• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid formation of metal-monophenolic networks on polymer membranes for oil/water separation and dye adsorption

    2021-03-14 02:31:42JiLuShenBingPnZhngDiZhouZhiKngXuLingShuWn
    Chinese Chemical Letters 2021年12期

    Ji-Lu Shen,Bing-Pn Zhng,Di Zhou,Zhi-Kng Xu,Ling-Shu Wn,?

    MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Key Laboratory of Adsorption and Separation Materials &Technologies of Zhejiang Province,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou 310027,China

    Keywords:Metal-phenolic networks Polymer membrane Surface coating Oil/water separation Dye adsorption

    ABSTRACT Surface deposition based on metal-phenolic networks (MPNs) has received increasing interest in recent years.The catechol structure is generally considered to be essential to the formation of MPNs.Our most recent results have demonstrated that some kinds of monophenols can form MPNs on substrate surfaces.Herein,we report a fast and effective surface-coating system based on the coordination of 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid,a kind of monophenol,with Fe3+.Compared with other metal ions such as Cu2+ and Ni2+,Fe3+ with stronger electron acceptability can coordinate with the monophenol more strongly to form MPNs,and moreover,the deposition time significantly decreases to 40 min from generally 24 h.It is demonstrated that the deposition process is controlled by the coordination,Fe3+hydrolysis,and deprotonation of the monophenol.The coatings endow substrates such as polypropylene microfiltration membrane with underwater superoleophobicity,which can be applied in oil/water separation with high separation efficiency and great long-term stability.In addition,the coated membranes are positively charged and thus are useful in selective adsorption of dyes.The present work not only provides a novel,fast,and one-step deposition method to fabricate MPNs,but also demonstrates that the fabrication efficiency of monophenol-based MPNs is comparable with that of polyphenol-based MPNs.

    Surface coatings with multifunctional properties have attracted great attention in the chemical,physical,and biomedical sciences[1–4].To form surface coatings on different materials,various methods have been studied including surface grafting [5],dip coating [6],chemical vapor deposition [7],electrospinning [8],layer-bylayer deposition [9,10],atomic layer deposition [11],polydopamine(PDA) deposition [12–15]and metal-phenolic networks (MPNs) formation [16–18].For example,inspired by the adhesive proteins in mussels,Leeet al.reported thin and surface-adherent PDA coatings[19].This method shows some advantages over other techniques,such as substrate independence and time-saving processes [12].High cost,dark color and relatively low stability were the main drawbacks of PDA coatings for practical applications,and they have been improved to some extent in recent years.

    MPNs [16–18]are an emerging class of materials which are based on metal-ligand coordination.Benefiting from diverse combinations of metal ions and phenolic ligands,time-saving process,and pH-responsive property,MPNs show potential applications in drug delivery [20],energy storage [21],catalysis [22],membrane separation [23],rewritable paper [24],elastomers [25]and selfhealing hydrogels [26].There are several studies reported the deposition of diverse MPNs on various substrates by simply immersing the substrates into the mixture solution of metal ions and phenols.The formation mechanism is commonly recognized as follows:phenols firstly adhere onto the surface of substrates through hydrogen or hydrophobic interaction,π-πconjugation,and other interaction force,and then are cross-linked by transition metal ions[16,27].

    Phenols are widely found in plants,and many of them are commercially available as well as cheap [28,29].Among abundant phenols,tannic acid that has twenty five phenolic hydroxyl groups is most commonly used to fabricate MPNs,and the catechol structure is always considered to be essential for the successful construction of uniform coatings [30–34].Recently,it has been found that some kinds of monophenols such as juglone,can form surface coatings alone or form MPNs on various substrate surfaces [35–38].As an example,3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid,FA),which has only one phenolic hydroxyl group (Fig.1a),can coordinate with Cu2+ions and form MPNs on a wide range of inorganic and organic substrates [37].However,the FA/Cu2+system is time-consuming which requires generally 24 h deposition,and the use of Cu2+may cause environmental and health hazards,limiting further applications of the resultant MPNs.

    Fig.1.(a) Chemical structure of 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid(FA) and (b) schematic illustration of the FA/Fe3+ deposition process.

    In this communication,we report that the Fe3+ions with stronger electron acceptability than Cu2+are conducive to form MPNs with FA,and significantly shorten deposition time from about 24 h to only 40 min (Fig.1b).The coatings endow substrates such as polypropylene microfiltration membrane (PPMM) with positive surface charge and underwater superoleophobicity,which enables applications in anion dyes adsorption and oil/water separation with high separation efficiency,high flux,and great long-term stability.This work provides a novel,fast,and one-step deposition method to fabricate monophenol-based MPNs,and demonstrates the potential applications of microporous membranes coated with MPNs.

