• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical investigation on the elusive biomimetic iron(III)-iodosylarene chemistry:An unusual hydride transfer triggers the Ritter reaction

    2021-03-14 02:31:42LanpingGaoXiaoluChenDongruSunHuaZhaoYufenZhaoWonwooNamYongWang
    Chinese Chemical Letters 2021年12期

    Lanping Gao,Xiaolu Chen,Dongru Sun,?,Hua Zhao,Yufen Zhao,Wonwoo Nam,Yong Wang,?

    a Institute of Drug Discovery Technology,Ningbo University,Ningbo 315211,China

    b Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences,Ningbo University,Ningbo 315211,China

    c Department of Chemistry and Nano Science,Ewha Womans University,Seoul 03760,Korea

    Keywords:Reaction mechanism DFT calculations Metal-iodosylbenzene Ritter reaction Olefin oxidation

    ABSTRACT Introduction of iodosylarnes into biomimetic nonheme chemistry has made great achievement on identification of the subtle metal-oxygen reaction intermediates.However,after more than three decades of experimental and theoretical efforts the nature of the metal-iodosylarene adducts and the related dichotomous one-oxidant/multiple-oxident controversy have remained a matter of speculation.Herein,we report a theoretical study of the structure-activity relationship of the noted iron(III)-iodsylarene complex,FeIII(PhIO)(OTf)3 (1),in oxygenation of cyclohexene.The calculated results revealed that 1 behaves like a chameleon by adapting its roles as a 2e-oxidant or an oxygen donor,as a response to the regioselective attack of the C–H bond and the C=C bond.The oxidative C–H bond activation by 1 was found,for the first time,to proceed via a novel hydride transfer process to form a cyclohexene carbonium intermediate,such non-rebound step triggers the Ritter reaction to uptake an acetonitrile molecule to form the amide product,or proceeds with the rebound of the hydroxyl group return to the solvent cage to form the hydroxylated product.While in the C=C bond activation,1 is a normal oxygen donor and shows two-state reactivity to present the epoxide product via a direct oxygen atom transfer mechanism.These mechanistic findings fit and explain the famous Valentine’s experiments and enrich the non-rebound scenario in bioinorganic chemistry.

    Oxidative activation of the inert C–H and C=C bond with high selectivity in benign environments is still a Holly Grail in organic synthesis [1,2].However,such oxidations are well accomplished in nature,mainly by heme [3](e.g.,cytochrome P450)and nonheme [4](e.g.,methane monooxygenase) enzymes.Uptaking electrons and protons from the protein environment,these enzymes form several iron-oxygen intermediates,such as the iron-superoxo (Fe+3–OO?) [5],the iron-peroxo (Fe+3–OO) [6],the iron-hydroperoxo (Fe+3–OOH) [7],and the high-valent iron-oxo(Fe+4/+5=O) reactive intermediates [8,9],which are speculated as the active reaction intermediate to perform the robust oxidations.To directly obtain the putative high-valent iron-oxo intermediates,iodosylarenes (e.g.,iodosylbenzene,PhIO) have been introduced into the enzymatic and biomimetic reaction systems.Metaliodosylarene adducts (M-PhIO) are normally formed after the introduction of PhIO (Scheme 1a).These adducts are believed to be very unstable and decay automatically to the putative high-valent metal-oxo oxidants,which performs various kinds of oxidations.Such one-oxidant mechanism proposed by Groves and his coworkers has been widely accepted in the heme and nonheme chemistry,after combination of the oxygen-rebound mechanism [10]and the concept of two-state reactivity [11–13].

