 国产精品一区二区在线不卡| 黑人欧美特级aaaaaa片| 午夜福利视频精品| 亚洲欧美清纯卡通| 亚洲国产成人一精品久久久| 久久久久久人妻| 亚洲少妇的诱惑av| 精品久久久噜噜| 日韩一区二区视频免费看| 18+在线观看网站| 精品少妇黑人巨大在线播放| 免费大片黄手机在线观看| .国产精品久久| 欧美日韩一区二区视频在线观看视频在线| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 精品久久久精品久久久| 少妇 在线观看| 亚洲国产成人一精品久久久| 男人添女人高潮全过程视频| 不卡视频在线观看欧美| 国产有黄有色有爽视频| 黄片无遮挡物在线观看| 日韩三级伦理在线观看| 精品少妇久久久久久888优播| 美女cb高潮喷水在线观看| 婷婷色av中文字幕| 午夜影院在线不卡| 九草在线视频观看| a级毛片在线看网站| 精品久久久久久电影网| 成人漫画全彩无遮挡| 一本久久精品| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 国产在线免费精品| 欧美xxⅹ黑人| 婷婷色综合大香蕉| 日本猛色少妇xxxxx猛交久久| 亚洲成人手机| a级毛色黄片| 欧美97在线视频| 亚洲中文av在线| 亚洲精品日韩在线中文字幕| 成人国语在线视频| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 亚洲精品乱码久久久v下载方式| 永久免费av网站大全| 国产av国产精品国产| 午夜影院在线不卡| 欧美日韩视频精品一区| 99久国产av精品国产电影| 国产成人一区二区在线| 少妇人妻久久综合中文| 少妇人妻精品综合一区二区| 成人免费观看视频高清| 国产亚洲欧美精品永久| 丰满乱子伦码专区| 成人无遮挡网站| 丝袜在线中文字幕| 亚洲人成网站在线观看播放| 精品熟女少妇av免费看| 亚洲美女视频黄频| 视频中文字幕在线观看| 欧美日韩av久久| 又黄又爽又刺激的免费视频.| 女性生殖器流出的白浆| 亚洲美女黄色视频免费看| 日韩av免费高清视频| 春色校园在线视频观看| 亚洲不卡免费看| 在线精品无人区一区二区三| 日韩人妻高清精品专区| 日韩三级伦理在线观看| 亚洲婷婷狠狠爱综合网| 国产精品蜜桃在线观看| 日韩在线高清观看一区二区三区| 欧美xxⅹ黑人| 十分钟在线观看高清视频www| 久久久久国产精品人妻一区二区| 成人免费观看视频高清| 男女边吃奶边做爰视频| 如何舔出高潮| 精品人妻偷拍中文字幕| 久久97久久精品| 欧美97在线视频| 26uuu在线亚洲综合色| 亚洲四区av| 99re6热这里在线精品视频| 日韩大片免费观看网站| 亚洲五月色婷婷综合| 大香蕉久久网| 亚洲综合色惰| 熟女人妻精品中文字幕| 在线精品无人区一区二区三| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 亚洲精品久久成人aⅴ小说 | 亚洲精品国产色婷婷电影| 中文字幕免费在线视频6| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 精品少妇内射三级| av线在线观看网站| 性高湖久久久久久久久免费观看| 最近最新中文字幕免费大全7| 水蜜桃什么品种好| av视频免费观看在线观看| 国产 一区精品| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 国产免费现黄频在线看| av又黄又爽大尺度在线免费看| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 日韩中字成人| 免费观看的影片在线观看| 久久毛片免费看一区二区三区| 哪个播放器可以免费观看大片| 免费观看无遮挡的男女| 乱码一卡2卡4卡精品| 母亲3免费完整高清在线观看 | 欧美3d第一页| 性高湖久久久久久久久免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品电影小说| 国产精品99久久久久久久久| 亚洲国产av影院在线观看| 精品人妻熟女av久视频| 日韩成人伦理影院| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人久久小说| 国产在线视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 99热这里只有是精品在线观看| 亚洲中文av在线| 自拍欧美九色日韩亚洲蝌蚪91| 欧美3d第一页| 国产有黄有色有爽视频| 久久午夜综合久久蜜桃| 内地一区二区视频在线| 寂寞人妻少妇视频99o| 9色porny在线观看| 久久久a久久爽久久v久久| 日本与韩国留学比较| 一级毛片我不卡| 色5月婷婷丁香| 色婷婷av一区二区三区视频| 51国产日韩欧美| 看十八女毛片水多多多| 夫妻午夜视频| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 一区二区三区四区激情视频| 成人综合一区亚洲| 3wmmmm亚洲av在线观看| 免费日韩欧美在线观看| 人妻制服诱惑在线中文字幕| 久久久国产一区二区| 熟妇人妻不卡中文字幕| 中文天堂在线官网| 久久97久久精品| 日韩一区二区视频免费看| 女人精品久久久久毛片| 青春草国产在线视频| av.