    We chose hydrophobic PPMM as a typical substrate to study the formation of MPNs from FA and some metal ions.In the one-step deposition process,FA molecules adhere to the substrate surface via hydrophobic interaction andπ-πconjugation [39,40].Meanwhile,the oxygen atoms of phenolic hydroxyl group,methoxyl group,and carboxyl group donate their lone pair electrons to transition metal ions to form coordination bonds and hence crosslinked networks with metal ions as the cross-linker [27].

    The coordination between transition metal ions and ligands can be guided by hard and soft acids and bases (HSAB) theory [41,42].According to the HSAB theory,hard Lewis acids prefer binding with hard Lewis bases,andvice versa.The hardness of a Lewis acid depends on electron acceptability of the metal ion,which can be quantified by ionization potential.As shown in Fig.2a and Table S1(Supporting information),the order of hardness is Fe3+>Cu2+>Ni2+>Zn2+,of which Fe3+is a hard acid and the others are borderline acids.FA can be considered as a hard base for its carboxyl group and phenolic hydroxyl group.Therefore,it is predictable that FA prefers to coordinate with hard acids [41].To prove the speculation mentioned above,the influence of different kinds of metal ions was investigated.

    The ATR-FTIR spectrum of FA/Fe3+-coated PPMM displays characteristic C=O,benzene ring,and C–O bands at around 1650~1600 cm-1,1510 cm-1,and 1278 cm-1,respectively,revealing the deposition of FA (Fig.2b) [37].The same signals are observed for FA/Cu2+-coated PPMM,but the intensity of the peaks is much weaker.When Ni2+or Zn2+or no metal ions is used,these signals cannot be observed.The stronger characteristic bands from FA in the spectrum of FA/Fe3+than others suggest the higher FA content [42].EDX results (Table S2 and Fig.S1 in Supporting information),photographs (Fig.2b),UV-vis spectra (Fig.S2 in Supporting information),and FESEM images (Fig.S3 in Supporting information) also confirm effective and homogenous deposition of FA/Fe3+,indicating that the coordination ability between FA and Fe3+is stronger than the others.The solution becomes turbid immediately after mixing FA with Fe3+(Fig.S4 in Supporting information),which means rapid formation of FA/Fe3+coordination complexes.The FA/Fe3+solution gets more turbid in the first hour,and the turbidity shows no obvious increase with the further elongation of time,demonstrating that the coordination and de-coordination between FA and Fe3+has reached a balance after 1 h.However,the FA/Cu2+solution is transparent at first and the turbidity increases slowly with time,indicating the poor coordination capability between FA and Cu2+.As for FA/Zn2+and FA/Ni2+,the solutions keep clear and transparent even after 6 h.

    Since the-OH and–COOH groups of FA are hydrophilic,the surface deposition is also a hydrophilization process.Dynamic water contact angle results show that the nascent PPMM has a stable water contact angle of 140° and the PPMMs treated by FA,FA/Ni2+,and FA/Zn2+remain hydrophobicity (Fig.2c).After deposited with FA/Cu2+,the water contact angle of the membrane decreases to~90°.The FA/Fe3+-coated PPMM can exhibit superhydrophilicity,on which water droplets fully spread out in 1 s.

    To achieve fast and uniform formation of FA/Fe3+MPNs and hydrophilizationviathe one-step deposition process,some factors relating to the deposition including pH of buffer solutions,mass ratio of FA to Fe3+,and deposition time were investigated using PPMM as a typical substrate.As shown in Fig.S5a (Supporting information),the hydrophilicity of the coated PPMMs increases first and then deceases with pH values.At pH 4.0,7.0,and 8.0,the water contact angles of the coated PPMMs are larger than 40°,which reduce to~30° when pH is 5.0.The coated PPMM displays good hydrophilicity at pH 6.0,however the resulted MPN is not much uniform (Fig.S6a in Supporting information).As for the influence of the mass ratio of FA to Fe3+,with the increase of FeCl3?6H2O concentration from 2:0.5 to 2:8,the membrane surface becomes increasingly hydrophilic;and water droplets penetrate into the membrane completely in 1 s when the ratio reaches 2:8 (Fig.S5c in Supporting information).UV-vis (Figs.S5b and d in Supporting information) and EDX results (Tables S3 and S4 in Supporting information) are consistent with those of water contact angles.The influence of deposition time has also been studied.After only 20 min of deposition,the water contact angle obviously decreases to~70°from~140°;and deposition for 40 min leads to superhydrophilic membrane surface (Fig.S5e in Supporting information).The required deposition time is much shorter than FA/Cu2+system.