    However,Valentine and co-workers found in 1990 that olefin oxidation with iodosylbenzene could be significantly promoted by the redox-inert metal salts,such as Zn(OTf)3and Al(OTf)3,which cannot form the high-valent metal-oxo oxidants (e.g.,the Zn+4O and the Al+5O species) from the metal-iodosylarene precursors.Meanwhile,the products formed in the oxidation reactions mediated by Al(OTf)3and by the redox-active iron salt Fe(OTf)3are nearly identical,indicating that a common oxidant and a similar reaction mechanism work in these oxidations [14–16].These unexpected results casted the one-oxidant mechanism into doubt.In 2002,Nam and his co-workers proposed the multiple-oxidant mechanism (Scheme 1a) in their chiral epoxidation with various iodosylarenes mediated by heme catalysts [17].In this mechanism,both the metal-iodosylarene adducts and the high-valent metal-oxo complexes are the active oxidants to perform oxidations.Many experimental and theoretical studies have provided evidence to support the multiple-oxidant mechanism [18–24].Thus,debates on the two dichotomous one-oxidant/multiple-oxidant mechanisms become prevalent and this controversy has been a hot topic in the biomimetic nonheme chemistry.The key point to solve this controversy is to unveil the elusive structure-reactivity relationship of the metal-iodosylarene adducts.In 2017,we revealed that the metal-iodosylarene adducts can generate two transient resonance valence bond structures,a high-valent metal-oxo species and a monomeric PhIO one,as a response to different substrate approaching orientations [21].Very recently,an unusual hydride transfer/proton transfer (HT/PT) mechanism involving a carbonium intermediate was proposed in desaturation of 9,10-dihydroantharacene (DHA) by a manganese-iodosylarene complex[18]and a cobalt-iodylarene complex [19].The formation of an unusual carbonium intermediateviahydride transfer in the C–H bond activation inspires us to reinvestigate the mechanism proposed by Valentine (Scheme 1b) [14,16]in the cyclohexene oxidation with PhIO catalyzed by inorganic metal salts (e.g.,Fe(OTf)3).They proposed the metal-iodosylarene adducts M-PhIO (i in Scheme 1b),instead of the high-valent metal-oxo species as the oxidant.The oxidation reaction is initiated by an electrophilic addition of iodine(III)to the C=C double bond to form a triangular C–C-I(V) species ii.Such triangular species is unstable and decays by two pathways:in path a,ii decays to a quadrangular C–C-O-I(III) species iii,which subsequently converts to an epoxide,whereas in path b,ii convers to a cyclohexane carbonium complex with an iodine(III) species iv.Such carbonium intermediate is ready to bind with an acetonitrile moleculeviathe well-known Ritter mechanism [25,26](Scheme 1c) to generate a carbonium amide v,which produces a carbonyl-amide-iodine(III) complex viiviaa cyclic species vi.The cyclohexene amide product forms by the decomplexation of PhI from vii.

    Scheme 1.Schematic plots of (a) the multiple-oxidant mechanism,(b) the iodine(III) chemistry proposed by Valentine,and (c) the traditional Ritter mechanism.

    In Valentine’s mechanism mentioned above,the carbonium species v is generated from the triangular ii which was obtained by the electrophilic addition of iodine(III) to the C=C bond.However,such an electrophilic iodine(III) addition was reported to need more than 40 kcal/mol in thioanisole sulfoxidation by a Fe(III)-PhIO complex [21].Therefore,several mechanistic questions arise:Does the triangular iodine(V) species ii exist? How is the carbonium species for the Ritter addition generated? How can one oxidant yield three different products (Besides of the epoxide and the amide products,there was also small amounts of hydroxylated product observed in the experiment) [14]? To answer these questions and continue our mechanistic study of iron-iodosylarene chemistry,cyclohexene oxidation by the iron(III)-iodosylarene complex,FeIII(PhIO)(OTf)3(CH3CN)2(1),in Valentine’s experiments,was selected as the target of theoretical investigation.Our density functional theory (DFT) calculations at the UB3LYP//B2/B1 level (B1:lanl2dz for Fe,lanl2dzdp for I and 6–31G??for the rest atoms,B2:lanl2tz for Fe,lanl2dzdp for I and 6–31+G??for the rest atoms) demonstrated that 1,instead of the high-valent FeIV/V=O species 2 or 2′,oxidizes cyclohexene into three products with a good regio-selectivity:C=C bond activation by 1 forms the epoxide product,whereas C-H bond activation generates both the normal hydroxylated product and the unusual amide product,viaa novel hydride transfer following by a hydroxyl anion rebound (the hydroxylation route) or a Ritter addition of nitriles (the amide route).

