• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hexaazatriphenylene fused large discotic polycyclic aromatic hydrocarbon with selective and sensitive metal-ion sensing properties

    2021-03-14 02:31:42WenxiuQuWeiYuanMengweiLiYulanChen
    Chinese Chemical Letters 2021年12期

    Wenxiu Qu,Wei Yuan,Mengwei Li,Yulan Chen

    Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Department of Chemistry,Institute of Molecular Plus,Tianjin University,Tianjin 300072,China

    Keywords:Hexaazatriphenylene Ion adsorption Ion sensing Polycyclic aromatic hydrocarbons Self-assembly

    ABSTRACT A HAT based large PAH discotic molecule PN8 is developed.The enlarged chromophoric core and doping heteroatoms enable colorimetric and fluorometric sensing of Cu2+ and Zn2+ with highly appreciable optical changes,good selectivity and low detection limit.Moreover,PN8 was demonstrated as an excellent adsorbent to remove Cu2+ and Zn2+ from wastewater.

    Discotic polycyclic aromatic hydrocarbons (PAHs) have been of great interest in materials science and nanoscience [1].Due to the structure tailorability,self-assembled ability and the appealing optical and electronical features of disc PAHs [2–8],they are ideal candidates for smart matters with diverse applications [9,10].For instance,up to now,different disc-PAHs have been designed and synthesized with the aim of using them for molecular recognition and fluorescent sensors [11,12].In this context,extending chromophoric group and doping heteroatoms are two practical strategies to improve the sensitivity and selectivity of the respective sensors,since the fluorescence intensity,energy level and intermolecular interactions could be fine-tuned.

    1,4,5,8,9,12-Hexaazatriphenylene (HAT,Fig.1) represents the smallest two-dimensionalN-containing PAH.The doped N atoms offer three chelating sites to the metal ions,so that the HAT derivatives have been widely used in fluorescent chemosensors and metal-containing supramolecular materials [13–15].In most cases,HAT derivatives possess low fluorescence quantum yields partially due to the forbidden S0–S1transition [1,16].Or,their absorption and emission colors are usually located in the violet and blue light region which are not sensitive to naked eyes [16,17].In this regard,more knowledge and examples about the improved sensitivity of the HAT based chemical sensors consisting of enhancing the fluorescence intensity and tuning the emission color are welcome.

    Recently,we reported a type of S,N-doped disc PAHs based on aπ-extended,thiophene-fused phenanthroline unit (S,N-PAH,Fig.1).The large conjugated mesogenic core with increased dipole moment derived from S,N heteroatoms not only facilitates the formation of highly ordered columnar superstructures,but also endows distinct bathochromic shifts of absorption and emission maxima compared to the smaller dibenzo[a,c]phenazine counterpart[18,19].Despite their excellent optical properties,their ion sensing feature was not observed,mainly due to the lack of efficient chelating sites.Based on our continuous interests in the synthesis and functions of large disc PAHs,in this work,we designed and explored a novel disc PAHs molecule with a unique metal-ion sensing character,by fusion the phenanthroline unit with a HAT moiety (PN8,Fig.1).With two phenyl groups fused at the nitrogencontaining heterocycles,the core size of PN8is larger than the reported S,N-PAH [19],with an expectation to the bathochromic shift of fluorescence colors,as well as the increase of overall dipole moment and anisotropic self-assembly ability.We also envisioned that the incorporated N heteroatoms in the aromatic core would provide more coordination sites,which may give rise to the recognition of metal ions for optical sensing applications.Consequently,PN8exhibited a great tendency to self-assemble into long-range ordered aggregates.Moreover,both the self-assembled microfibers and the solutions were sensitively responsive to Cu2+or Zn2+,accompanied by either quenched fluorescence or redshift emission colors.Meanwhile,the two metal ions could trigger dis-assembly of the microfibers.The efficient chelating ability of this newly emerged PAH molecule allowed its application as an adsorbent for the removal of Cu2+and Zn2+from wastewater.

    The structure and synthetic route of the target molecule PN8are presented in Fig.1 and Scheme S1 (Supporting information).PN8is an asymmetricπ-extended HAT disc molecule surrounded by hexyloxy chains,which can be synthesized straightforwardly,by condensation of the thiophene-fused phenanthroline-11,12-diamine 1 with quinoxalino[2,3-a]-phenazine-6,7–dione 2 in the presence of acetic acid in a yield of 26%.The target compound PN8was unambiguously characterized by NMR spectroscopy (1H and13C)and mass spectrometry (Figs.S9-S11 in Supporting information).The proton peaks of PN8have been assigned explicitly in Fig.S9.And HR-ESI-MS spectrum of PN8revealed a single species (m/z:1111.5660 for C66H78N8O4S2H [M+ H]+) in accordance with the calculated value.