    The influence of pH and mass ratio is the result of some complicated processes including Fe3+hydrolysis,FA deprotonation,and FA/Fe3+coordination.High pH and Fe3+concentration facilitate the formation of insoluble iron hydroxide species,which inhibit the coordination between FA and Fe3+.However,high pH can also promote the deprotonation of phenolic hydroxyl groups and carboxyl groups of FA molecules,which will improve the electron donating ability of oxygen atoms and thus promote coordination [30,43,44].At pH 5.0 and a mass ratio of 2:8,the suppression of hydrolysis of Fe3+and the deprotonation of hydroxyl groups and carboxyl groups reach a balance,corresponding to an optimal state.The coordination process is rather quick,and the MPNs can be effectively formed in 40 min to realize superhydrophilicity of PPMM.When the deposition time is longer than 40 min,there is little difference in surface hydrophilicity of the modified membranes (Fig.S5e in Supporting information).Considering that a shorter deposition time is important for practical applications,we chose 40 min as the optimal deposition time in the following experiments unless otherwise indicated.

    SEM and XPS were used to characterize surface morphology and chemical composition of the MPN coatings.The nascent PPMM is microporous,and its three-dimensional structure produces microsized protrusions on the surface (Fig.2d and Fig.S7 in Supporting information).As for the FA/Fe3+-coated PPMM,in addition to the micro surface structure,the membrane surface is covered by numerous nano-sized particles induced by the deposition (Fig.2e)although the membrane thickness changes little before and after the deposition (Fig.S7 in Supporting information).According to the Wenzel model,the hydrophilicity of a surface is affected by both surface chemistry and surface roughness [45,46].Thus,the existence of both hydrophilic FA/Fe3+coating and the micro/nano surface structure endows the membrane with superhydrophilicity.

    Fig.2.(a) Ionization potential of various transition metal ions used in this work [42].(b) Digital photographs,ATR-FTIR spectra,and (c) dynamic water contact angles of nascent and modified PPMMs (deposition conditions:pH 5.0,FA/metal salt=1:1,FA=2.0 mg/mL,deposition time of 12 h).SEM images of (d) the nascent and (e) the FA/Fe3+-coated PPMM.XPS spectra of the FA/Fe3+-coated PPMM:(f) survey,(g) Fe 2p and (h) O 1s.

    XPS spectra also demonstrate the presence of O and Fe elements in the coated membrane (Fig.2f).Two peaks at around 712 eV and 720 eV represent signals of Fe 2p3/2and Fe 2p1/2,respectively,indicating Fe3+is the main specie of Fe element (Fig.2g).The signal of O 1s can be divided into three peaks at around 539.6,531.1 and 532.7 eV,which can be assigned to Fe-O,C=O and C-O,respectively (Fig.2h).The signal of Fe-O further confirms the coordination interaction between Fe3+and FA [43,47].

    The stability of the FA/Fe3+coatings towards various organic solvents,acid,and alkaline solutions has been studied.As shown in Fig.S6a (Supporting information),after immersed in various organic solvents for 24 h at room temperature,the color of the leaching solutions and the membranes remain almost unchanged.UV-vis spectra show trace amount of extractives,indicating excellent stability of the coatings towards the studied organic solvents (Fig.S8b in Supporting information).In the range of pH 3.0~9.0,the concentration of the extractives is very low.However,when pH value is lower than 3.0 or higher than 9.0,the coatings may disaggregate (Fig.S9 in Supporting information).In fact,pHresponsiveness is a feature of metal-phenol complexes,which enables them to be applied in drug delivery system and other fields[16,20].

    The surface wettability of polymer membranes is crucial to the applications in oil/water separation [48–50].As shown in Fig.3a,after prewetted by water,the underwater oil contact angles of the FA/Fe3+-coated PPMMs towards various heavy and light oils are all above 150°,indicating excellent underwater super-oleophobicity and great potentials in oil/water separation [48,51].

    In the oil/water mixture separation,three different kinds of light oils (i.e.,n-octane,petroleum ether and toluene) were used.During the separation,water can permeate through the coated PPMM,whereasn-octane (dyed red) is isolated above the membrane (Fig.3b).The studied oil/water mixtures are successfully separated by the coated membrane with separation efficiencies all above 99% (Fig.3c).The membranes can be used repeatedly,and each separation cycle takes about 18 min for the first 10 cycles of separation (Fig.S10 in Supporting information).