    The structure of the employed iron(III)-PhIO adduct,FeIII(PhIO)(OTf)3(CH3CN)2(1),is presented in Fig.1a.The ground state is the sextet state (S=5/2).The exited quartet/doublet spin states lay higher in energy by 19.3/22.7 kcal/mol (Table S1 in Supporting information).For the ground state61,the bond distances of Fe–O and I–O are 1.887 ?A and 1.927 ?A,and the Fe-O-I angle is 126.0°.Then,the conversion of 1 to a high-valent iron-oxo species 2 was investigated.The activation energy is as large as 31.4 kcal/mol.For the low-lying6TS12,the bond distance of Fe–O and I–O are 1.633 ?A and 2.671 ?A,respectively,and the Fe-O-I angle is 135.4° The nascent high-valent FeIV=O complex62 lies 32.1 kcal/mol higher than61.In 2,the spin of the Fe-O moiety is~3.7 and the PhI moiety isca.1.0,thus the O-I bond cleavage is a homolytic process.In short,this conversion is kinetically and thermodynamically unfeasible.Thus,the active oxidant is the Fe(III)-iodosylarene species 1,not the high-valent iron-oxo species,which is consistent with Valentine’s experimental conclusion [14].As shown in other metal-iodosylarene systems [18,21],there is a T-shape halogen bonding interaction between the iodine(III) atom of 1 and the approaching substrate.Thus,only one carbon atom can interact with the iodine core and the triangular species ii cannot be formed.The direct electrophilic addition of the C=C bond to form the cyclohexane carbonium complex needs a high activation energy of>23.0 kcal/mol (Fig.2a and Fig.S5 in Supporting information).Thus,attribution of the promoted reactivity of the metal-iodosylarene adducts to the hypervalent iodine(III)chemistry shown in Scheme 1b is unreasonable.We turned our attention to the traditional electrophilic oxygen addition to the C=C bondviaa direct oxygen-atom transfer (DOT) mechanism.The calculated energy profiles are presented in Fig.2b.Surprisingly,the activation energy is just 16.3 kcal/mol,which is much lower than the one through the electrophilic iodine(III) addition.The epoxidation proceedsviaa two-state reactivity (TSR) theory[11-13].A spin inversion occurs from the sextet RC to the quartet TS,followed by a second spin flip from the quartet TS to the sextet PC.For the low-lying4TS,the Fe-O,I-O and C1-O distances are 2.225 ?A,1.963 ?A and 1.936 ?A,respectively,and the Fe-O-I and the Fe-O-C1 angles are 118.5° and 117.0°,respectively.

    Fig.1.(a) The geometric information of the FeIII(PhIO)(OTf)3(CH3CN)2 species (1).(b) Energy profiles (in kcal/mol) for the conversion of 1 to the high-valent ironoxo complex 2 species.Key geometric information of the transition states is presented.Hydrogen atoms of PhI are omitted for clarity.Energies are in kcal/mol units,lengths are in ?A units,angles are in degree units,and imaginary frequencies are in cm-1 units.

    Scheme 2.Proposed catalytic mechanism of olefin oxidation involving the FeIII-iodosylarene.

    Fig.2.Energy profiles (in kcal/mol) for along the epoxidation of cyclohexene by 1 species.Hydrogen atoms of PhI are omitted for clarity.Energies are in kcal/mol units,lengths are in ?A units,angles are in degree units,and imaginary frequencies are in cm-1 units.

    Fig.3.Energy profiles (in kcal/mol) along the C–H bond oxidation of cyclohexene by 1 species.Key geometric information on transition states is presented.Energies are in kcal/mol units,lengths are in ?A units,angles are in degree units,and imaginary frequencies are in cm-1 units.

    C–H bond activation of cyclohexene by 1 was investigated starting from the same sextet6RC,and the reaction route of amide formation is presented in Fig.3.The rate-limiting step is the initial C-H bond activation by 1,holding a barrier of 14.7 kcal/mol.For the low-lying6TSh,the C2-H distance is 1.192 ?A,the O-H one is 1.545 ?A,and the C2-H-O angle is 173.7°.Surprisingly,at6IM1,the H-abstracted substrate (Sub-H) moves far away from the Fe(III)-OH moiety (rC2-OH=4.306 ?A,Fig.S8 in Supporting information),suggesting that the Sub-H group escapes from the solvent cage and a non-rebound mechanism [27-29]works.Interestingly,there is no spin for H and the Sub-H moiety at6IM1,and the Mulliken charge of Sub-H changes from a little negative value (ca.-0.09) at the6RC state,to a significant positive one (ca.0.96) at6IM1 (Fig.S9 and Table S9 in Supporting information).This means that the nascent Sub-H moiety is cationic,which can explain the departure of substrate by the repulsive effect between two cationic parts,i.e.,the carbonium and the proton of the Fe-OH moiety.Thus,C–H bond activation of cyclohexene by 1 proceedsviaa novel hydride transfer (HT) process [30],which is similar to the C–H bond activation in dehydrogenation of 9,10-dihydroanthracene by a Mn(III)-PhIO complex [18]and Co(II)-PhIO2complex [19].As Valentine and her coworkers pointed out,a Ritter-like reaction takes place by electrophilic addition of an acetonitrile molecule to the carbonium of Sub-H,with a moderate barrier of 6.1 kcal/mol.After an electron tautomerism,the carbon forms double bond with nitrogen becomes cationic (6IM2).Finally,6IM2 undergoes a rebound of the hydroxyl anion from the iron core to this carbonium with a barrier of 8.0 kcal/mol,to yield 3-acetamidocyclohexene,which is a key product in Valentine’s experiment [14,16].We also investigated the hydroxylation route after the initial C-H bond activation started from6IM1′;that is,the escaped Sub-H moiety can also diffuse back to the solvent cage and locates at the vicinity of the Fe(III)–OH complex to form a stable intermediate structure(IMreb) (Fig.S11a in Supporting information).For the ground state6IMreb(Fig S11b in Supporting information),the distance of C2–OH is 2.435 ?A,and the Fe–OH one is 1.823 ?A.Subsequently,6IMrebundergoes a transition state6TSrebwith a tiny barrier of 0.4 kcal/mol,and transfers the hydroxyl to carbonium ion to yield the hydroxylated products.Thus,the hydroxylation is governed by the diffusion rate in a thermodynamics way.Due to a relatively long distance (rC2-OH=4.916 ?A),the entire diffusion process is very slow and the hydroxylation pathway becomes a minor process.