在线天堂| 黑人欧美特级aaaaaa片| 久久久久久久亚洲中文字幕| 国产一区二区三区av在线| 午夜老司机福利剧场| 在线播放无遮挡| 97超视频在线观看视频| 超碰97精品在线观看| 精品熟女少妇av免费看| 免费大片18禁| 免费人成在线观看视频色| 少妇人妻 视频| a级毛色黄片| 狠狠婷婷综合久久久久久88av| av一本久久久久| 乱人伦中国视频| 大香蕉久久成人网| 性色avwww在线观看| 日本黄色片子视频| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 国产 精品1| 老司机影院毛片| 黄片播放在线免费| 天天影视国产精品| 观看av在线不卡| 人妻少妇偷人精品九色| 性高湖久久久久久久久免费观看| a级毛片免费高清观看在线播放| 老熟女久久久| 久久久午夜欧美精品| av电影中文网址| 人妻制服诱惑在线中文字幕| √禁漫天堂资源中文www| 高清毛片免费看| 18在线观看网站| 色婷婷久久久亚洲欧美| 日韩,欧美,国产一区二区三区| 国产成人精品婷婷| 极品少妇高潮喷水抽搐| 欧美日韩在线观看h| 曰老女人黄片| 美女脱内裤让男人舔精品视频| 天堂8中文在线网| 精品人妻一区二区三区麻豆| freevideosex欧美| 好男人视频免费观看在线| 国产av一区二区精品久久| 精品一区二区免费观看| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 国产成人av激情在线播放 | 看十八女毛片水多多多| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久大av| 久久人人爽人人片av| 熟女电影av网| 久久综合国产亚洲精品| 久久久a久久爽久久v久久| 亚洲熟女精品中文字幕| 一个人免费看片子| freevideosex欧美| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 777米奇影视久久| 中文字幕亚洲精品专区| 伊人亚洲综合成人网| 男男h啪啪无遮挡| 国产精品国产av在线观看| 久久久久久久久大av| 久久精品国产亚洲网站| 精品国产一区二区三区久久久樱花| 久久午夜综合久久蜜桃| 午夜福利视频在线观看免费| 久9热在线精品视频| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 亚洲情色 制服丝袜| avwww免费| 99热网站在线观看| 久久人人97超碰香蕉20202| 中亚洲国语对白在线视频| 咕卡用的链子| 天堂动漫精品| 国产精品久久电影中文字幕 | 青青草视频在线视频观看| 国产在线观看jvid| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 久久人人爽av亚洲精品天堂| av在线播放免费不卡| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 1024视频免费在线观看| 午夜91福利影院| 亚洲熟妇熟女久久| 欧美大码av| av欧美777| 国产精品亚洲av一区麻豆| 欧美亚洲日本最大视频资源| 色精品久久人妻99蜜桃| 午夜福利影视在线免费观看| 国产在线免费精品| 色视频在线一区二区三区| 国产精品久久久人人做人人爽| 久久精品国产99精品国产亚洲性色 | 亚洲色图 男人天堂 中文字幕| 黄色视频在线播放观看不卡| 99国产综合亚洲精品| 啦啦啦中文免费视频观看日本| 国产一卡二卡三卡精品| 2018国产大陆天天弄谢| 国产精品影院久久| 久久久国产成人免费| 一级a爱视频在线免费观看| 18禁美女被吸乳视频| 99国产精品99久久久久| 99re6热这里在线精品视频| av天堂久久9| 午夜福利乱码中文字幕| 一级片'在线观看视频| 午夜福利欧美成人| 18禁裸乳无遮挡动漫免费视频| 人人妻,人人澡人人爽秒播| 国产国语露脸激情在线看| 丝袜在线中文字幕| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 1024视频免费在线观看| 美女国产高潮福利片在线看| 狠狠婷婷综合久久久久久88av| 亚洲av片天天在线观看| 日韩三级视频一区二区三区| 最近最新中文字幕大全电影3 | 精品熟女少妇八av免费久了| 亚洲三区欧美一区| 男女边摸边吃奶| 岛国在线观看网站| 天堂中文最新版在线下载| 亚洲va日本ⅴa欧美va伊人久久| 91av网站免费观看| 美国免费a级毛片| 国产精品av久久久久免费| 大片免费播放器 马上看| 色94色欧美一区二区| 中文字幕高清在线视频| 大香蕉久久网| 怎么达到女性高潮| 精品少妇黑人巨大在线播放| 国产成人av激情在线播放| 国产伦理片在线播放av一区| 精品一区二区三区av网在线观看 | 久久精品国产亚洲av高清一级| 女人爽到高潮嗷嗷叫在线视频| 黄色视频,在线免费观看| 一本久久精品| 香蕉丝袜av| 高清欧美精品videossex| 中文字幕另类日韩欧美亚洲嫩草| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 久9热在线精品视频| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 亚洲熟女毛片儿| 十八禁人妻一区二区| 黑人巨大精品欧美一区二区mp4| 一级,二级,三级黄色视频| av免费在线观看网站| a级毛片在线看网站| 国产精品免费视频内射| av网站免费在线观看视频| 在线十欧美十亚洲十日本专区| 18禁美女被吸乳视频| 老司机亚洲免费影院| 精品免费久久久久久久清纯 | 亚洲午夜理论影院| 国产精品自产拍在线观看55亚洲 | 怎么达到女性高潮| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人 | 国产无遮挡羞羞视频在线观看| 国产色视频综合| 一区二区三区激情视频| 成人手机av| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| 丝瓜视频免费看黄片| 国产麻豆69| 在线观看人妻少妇| av又黄又爽大尺度在线免费看| 精品国产一区二区三区四区第35| 欧美一级毛片孕妇| h视频一区二区三区| 国产高清videossex| 黄片小视频在线播放| 久久人人爽av亚洲精品天堂| 99re6热这里在线精品视频| 国产精品电影一区二区三区 | 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频| 露出奶头的视频| 一本久久精品| 亚洲一码二码三码区别大吗| av免费在线观看网站| 亚洲五月婷婷丁香|