    In the oil/water emulsion separation experiments,five different emulsions,including both light and heavy oils,were taken into investigation (Fig.S11 in Supporting information).Taking petroleum ether-in-water emulsion as an example,after filtrated by the coated PPMM,the clear and transparent filtrate of water is separated from the red milky surfactant-stabilized feed emulsion (Fig.3d).For all oil-in-water emulsions,the total organic carbon (TOC) test results show that the separation efficiencies are all above 99%,and the fluxes are all higher than 140 LMH (Fig.3e).Moreover,during 10 cycles of emulsion separation,there is no significant decline in both flux and separation efficiency (Fig.3f).

    The surface of FA/Fe3+-coated membrane is positively charged at pH between 3.0 and 9.0 (Fig.4a),making it potential for anionic dye adsorption via electrostatic interaction [52].The direct red 80 aqueous solution was taken as an example.After permeating through the coated PPMM,the red solution turns into colorless,while the coated membrane adsorbs the dye and its color changes from initial brown to red (inset in Fig.4b).UV-vis spectrum shows that the dye concentration is almost negligible in the filtrate,demonstrating the high removal efficiency.

    The adsorption capacity towards various anionic dyes increases with the molecular weight and charge of the dyes (Fig.4c,Figs.S12,S13 and Table S6 in Supporting information),reaching 0.25,0.23,0.10 and 0.03 mg/cm2for direct red 80,direct yellow 80,methyl blue,and methyl orange,respectively.The removal efficiencies are all above 99%.Besides,the positive surface charge of the coated membranes decreases with the pH value of the solutions(Fig.4a and Fig.S14 in Supporting information),and the adsorption capacity decreases correspondingly (Fig.4d).At the same time,it is reasonable that the modified membrane can barely adsorb cationic dyes (Fig.S15 in Supporting information).

    The above-mentioned results demonstrate that the adsorption process is mainly driven by the attractive electrostatic interaction between the positively-charged membranes and the negativelycharged dyes.Therefore,the FA/Fe3+-coated membrane may have the potential to separate the mixture of anionic and cationic dyes by selectively adsorbing the anionic dyes.The mixture solution of methylene blue (MeB,cationic) and direct yellow 50 (DY,anionic)was prepared,which turns to blue (the original color of MeB solution) after being filtrated (Fig.4e).UV-vis spectra also confirm the selective adsorption of negatively-charged dyes (Fig.4f).The absorption peak of DY at~430 nm disappears after filtration,which means the anionic DY molecules have been almost fully removed from the mixture.Moreover,MeB molecules that are positively charged can interact with DY molecules and form black precipitates on the membrane surface (Fig.S16 in Supporting information),which slightly decreases the concentration of MeB in the filtrate (~660 nm,Fig.4f) and leads to the change in the solution color (Fig.4e).

    Fig.3.Performance of the coated PPMM in oil/water separation.(a) Underwater oil contact angles towards different oils.(b) Digital photographs of the separation setup incorporating the coated PPMM in the middle.(c) Separation efficiency of different oil/water mixtures.(d) Digital and optical photographs of the emulsion and filtrate.Scale bar:50 μm.(e) Fluxes and separation efficiencies of different oil-in-water emulsions.(f) Long-term performance of the coated PPMM for petroleum ether-in-water emulsion separation.

    Fig.4.Performance of the FA/Fe3+-coated PPMM in anionic dyes adsorption.(a) Zeta potential of the nascent and coated PPMM at various pH values.(b) UV-vis spectra of the dye solution of direct red 80 and the corresponding filtrate.Insets:digital photographs of the feed and filtrate solutions,and the membrane after filtration.(c) Adsorption capacity and removal efficiency of the coated PPMM toward different dyes.(d) Adsorption capacity and removal efficiency of the coated PPMM toward direct red 80 solution of different pH values.(e) Digital photographs and (f) UV-vis spectra of MeB/DY mixture before and after filtration.

    In conclusion,we propose a simple,fast,and effective method to fabricate monophenol-based MPNs.Effects of metal ions (Cu2+,Zn2+,Ni2+,and Fe3+) on the surface deposition demonstrate that the Fe3+ions with stronger electron acceptability are conducive to the formation of MPNs with FA,and significantly reduce the deposition time to only 40 min from generally 24 h.Other deposition parameters such as pH and ligand-to-metal mass ratio have also been investigated.The results indicate that the formation of FA/Fe3+coatings is controlled by the combination effect of FA/Fe3+coordination,Fe3+hydrolysis,and FA deprotonation.The FA/Fe3+coatings endow the PPMM with underwater superoleophobicity,which makes the membranes applicable to the separation of oil/water mixtures and emulsions with high separation efficiency and excellent long-term stability.Moreover,the coated membranes are highly positively charged,which can adsorb anionic dyes and separate them from cationic dyes.Furthermore,taking the advantage of the time-saving and controllable process,FA/Fe3+MPNs can be introduced to other fields such as drug delivery system and nanofiltration.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    Financial support from the National Natural Science Foundation of China (No.51873192) and Zhejiang Provincial Natural Science Foundation of China (No.LZ20E030002) is gratefully acknowledged.