    Based on the theoretical findings,we propose a new mechanism for the cyclohexene oxidation by 1 (Scheme 2).When an inorganic salt Fe(OTf)3is mixed with the iodosylarene polymer,an FeIII-PhIO complex (1) is formed,which serves as the active oxidant that oxidizes cyclohexane to afford three different products(the epoxide,the amide and the hydroxylated one) through two reaction pathways:(a) in the electrophilic C=C bond activation,1 behaves like a normal oxygen donor and shows two-state reactivity to present the epoxide product,viaa direct oxygen atom transfer mechanism;(b) in the C-H bond oxidation,the oxidation proceedsviaa novel hydride transfer process to form an escaped carbonium species in a non-rebound way,which can continue the reactionviathe Ritter mechanism to form an amide by uptake of an acetonitrile to the carbonium moiety,or continue the reactionviaa rebound way by a long distance diffusion.The carbonium species returns to the solvent cage with the rebound of the hydroxyl anion to form the hydroxylated product.

    In summary,we presented herein the first comprehensive theoretical investigation on the elusive structure-reactivity relationship of the iron(III)-iodosylbenzene complex,FeIII(PhIO)(OTf)3(CH3CN)2(1) in Valentine’s experiment,which casted the noted one-oxidant mechanism into doubt.The calculated results support Valentine’s conclusion that it is the metal-iodosylarene adduct,not the high-valent metal-oxo complex,that serves as the key oxidant.The metal-iodosylarene species 1 was unveiled to behave like a chameleon by adapting its role (a normal oxygen donor,or a twoelectron oxidant) when exerts the C=C bond activation to form the epoxide product,or oxidize the C–H bondviaa novel hydride transfer mechanism to form an escaped carbonium intermediate,which continues to transform either in a non-rebound way to produce an amideviathe Ritter mechanism,or in a rebound way to form a hydroxylated product.Our theoretical work fits and explains Valentine’s experimental observations and enrich the nonrebound scenario in the C–H bond activation reactions in bioinorganic chemistry.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (No.21873052),the Natural Science Foundation of Zhejiang Province (No.LQ20B030004),the Ningbo Natural Science Foundation (No.202003N4079).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.030.