    Fig.1.(a) Chemical structures of HAT,S,N-PAH and PN8.(b) Synthetic route of the target molecule PN8.

    In dilute chloroform solution,PN8showed intense UV-vis absorption ranging from 250 nm to 500 nm with four distinct bands centered at 303 nm (ε=9.75×104L mol-1cm-1),357 nm(ε=10.25×104L mol-1cm-1),417 nm (ε=7.55×104L mol-1cm-1) and 445 nm (ε=8.75×104L mol-1cm-1),assignable to theπ-π?and n-π?transitions of the PAH core (Fig.2a).PN8displayed bright fluorescence emission in the green-yellow region at 500–750 nm with a maximum emission at approximately 540 nm.In solid state,PN8exhibited bright yellow fluorescence with the absolute quantum yield rising from 2.32% in chloroform solution to 7.66%,suggesting the aggregation-enhanced emission (AEE) property [20](Fig.2b).Compared to many reported HAT derivatives,there are distinct bathochromic shifts of the absorption and emission colors,owing to the extended conjugation of the chromophore core [21].

    The electrochemical properties of PN8were studied both experimentally and theoretically.First,the cyclic voltammograms of PN8in dichloromethane are shown in Fig.2c.Different from S,NPAH that only exhibited one reversible reduction peak,three reduction waves at-1.55,-1.77 and-2.09 V for PN8were observed,which were attributed to the consecutive reduction steps of three pyrazine moieties [22].The onset of the first oxidation(Eox) and reduction onset (Ered) was 0.37 eV and-1.17 eV,respectively.The corresponding ionization potentials (IP) and electron affinities (EA) energy levels were thus estimated to be 5.03 and 3.53 eV,respectively.Compared to S,N-PAH,the reduced EA energy level for PN8was ascribed to the electron-deficient nature of the fused HAT part.On the other hand,according to DFT calculation results,the calculated PN8adopted a highly planar configuration,with the LUMO electrons delocalized over the HAT moiety,whereas the HOMO electrons unevenly distributed over the thiophene-fused 1,10-phenanthroline part (Fig.2d).It is noteworthy that the calculated dipole moment of PN8is larger than that of S,N-PAH,possibly due to the joint effects from theπ-expanded core and more doped nitrogen atoms (Table S1 in Supporting information).

    Fig.2.(a) UV–vis absorption and fluorescence emission spectra of PN8 in chloroform (1×10-5 mol/L,λex=445 nm) and in solid state.(b) The corresponding photographs under visible light (left) and 365 nm UV light (right).(c) Cyclic voltammograms of PN8 measured in dichloromethane with 0.1 mol/L TBAPF6 as electrolyte(scan rate=100 mV/s).(d) DFT calculated molecular-orbital amplitude plots and energy levels for PN8 in the gas phase.

    As a large conjugated disc molecule with a strong local dipole,PN8was readily to self-assemble into anisotropic superstructures.The self-assembled behavior of PN8was first examined by concentration-dependent1H NMR spectra.As shown in Fig.S1(Supporting information),all the aromatic signals shifted upfield and became less-resolved with the concentration increasing.This indicated that PN8formed stacked assemblies in which the aromatic protons were placed in the shielding regions produced by the neighboring aromatic rings.The peak assigned for–OCH2protons also became broad and non-splitting at high concentration,implying that the alkyl chains were also involved in the assembly process [23].Morphological study based on scanning electron microscopy (SEM) technique also confirmed the formation of microfibrils with high aspect ratios.For instance,in THF or mixed solutions,either three-dimensional networks composed of interdigitated long and rigid microfibers (in chloroform/acetone),or flexible high aspect ratio microwires (in chloroform/methylcyclohexane)were observed,with the widths in the range of 100–400 nm and the lengths up to tens of micrometers (Fig.S2 in Supporting information).Interestingly,these well-ordered 1D assemblies could experience reversibly morphological transitions upon alternate treatment with metal ions and EDTA solution.As shown in Fig.3a,when Cu2+or Zn2+was added to the PN8suspension,the initially formed fiber structures quickly crashed,resulting in ill-defined nanoaggregates.And the regular 1D assemblies could be re-generated when the resulted solution was treated with EDTA.Accompanied with morphological changes,appreciable color changes of the suspension and solutions could be easily detected by naked eyes (Fig.3b).Such transition cycle can be repeated many times without the chemical decomposition of PN8,indicating the existence of supramolecular interactions between PN8and metal ions.