    Supplementary materials

    Supplementary data associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.023.

    婷婷精品国产亚洲av| 九色国产91popny在线| 少妇的逼好多水| 日韩精品青青久久久久久| 色5月婷婷丁香| 露出奶头的视频| 午夜亚洲福利在线播放| 国产视频一区二区在线看| 国产精品美女特级片免费视频播放器| 久久国产精品影院| 我要看日韩黄色一级片| 国产视频一区二区在线看| 国产 一区 欧美 日韩| 麻豆av噜噜一区二区三区| 国产亚洲av嫩草精品影院| 欧美黑人欧美精品刺激| 国产私拍福利视频在线观看| 久久精品国产自在天天线| 欧美在线黄色| 欧美日本亚洲视频在线播放| 99国产极品粉嫩在线观看| 久久精品人妻少妇| 国产精品人妻久久久久久| 精品久久久久久久人妻蜜臀av| 在线十欧美十亚洲十日本专区| 国产极品精品免费视频能看的| 国产三级在线视频| 国产精品三级大全| 欧美成狂野欧美在线观看| 如何舔出高潮| 久久久久久久久中文| 一区二区三区高清视频在线| 国产一区二区亚洲精品在线观看| 男人的好看免费观看在线视频| 亚洲一区高清亚洲精品| 高清在线国产一区| 国产精品久久久久久久电影| 国产精品免费一区二区三区在线| 变态另类丝袜制服| 亚洲精品久久国产高清桃花| 一卡2卡三卡四卡精品乱码亚洲| 成人美女网站在线观看视频| 亚洲欧美日韩东京热| 我的老师免费观看完整版| 一区福利在线观看| 免费观看人在逋| 亚洲欧美日韩高清专用| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 久久香蕉精品热| 人人妻人人澡欧美一区二区| 亚洲熟妇中文字幕五十中出| 中文字幕熟女人妻在线| 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| ponron亚洲| 国产伦精品一区二区三区视频9| 乱人视频在线观看| 天堂√8在线中文| 久久精品影院6| 18美女黄网站色大片免费观看| 国产日本99.免费观看| 久久久久久久亚洲中文字幕 | 他把我摸到了高潮在线观看| 毛片一级片免费看久久久久 | 国产午夜福利久久久久久| 美女大奶头视频| 亚洲熟妇熟女久久| 久久性视频一级片| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区不卡视频| 欧美极品一区二区三区四区| 亚洲中文日韩欧美视频| 日韩欧美 国产精品| 久久久成人免费电影| 在线观看美女被高潮喷水网站 | 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 99视频精品全部免费 在线| 无遮挡黄片免费观看| 麻豆国产97在线/欧美| 高清毛片免费观看视频网站| 久久国产精品人妻蜜桃| .国产精品久久| 三级男女做爰猛烈吃奶摸视频| 又粗又爽又猛毛片免费看| 国产精品,欧美在线| 91在线精品国自产拍蜜月| 99久久精品国产亚洲精品| 国产成人a区在线观看| 波多野结衣巨乳人妻| 伦理电影大哥的女人| 国产精品久久久久久亚洲av鲁大| 麻豆国产97在线/欧美| 久久天躁狠狠躁夜夜2o2o| xxxwww97欧美| 国产日本99.免费观看| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 久久精品影院6| 久久久久九九精品影院| 级片在线观看| av福利片在线观看| 欧美bdsm另类| 色播亚洲综合网| 成人鲁丝片一二三区免费| 国产精品人妻久久久久久| 国产高潮美女av| 美女黄网站色视频| 欧美色视频一区免费| www.熟女人妻精品国产| 日本成人三级电影网站| 国产爱豆传媒在线观看| 国产精品免费一区二区三区在线| 一夜夜www| xxxwww97欧美| 色5月婷婷丁香| 日韩精品青青久久久久久| 天堂√8在线中文| 十八禁人妻一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产伦一二天堂av在线观看| 亚洲av成人不卡在线观看播放网| 国产精品日韩av在线免费观看| 久久性视频一级片| 精品国内亚洲2022精品成人| 午夜福利高清视频| 国产精品国产高清国产av| 国产真实伦视频高清在线观看 | 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 久久中文看片网| 简卡轻食公司| 成人高潮视频无遮挡免费网站| 热99在线观看视频| 99精品久久久久人妻精品| 国产精品不卡视频一区二区 | 国产色爽女视频免费观看| 91久久精品电影网| 夜夜爽天天搞| 窝窝影院91人妻| 国产真实伦视频高清在线观看 | 中文在线观看免费www的网站| 精品一区二区三区人妻视频| 最近中文字幕高清免费大全6 | 少妇的逼水好多| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久com| 