    日日夜夜操网爽| 在线免费观看的www视频| 欧美日韩黄片免| a级一级毛片免费在线观看| 十八禁人妻一区二区| 欧美性猛交╳xxx乱大交人| 午夜福利18| 国产伦一二天堂av在线观看| 欧美性感艳星| 欧美激情国产日韩精品一区| 偷拍熟女少妇极品色| 亚洲成av人片免费观看| 亚洲国产精品999在线| 国产私拍福利视频在线观看| 欧美高清成人免费视频www| 国产亚洲欧美98| 久久久久九九精品影院| 91久久精品国产一区二区成人| 舔av片在线| 床上黄色一级片| 在线观看一区二区三区| 日韩人妻高清精品专区| 757午夜福利合集在线观看| 久久久精品大字幕| 国产v大片淫在线免费观看| 十八禁人妻一区二区| 欧美激情在线99| 亚洲av成人av| 日本 av在线| 又粗又爽又猛毛片免费看| 国产黄片美女视频| 美女被艹到高潮喷水动态| 最新在线观看一区二区三区| 国产成人影院久久av| 91在线精品国自产拍蜜月| 中文字幕熟女人妻在线| 日本精品一区二区三区蜜桃| 国产一区二区在线观看日韩| 一区二区三区激情视频| 国产精品1区2区在线观看.| 国产亚洲精品av在线| 精品国内亚洲2022精品成人| 国产 一区 欧美 日韩| 国产精品久久电影中文字幕| 亚洲精品456在线播放app | 精品午夜福利在线看| 他把我摸到了高潮在线观看| 国产野战对白在线观看| 动漫黄色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 天堂av国产一区二区熟女人妻| 脱女人内裤的视频| 91麻豆av在线| 久久久色成人| 69av精品久久久久久| 欧美性感艳星| 国产国拍精品亚洲av在线观看| 男女做爰动态图高潮gif福利片| 精品人妻1区二区| 久久精品91蜜桃| 757午夜福利合集在线观看| 99国产精品一区二区三区| 久久久久久久久久成人| 中文字幕av在线有码专区| 国产精品久久电影中文字幕| 老司机午夜福利在线观看视频| 狂野欧美白嫩少妇大欣赏| 十八禁人妻一区二区| 欧美黑人巨大hd| 狠狠狠狠99中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 欧美午夜高清在线| 国产爱豆传媒在线观看| 国产精品一区二区性色av| av福利片在线观看| 国产精品99久久久久久久久| 国产av麻豆久久久久久久| 精品久久久久久久久久免费视频| 又爽又黄无遮挡网站| 中出人妻视频一区二区| 91麻豆av在线| 欧美成人免费av一区二区三区| 美女 人体艺术 gogo| 男人狂女人下面高潮的视频| 观看免费一级毛片| 国产成人a区在线观看| 欧美另类亚洲清纯唯美| 成人性生交大片免费视频hd| 九九热线精品视视频播放| 色噜噜av男人的天堂激情| 亚洲精品在线观看二区| 国产精品久久久久久久电影| 中文字幕av在线有码专区| 国产欧美日韩一区二区精品| 日韩欧美精品免费久久 | 天堂网av新在线| 又黄又爽又刺激的免费视频.| 色尼玛亚洲综合影院| 真实男女啪啪啪动态图| 看免费av毛片| 国产欧美日韩精品一区二区| 免费在线观看日本一区| 国产精品一区二区免费欧美| 直男gayav资源| 91在线精品国自产拍蜜月| 国产在线男女| av黄色大香蕉| 久久久久精品国产欧美久久久| 99久国产av精品| 国产真实乱freesex| 午夜免费激情av| 色精品久久人妻99蜜桃| 69av精品久久久久久| 亚洲av第一区精品v没综合| 亚洲av一区综合| 最近视频中文字幕2019在线8| 欧美午夜高清在线| 91av网一区二区| 日韩欧美国产一区二区入口| 一区二区三区激情视频| 国产一区二区三区视频了| 久久国产精品影院| 九九在线视频观看精品| 亚洲av二区三区四区| 又紧又爽又黄一区二区| 国产精品1区2区在线观看.| 国产精品国产高清国产av| 伊人久久精品亚洲午夜| 一个人看视频在线观看www免费| 国产免费男女视频| 伊人久久精品亚洲午夜| 欧美激情久久久久久爽电影| 国产探花极品一区二区| 少妇熟女aⅴ在线视频| 国产伦一二天堂av在线观看| 757午夜福利合集在线观看| 免费av不卡在线播放| 亚洲经典国产精华液单 | 我要搜黄色片| 一个人观看的视频www高清免费观看| 亚洲精品影视一区二区三区av| 女人十人毛片免费观看3o分钟| 久久九九热精品免费| 可以在线观看的亚洲视频| 99热这里只有是精品在线观看 | 色在线成人网| 一进一出好大好爽视频| 国产三级黄色录像| 国产精品爽爽va在线观看网站| 18禁在线播放成人免费| а√天堂www在线а√下载| av视频在线观看入口| 久久午夜福利片| 真人一进一出gif抽搐免费| 免费在线观看成人毛片| 特大巨黑吊av在线直播| 国产大屁股一区二区在线视频| 成人欧美大片| 黄色配什么色好看| 国产免费一级a男人的天堂| 国产乱人视频| 欧美bdsm另类| 