    These results inspired us to further explore the ion-sensing properties of PN8.Its responsive behaviors in dilute solution were screened by adding different cations,like Al3+,Cd2+,Co2+,Cu2+,Fe3+,Na+and Zn2+.PN8was found selectively responsive to Cu2+and Zn2+.In detail,the addition of Cu2+and Zn2+led to the redshift of absorption onset,so the color of the solution became deep yellow (Fig 4a).More remarkably,according to FL spectra (Fig.4b),Cu2+caused almost complete fluorescence quenching,while for Zn2+,not only the decreased fluorescence intensity,but also a distinct red-shift emission color was detected for its mixed solution.The emission maximum varied from 547 nm to 630 nm after the treatment of Zn2+.Under the same conditions,an increase of emission intensity was observed after Al3+or Fe3+was added;while a slight decrease after treated with other ions.The enhanced emission might be due to the Lewis acidity of Al3+and Fe3+,as a similar phenomenon appeared after TFA was added to the PN8solution (Fig.S3 in Supporting information).In contrast to Cu2+and Zn2+,such fluorescence change of the solution upon treated with the other tested metal ions was not readily discriminated by naked eyes,therefore,PN8is promising to serve as a fluorescent optical probe for metal ions,such as Cu2+and Zn2+.

    Fig.3.(a) SEM images of assembled PN8 from THF (left),then treated with Zn2+(middle),followed by treatment with EDTA (right) and (b) the corresponding photographs.

    Fig.4.(a) UV-vis absorption and (b) fluorescence spectra of PN8 in chloroform(1×10-5 mol/L, λex=445 nm) with addition of different metal ions (4 equiv.),and the corresponding photographs under visible light and 365 nm UV light.(c)Job plot for the PN8–Cu2+ system.[PN8]+[Cu2+]=0.1 mmol/L.(d) 1H NMR spectra of PN8 and PN8 with 4 equiv.metal ions in CDCl3.

    Following,the detection limit was evaluated on the basis of fluorescence titration experiments [24].The plot of fluorescence intensity of the PN8(1×10-5mol/L)vs.concentrations of Cu2+in CHCl3displayed a good linear relationship withR2of 0.9878 during titration.The limit of detection (LOD) for Cu2+was determined to be 8.71×10-7mol/L for PN8(Fig.S4 in Supporting information) based on LOD=3σ/k,whereσis the standard deviation of blank measurements andkis the slope.Meanwhile,the fluorescence wavelength of the solutions showed a good linear relationship (R2=0.9954) with the concentration of Zn2+,with LOD for Zn2+determined to be 8.57×10-8mol/L.Both values are comparable to many reported ones [15,25–27].

    To shed more light on the ion-sensing mechanism,a set of experiments were carried out.First,no optical changes were detected after the acidification of PN8solution,therefore,the responsive properties of PN8towards Cu2+and Zn2+presumably derived from pH variation or protonation could be excluded.Also,the control compounds S,N-PAH and the thiophene-fused phenanthroline part alone TP were found not responsive to metal ions (Fig.S5 in Supporting information).Based on these facts and combined with the molecular structure,we inferred a binding mechanism mainly arisen from the fused HAT unit.Although attempts to obtain single crystals of PN8with Cu2+or Zn2+were not successful,MALDI-TOF mass spectroscopic measurements on the mixtures of PN8with the two metal ions could provide valuable information on the complex structures [13].Typically,as for the mixture of PN8and Cu2+,a strong peak atm/zof 1172.93 was observed,which was corresponding to them/zof [1[PN8]+Cu2+-H+]+,thus suggesting the prevailing of the species in the form of 1:1 binding mode (Fig.S6 in Supporting information).Furthermore,the binding stoichiometry between PN8and the ions was exploredviaUV–vis spectroscopic titration with a fixed concentration of 0.1 mmol/L[28].A peak in the obtained Job plot at the molar fraction of 0.5 was found (Fig.4c),again confirming the 1:1 (or n:n) binding stoichiometry.In addition,according to the1H NMR spectra,the proton signals of the PN8and Cu2+mixture disappeared (for aromatic protons) or became less-resolved (for alkyl protons),which suggested a shielding effect very likely caused by supramolecular interactions between PN8and Cu2+(Fig.4d).Similar results were found for Zn2+,except for the possible co-existence of two complexes ([1[PN8]+Zn2+-H+]+and [2[PN8]+Zn2+-H+]+),since there were two peaks atm/zof 1173.22 and 2288.70 according to MALDITOF mass spectroscopy (Fig.S7 in Supporting information).Taken together,these characterizations jointly manifested the good selectivity and sensitivity of the ion-sensing/binding properties of PN8towards Cu2+and Zn2+,in colorimetric and fluorometric modes.