可以在线观看毛片的网站| av天堂在线播放| 亚洲av熟女| 国产大屁股一区二区在线视频| 免费在线观看影片大全网站| 偷拍熟女少妇极品色| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 一个人免费在线观看的高清视频| 尤物成人国产欧美一区二区三区| 免费看a级黄色片| 亚洲精华国产精华精| 欧美一级a爱片免费观看看| 亚洲精品亚洲一区二区| 午夜福利在线观看吧| 啦啦啦观看免费观看视频高清| 99国产极品粉嫩在线观看| 啪啪无遮挡十八禁网站| 午夜免费男女啪啪视频观看 | 人人妻,人人澡人人爽秒播| av视频在线观看入口| 久久久久久久亚洲中文字幕 | 级片在线观看| 国产三级中文精品| 久久久久久久精品吃奶| 精品一区二区三区av网在线观看| 91av网一区二区| 亚洲五月婷婷丁香| 特级一级黄色大片| 国产精品一区二区三区四区久久| 精品午夜福利视频在线观看一区| 成人毛片a级毛片在线播放| 国内毛片毛片毛片毛片毛片| 久久伊人香网站| 国产高潮美女av| 搡老妇女老女人老熟妇| 国产av麻豆久久久久久久| 91av网一区二区| 成年人黄色毛片网站| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 亚洲欧美精品综合久久99| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 级片在线观看| 亚洲成人中文字幕在线播放| bbb黄色大片| 国产乱人伦免费视频| 有码 亚洲区| 亚洲男人的天堂狠狠| 免费在线观看影片大全网站| 成人无遮挡网站| 国产欧美日韩精品一区二区| 国产免费av片在线观看野外av| 国产麻豆成人av免费视频| 亚洲av二区三区四区| 国产精品三级大全| 又黄又爽又刺激的免费视频.| 日本五十路高清| 久久亚洲真实| 久久精品国产亚洲av涩爱 | 国产伦在线观看视频一区| 欧美午夜高清在线| 国产成人欧美在线观看| 国产乱人视频| 精品久久久久久久末码| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 国产精品永久免费网站| 亚洲国产精品sss在线观看| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添小说| av国产免费在线观看| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 日本a在线网址| 免费观看精品视频网站| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 久久国产精品影院| 丝袜美腿在线中文| 日日摸夜夜添夜夜添av毛片 | 麻豆国产av国片精品| 亚洲欧美日韩东京热| 床上黄色一级片| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 亚洲成av人片免费观看| 欧美最新免费一区二区三区 | 怎么达到女性高潮| 亚洲综合色惰| 午夜福利成人在线免费观看| 国产野战对白在线观看| 久99久视频精品免费| 亚洲av二区三区四区| 乱人视频在线观看| 成人精品一区二区免费| 亚洲av成人av| 日韩欧美国产在线观看| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 国产精品久久视频播放| 黄色一级大片看看| 少妇裸体淫交视频免费看高清| 成人美女网站在线观看视频| 高清日韩中文字幕在线| 国产成人啪精品午夜网站| 男人舔奶头视频| 日韩欧美精品免费久久 | 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品爽爽va在线观看网站| 观看免费一级毛片| 一进一出好大好爽视频| 亚洲精品乱码久久久v下载方式| 亚洲av成人不卡在线观看播放网| 欧美乱妇无乱码| 国产毛片a区久久久久| 九九热线精品视视频播放| 国产aⅴ精品一区二区三区波| 日韩成人在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 国内精品美女久久久久久| 91久久精品国产一区二区成人| 在线播放无遮挡| АⅤ资源中文在线天堂| 亚洲在线观看片| 一区福利在线观看| 色av中文字幕| 一级a爱片免费观看的视频| 熟女人妻精品中文字幕| 两个人的视频大全免费| 国产亚洲av嫩草精品影院| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 757午夜福利合集在线观看| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 香蕉av资源在线| 色av中文字幕| 中文字幕人成人乱码亚洲影| 成年免费大片在线观看| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 好男人电影高清在线观看| 