黄色女人牲交| 哪里可以看免费的av片| 免费大片18禁| 高清毛片免费观看视频网站| 欧美色视频一区免费| 麻豆av噜噜一区二区三区| 亚洲avbb在线观看| 亚洲欧美日韩高清在线视频| 赤兔流量卡办理| 国产伦在线观看视频一区| av福利片在线观看| 国产爱豆传媒在线观看| 一a级毛片在线观看| 天堂动漫精品| 久久亚洲真实| 国产欧美日韩一区二区精品| 午夜激情福利司机影院| 亚洲国产精品久久男人天堂| 99精品在免费线老司机午夜| 又黄又爽又免费观看的视频| 国产一级毛片七仙女欲春2| 午夜影院日韩av| 国产不卡一卡二| 97超视频在线观看视频| 嫩草影院精品99| 亚洲黑人精品在线| 一级作爱视频免费观看| 99久久精品国产亚洲精品| 亚洲av不卡在线观看| 国产色爽女视频免费观看| 免费av观看视频| 老熟妇乱子伦视频在线观看| 一进一出抽搐gif免费好疼| 日韩欧美精品v在线| 97超视频在线观看视频| or卡值多少钱| 日日干狠狠操夜夜爽| 亚洲精品久久国产高清桃花| 狂野欧美白嫩少妇大欣赏| 免费黄网站久久成人精品 | 少妇丰满av| 国产国拍精品亚洲av在线观看| 国产一区二区三区在线臀色熟女| 老鸭窝网址在线观看| 在线看三级毛片| 国产综合懂色| 久久久久免费精品人妻一区二区| 又紧又爽又黄一区二区| 亚洲精品亚洲一区二区| 91av网一区二区| 免费av毛片视频| 深爱激情五月婷婷| 日韩欧美精品免费久久 | 国产老妇女一区| 精品人妻1区二区| 国产精品,欧美在线| 色综合站精品国产| 久久久久九九精品影院| 最新在线观看一区二区三区| 精品人妻一区二区三区麻豆 | 欧美精品啪啪一区二区三区| 成年女人看的毛片在线观看| 大型黄色视频在线免费观看| avwww免费| 国产精品爽爽va在线观看网站| 欧美乱妇无乱码| 内地一区二区视频在线| 国产精品不卡视频一区二区 | 国产三级黄色录像| 久久亚洲真实| 国产69精品久久久久777片| 国产成人a区在线观看| 人妻制服诱惑在线中文字幕| 国产精品一区二区性色av| 人人妻人人澡欧美一区二区| 一进一出好大好爽视频| 我要搜黄色片| 亚洲最大成人手机在线| 国产亚洲欧美98| 精品久久久久久久久久久久久| 好看av亚洲va欧美ⅴa在| 国产老妇女一区| 日本与韩国留学比较| 99热只有精品国产| 深爱激情五月婷婷| 给我免费播放毛片高清在线观看| 99久国产av精品| 成人欧美大片| 亚洲第一区二区三区不卡| 亚洲精品日韩av片在线观看| 久久久久久大精品| 久久天躁狠狠躁夜夜2o2o| 热99re8久久精品国产| 成人美女网站在线观看视频| 天天一区二区日本电影三级| 我的老师免费观看完整版| eeuss影院久久| 亚洲av电影在线进入| 亚洲av免费高清在线观看| 校园春色视频在线观看| 免费观看精品视频网站| 三级男女做爰猛烈吃奶摸视频| 无遮挡黄片免费观看| 淫秽高清视频在线观看| 日韩亚洲欧美综合| 色综合欧美亚洲国产小说| 欧美日本视频| 国内精品美女久久久久久| 国产伦精品一区二区三区视频9| 亚洲狠狠婷婷综合久久图片| 一本一本综合久久| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 人妻夜夜爽99麻豆av| 婷婷六月久久综合丁香| 欧美性猛交黑人性爽| 精品久久久久久久末码| 久久99热6这里只有精品| 中文资源天堂在线| 亚洲一区二区三区不卡视频| 国产一区二区三区视频了| 最新中文字幕久久久久| 制服丝袜大香蕉在线| 俺也久久电影网| 99热这里只有精品一区| 国产精品人妻久久久久久| 亚洲精品在线美女| 国产高清激情床上av| 露出奶头的视频| 国产真实乱freesex| 别揉我奶头 嗯啊视频| 久久久久免费精品人妻一区二区| 99久久久亚洲精品蜜臀av| 日韩中字成人| 国产一区二区三区在线臀色熟女| 免费人成视频x8x8入口观看| 黄色视频,在线免费观看| 久久久久亚洲av毛片大全| 中出人妻视频一区二区| 久久人人精品亚洲av| 九色国产91popny在线| 日本在线视频免费播放| 人妻丰满熟妇av一区二区三区| 一级黄色大片毛片| 国内揄拍国产精品人妻在线| 搡老妇女老女人老熟妇| 两人在一起打扑克的视频| 国产精品综合久久久久久久免费| 他把我摸到了高潮在线观看| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| 精品午夜福利在线看| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| 免费无遮挡裸体视频| 婷婷色综合大香蕉| 日本免费a在线| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 久久精品国产自在天天线| 色播亚洲综合网| 亚洲男人的天堂狠狠| 动漫黄色视频在线观看| 亚洲激情在线av| 亚洲欧美清纯卡通| 观看免费一级毛片| 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 男女那种视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 神马国产精品三级电影在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩高清专用| 亚洲三级黄色毛片| 精品国产亚洲在线| 丰满人妻一区二区三区视频av| 一本久久中文字幕| 男女那种视频在线观看| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影| 亚洲黑人精品在线| 亚洲avbb在线观看| 欧美最新免费一区二区三区 | 长腿黑丝高跟| 午夜免费激情av| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 亚洲国产欧洲综合997久久,| 可以在线观看的亚洲视频| 9191精品国产免费久久| 亚洲成人精品中文字幕电影| 69人妻影院| 成熟少妇高潮喷水视频| 精品福利观看| 久久99热这里只有精品18| 久久久久久久精品吃奶| 级片在线观看| 亚洲精品在线美女| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区| 国产精品不卡视频一区二区 | bbb黄色大片| 国产亚洲精品av在线| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 免费黄网站久久成人精品 | 我要搜黄色片| 又爽又黄无遮挡网站| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 欧美成人一区二区免费高清观看| 一本精品99久久精品77| 全区人妻精品视频| 一二三四社区在线视频社区8| 一级黄片播放器| 国产毛片a区久久久久| 日本 av在线| 国产成人影院久久av| 精品国内亚洲2022精品成人| 亚洲av成人不卡在线观看播放网| 日本免费a在线| 欧美国产日韩亚洲一区| 午夜福利在线观看免费完整高清在 | 精品午夜福利视频在线观看一区| 国产熟女xx| 亚洲欧美日韩无卡精品| 欧美成人性av电影在线观看| 丰满人妻熟妇乱又伦精品不卡| .国产精品久久| 欧美黑人欧美精品刺激| 熟女人妻精品中文字幕| 91九色精品人成在线观看| 亚洲国产精品999在线| 性插视频无遮挡在线免费观看| 亚洲在线自拍视频| 国产真实伦视频高清在线观看 | 国产精品免费一区二区三区在线| 国模一区二区三区四区视频| 看免费av毛片| 999久久久精品免费观看国产| 亚洲熟妇中文字幕五十中出| 别揉我奶头~嗯~啊~动态视频| 中文字幕av在线有码专区| 国产精品影院久久| 两个人视频免费观看高清| 欧美高清性xxxxhd video| av天堂中文字幕网| www.999成人在线观看| bbb黄色大片| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| 精品欧美国产一区二区三| 中文字幕高清在线视频| 一级a爱片免费观看的视频| 十八禁人妻一区二区| 亚洲av中文字字幕乱码综合| 最好的美女福利视频网| 日本 欧美在线| 可以在线观看毛片的网站| 国产主播在线观看一区二区| 久久99热6这里只有精品| 身体一侧抽搐| 日韩高清综合在线| 亚洲色图av天堂| 搡女人真爽免费视频火全软件 | 热99re8久久精品国产| 亚洲va日本ⅴa欧美va伊人久久| 一进一出好大好爽视频| 美女 人体艺术 gogo| 757午夜福利合集在线观看| 国产精品久久久久久久久免 | 男人舔奶头视频| 91在线精品国自产拍蜜月| 级片在线观看| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 最近最新中文字幕大全电影3| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 高清在线国产一区| 午夜免费成人在线视频| 中亚洲国语对白在线视频| 免费一级毛片在线播放高清视频| 婷婷色综合大香蕉| 亚洲成av人片免费观看| netflix在线观看网站| av欧美777| 国产麻豆成人av免费视频| 成年版毛片免费区| 90打野战视频偷拍视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久热精品热| 一个人观看的视频www高清免费观看| 99国产综合亚洲精品| 夜夜爽天天搞| 中文字幕久久专区| 午夜福利18| 久久性视频一级片| 国产精品不卡视频一区二区 | 欧美最黄视频在线播放免费| 国产午夜福利久久久久久| 美女xxoo啪啪120秒动态图 | 