久久九九热精品免费| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 少妇的逼水好多| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 久久国产乱子伦精品免费另类| 亚洲人与动物交配视频| 久久热精品热| 欧美色视频一区免费| 国产乱人伦免费视频| 精品免费久久久久久久清纯| 久久久久免费精品人妻一区二区| 国产成人福利小说| 免费在线观看日本一区| 久久人人爽人人爽人人片va | 少妇被粗大猛烈的视频| 欧美成人免费av一区二区三区| 最好的美女福利视频网| 中文字幕精品亚洲无线码一区| 欧美日韩黄片免| 久久久久国内视频| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 欧美+日韩+精品| 亚洲av日韩精品久久久久久密| 国产色婷婷99| 波多野结衣高清作品| 国产av一区在线观看免费| avwww免费| 男人狂女人下面高潮的视频| 成人三级黄色视频| 国产精品伦人一区二区| 美女大奶头视频| 成年免费大片在线观看| 久久国产乱子伦精品免费另类| 一级黄片播放器| 国内少妇人妻偷人精品xxx网站| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 免费人成视频x8x8入口观看| 国产精品一区二区三区四区免费观看 | 伦理电影大哥的女人| 51午夜福利影视在线观看| 亚洲无线观看免费| 超碰av人人做人人爽久久| 少妇的逼水好多| 麻豆国产97在线/欧美| 中文字幕久久专区| 国产黄a三级三级三级人| 久久久久久久亚洲中文字幕 | 国产精品不卡视频一区二区 | 国产精品1区2区在线观看.| 欧美激情在线99| 人妻制服诱惑在线中文字幕| 狠狠狠狠99中文字幕| 国产成+人综合+亚洲专区| 国产精品爽爽va在线观看网站| 国产在线男女| 亚洲性夜色夜夜综合| 成人精品一区二区免费| 国产精品精品国产色婷婷| 午夜日韩欧美国产| 日韩欧美免费精品| 欧美激情久久久久久爽电影| 亚洲五月天丁香| 老熟妇乱子伦视频在线观看| 国模一区二区三区四区视频| 亚洲中文字幕日韩| 麻豆国产av国片精品| 两个人的视频大全免费| bbb黄色大片| 成人国产一区最新在线观看| 亚洲欧美激情综合另类| 少妇人妻一区二区三区视频| 如何舔出高潮| 九九久久精品国产亚洲av麻豆| 别揉我奶头 嗯啊视频| 国产高清激情床上av| 99热这里只有精品一区| 丰满的人妻完整版| 久久人妻av系列| 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 国产成人福利小说| 天堂影院成人在线观看| 深夜a级毛片| 99热6这里只有精品| 日本黄大片高清| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品综合一区在线观看| 日韩欧美免费精品| 婷婷亚洲欧美| 久久午夜福利片| 女同久久另类99精品国产91| 亚洲欧美日韩高清专用| 97碰自拍视频| 又爽又黄无遮挡网站| 美女大奶头视频| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| 中文在线观看免费www的网站| 久久久久久久久久黄片| 免费人成在线观看视频色| 少妇的逼好多水| a级一级毛片免费在线观看| 国产三级黄色录像| 国产亚洲精品av在线| 黄色视频,在线免费观看| 国产精品不卡视频一区二区 | 一区二区三区激情视频| 亚洲人成电影免费在线| 国产野战对白在线观看| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 波多野结衣高清作品| 国产av麻豆久久久久久久| 露出奶头的视频| 欧美+日韩+精品| 极品教师在线视频| 国产主播在线观看一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品伦人一区二区| 国产免费av片在线观看野外av| 久久国产精品人妻蜜桃| 久久精品综合一区二区三区| 国产精品亚洲美女久久久| av视频在线观看入口| 一个人看的www免费观看视频| 国模一区二区三区四区视频| 1000部很黄的大片| 精品无人区乱码1区二区| 精品久久久久久,| 亚洲av电影不卡..