美女免费视频网站| 午夜精品在线福利| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 久久99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 国产精品爽爽va在线观看网站| 99久久成人亚洲精品观看| 久久人人精品亚洲av| 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 深夜精品福利| 蜜桃亚洲精品一区二区三区| av在线蜜桃| 男女视频在线观看网站免费| 午夜视频国产福利| 亚洲av.av天堂| 日本黄色片子视频| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 淫妇啪啪啪对白视频| 草草在线视频免费看| 99久国产av精品| 中文字幕av成人在线电影| 亚洲国产色片| 变态另类成人亚洲欧美熟女| 一级毛片久久久久久久久女| 欧美最黄视频在线播放免费| 日韩欧美一区二区三区在线观看| 在线免费观看不下载黄p国产 | 搞女人的毛片| 在线免费观看的www视频| 精品午夜福利视频在线观看一区| 老熟妇仑乱视频hdxx| 久久久久国内视频| 欧美日韩国产亚洲二区| 麻豆国产97在线/欧美| 十八禁国产超污无遮挡网站| 亚洲国产精品999在线| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 一区二区三区免费毛片| 久久精品国产亚洲av涩爱 | 亚洲,欧美精品.| 午夜福利成人在线免费观看| 2021天堂中文幕一二区在线观| 好男人在线观看高清免费视频| 婷婷精品国产亚洲av| 久久6这里有精品| 亚洲成av人片在线播放无| 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 国产主播在线观看一区二区| 女人被狂操c到高潮| 在线观看av片永久免费下载| 给我免费播放毛片高清在线观看| av天堂中文字幕网| 91久久精品国产一区二区成人| 成人永久免费在线观看视频| 90打野战视频偷拍视频| 脱女人内裤的视频| 亚洲自偷自拍三级| 亚洲久久久久久中文字幕| 精品无人区乱码1区二区| 免费人成在线观看视频色| 成人三级黄色视频| 亚洲人成电影免费在线| 国产探花极品一区二区| 国产国拍精品亚洲av在线观看| 色尼玛亚洲综合影院| 欧美在线黄色| 久久久久性生活片| 欧美日韩黄片免| 亚洲五月婷婷丁香| 在线a可以看的网站| 亚洲av熟女| 欧美精品啪啪一区二区三区| 90打野战视频偷拍视频| 免费观看精品视频网站| 国产91精品成人一区二区三区| 精品99又大又爽又粗少妇毛片 | 成年女人看的毛片在线观看| 嫩草影院入口| 国产探花极品一区二区| 免费大片18禁| 在线播放无遮挡| 长腿黑丝高跟| 国产成人a区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲男人的天堂狠狠| 午夜福利欧美成人| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 热99re8久久精品国产| 好男人电影高清在线观看| 成人av在线播放网站| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 波野结衣二区三区在线| 久久久久久久精品吃奶| 91狼人影院| 日韩欧美免费精品| 9191精品国产免费久久| 亚洲av电影在线进入| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕| 99热这里只有是精品50| 色吧在线观看| 又黄又爽又刺激的免费视频.| 久久精品国产清高在天天线| 国产久久久一区二区三区| 一区福利在线观看| 一级av片app| 丁香欧美五月| 午夜福利成人在线免费观看| 精品久久久久久久久亚洲 | 成人av在线播放网站| 久久久久久九九精品二区国产| 99在线视频只有这里精品首页| 免费在线观看影片大全网站| 日韩亚洲欧美综合| 日韩欧美 国产精品| 亚洲成人久久爱视频| 久久精品人妻少妇| 51国产日韩欧美| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 久久热精品热| 国内精品久久久久久久电影| 99国产极品粉嫩在线观看| 色视频www国产| 亚洲国产精品sss在线观看| 首页视频小说图片口味搜索| 少妇人妻一区二区三区视频| aaaaa片日本免费| 午夜福利在线在线| 首页视频小说图片口味搜索| 日韩欧美精品v在线| 精品日产1卡2卡| 色噜噜av男人的天堂激情| 直男gayav资源| 久久亚洲精品不卡| 色尼玛亚洲综合影院| 亚洲av.av天堂| 怎么达到女性高潮| 有码 亚洲区| 91在线观看av|