在线观看| 精品乱码久久久久久99久播| 免费一级毛片在线播放高清视频| 国产三级黄色录像| 搞女人的毛片| 中亚洲国语对白在线视频| 99视频精品全部免费 在线| 好男人在线观看高清免费视频| 91字幕亚洲| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 观看免费一级毛片| 国产精品三级大全| 免费看光身美女| 欧美xxxx黑人xx丫x性爽| 亚洲国产高清在线一区二区三| 国产淫片久久久久久久久 | 好男人在线观看高清免费视频| 国产高清视频在线播放一区| 首页视频小说图片口味搜索| 日韩免费av在线播放| 美女 人体艺术 gogo| 亚洲国产精品999在线| 欧美国产日韩亚洲一区| 欧美精品国产亚洲| 日韩欧美在线乱码| 亚洲黑人精品在线| 日本黄色视频三级网站网址| 狂野欧美白嫩少妇大欣赏| 精品人妻视频免费看| 成人亚洲精品av一区二区| 宅男免费午夜| 在线国产一区二区在线| 亚洲黑人精品在线| 麻豆久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| 97超视频在线观看视频| 国产亚洲精品综合一区在线观看| 女人十人毛片免费观看3o分钟| 在线天堂最新版资源| 99精品久久久久人妻精品| 午夜影院日韩av| 日本在线视频免费播放| 国产一区二区在线av高清观看| 搡老熟女国产l中国老女人| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区激情视频| 国产日本99.免费观看| av欧美777| 国内精品久久久久精免费| 九九热线精品视视频播放| 欧美日韩瑟瑟在线播放| 午夜精品在线福利| 色在线成人网| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 亚洲国产精品合色在线| 真人一进一出gif抽搐免费| 国产三级在线视频| 中文字幕人妻熟人妻熟丝袜美| 哪里可以看免费的av片| 亚洲欧美日韩东京热| 午夜福利视频1000在线观看| 最好的美女福利视频网| 午夜久久久久精精品| 床上黄色一级片| 天天一区二区日本电影三级| 欧美乱妇无乱码| 国产野战对白在线观看| 中文在线观看免费www的网站| 丰满乱子伦码专区| 免费无遮挡裸体视频| 麻豆国产av国片精品| 深夜a级毛片| av在线老鸭窝| 我要搜黄色片| 精品国产亚洲在线| 女人被狂操c到高潮| 国产91精品成人一区二区三区| 丁香六月欧美| 两个人视频免费观看高清| 国产一级毛片七仙女欲春2| 欧美黄色淫秽网站| 丰满人妻一区二区三区视频av| 人人妻人人看人人澡| 欧美激情在线99| 两个人的视频大全免费| 人妻久久中文字幕网| 亚洲国产欧洲综合997久久,| 99国产精品一区二区三区| 毛片女人毛片| 自拍偷自拍亚洲精品老妇| 午夜久久久久精精品| 久久久精品欧美日韩精品| 一级黄色大片毛片| aaaaa片日本免费| 国产伦精品一区二区三区视频9| 国产伦精品一区二区三区四那| 69人妻影院| 日本黄大片高清| 中出人妻视频一区二区| 久久人人爽人人爽人人片va | 中文字幕熟女人妻在线| 精品不卡国产一区二区三区| 国产日本99.免费观看| 亚洲av.av天堂| 日日摸夜夜添夜夜添av毛片 | 国产成人a区在线观看| 我要搜黄色片| 亚洲一区二区三区色噜噜| 中出人妻视频一区二区| 少妇的逼好多水| 激情在线观看视频在线高清| 亚洲国产色片| 搡女人真爽免费视频火全软件 | 在线免费观看不下载黄p国产 | 一边摸一边抽搐一进一小说| 日本五十路高清| 最近最新中文字幕大全电影3| 偷拍熟女少妇极品色| 欧美三级亚洲精品| 久久久国产成人精品二区| 亚洲国产欧洲综合997久久,| 亚洲国产精品合色在线| 国产成人aa在线观看| 亚洲美女视频黄频| netflix在线观看网站| 久久久久九九精品影院| 日韩成人在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| av视频在线观看入口| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 淫秽高清视频在线观看| 欧美区成人在线视频| 成年免费大片在线观看| www.999成人在线观看| 99国产精品一区二区三区| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 亚洲精华国产精华精| 国产男靠女视频免费网站| 亚洲天堂国产精品一区在线| 观看美女的网站| 国产免费一级a男人的天堂| 老司机福利观看| 色综合站精品国产| 熟女电影av网| 久久久国产成人精品二区| 哪里可以看免费的av片| 国产精品98久久久久久宅男小说| 国产视频内射| 亚洲av成人av| 亚洲精品一卡2卡三卡4卡5卡| 99热这里只有是精品在线观看 | 搡老熟女国产l中国老女人| 亚洲av免费高清在线观看| 国产一区二区在线观看日韩| 看黄色毛片网站| www.www免费av| 一级a爱片免费观看的视频| 国产精品野战在线观看| 午夜老司机福利剧场| 亚洲国产精品sss在线观看| 国产欧美日韩精品一区二区| 欧美成人一区二区免费高清观看| 村上凉子中文字幕在线| 99热这里只有是精品50| 亚洲国产精品成人综合色| 日本五十路高清| 中文字幕久久专区| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩无卡精品| a级一级毛片免费在线观看| 高清毛片免费观看视频网站| 婷婷色综合大香蕉| 真人做人爱边吃奶动态| 日本一二三区视频观看| 精华霜和精华液先用哪个| 少妇的逼水好多| 久久九九热精品免费| 搡女人真爽免费视频火全软件 | 97超级碰碰碰精品色视频在线观看| www.999成人在线观看|