    Since PN8was not soluble in water and showed excellent and reversible metal ions binding ability in solution,its application as a solid-state adsorbent to remove Cu2+and Zn2+from aqueous solutions was examined.For demonstration,a small-size column with PN8powder as the filler,methanol and water as the eluent was fabricated.As shown in Fig.5a,the pristine powder was yellow and emitted bright yellow fluorescence.Then,after the aqueous solutions of Cu2+or Zn2+were poured into the column,the successful adsorption of Cu2+and Zn2+could be observed with the color of the column changed to brown and orange,respectively.And under UV light,the corresponding column exhibited either quenched emission or orange fluorescence.All these changes were consistent with those in the solution.At the same time,the metal ion concentration before and after filtration was measured by ICP-MS (Fig.5b)[29],which confirmed that a small amount of PN8(10 mg) could remove most of the Cu2+and Zn2+from the respective aqueous solution (1×10-4mol/L,4 mL).The removal efficiency was estimated to be 54.27% and 44.30% for Cu2+and Zn2+,respectively,indicating good absorptivity of PN8(Fig.S8 in Supporting information).Notably,benefiting greatly from its large PAH core,PN8was highly hydrophobic and stable.So compared to other HAT-based materials,PN8is more suitable to be utilized as an optical ion probe and adsorbent,particularly in solid state,with the merits of high (fluorescence) color contrast,good stability and recyclability[30–35].

    Fig.5.(a) Photographs of glass pipettes filled with PN8 powders under daylight and UV light before and after adsorption of Cu2+ and Zn2+ (1×10-3 mol/L).(b) The ion concentrations before and after the aqueous solutions were filtrated.

    In conclusion,we have successfully synthesized a new HAT based,large PAH disc molecule (PN8).PN8exhibited fluorescent sensing characteristics,which was selective for Cu2+and Zn2+over many other ions.The enlarged PAH core (up to 11 fused aromatic rings) and the doped hetero atoms endowed PN8good anisotropic self-assembly ability,metal-ion binding affinity and pronounced optical properties.Therefore,in self-assembled state,revisable morphological transition was found upon the alternate treatment of ions and EDTA.In solution state,the two ions triggered highly appreciable optical changes with high (fluorescence)color contrast and low detection limits,which were proved mainly based on the metal ion binding mode in different stoichiometric ratios.Importantly,due to its good stability and efficient ion binding capability,PN8was demonstrated as an excellent adsorbent to remove Cu2+and Zn2+from wastewater.The current work thus will not only enrich the family and the functions of heteroatom containing PAHs,but also be helpful for future applications of HAT-embedded disc molecules in advanced fluorescent sensing and imaging,water treatment and so on.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgment

    This work was supported by the National Key Research and Development Program of China (Nos.2017YFA0204503 and 2017YFA0207800).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.05.044.

    成人免费观看视频高清| 久久人妻av系列| 日韩精品免费视频一区二区三区| 久久久国产欧美日韩av| 男女午夜视频在线观看| 婷婷精品国产亚洲av在线| 人人妻,人人澡人人爽秒播| 在线观看一区二区三区| av超薄肉色丝袜交足视频| 亚洲免费av在线视频| 精品国内亚洲2022精品成人| 久久久久久免费高清国产稀缺| 精品一品国产午夜福利视频| 国内毛片毛片毛片毛片毛片| 亚洲人成伊人成综合网2020| 亚洲专区字幕在线| 久久久国产欧美日韩av| 精品免费久久久久久久清纯| 自拍欧美九色日韩亚洲蝌蚪91| 午夜日韩欧美国产| 韩国精品一区二区三区| 90打野战视频偷拍视频| 女人精品久久久久毛片| 免费一级毛片在线播放高清视频 | 中亚洲国语对白在线视频| 可以免费在线观看a视频的电影网站| 精品久久久久久久人妻蜜臀av | 国产精品 国内视频| 在线av久久热| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 这个男人来自地球电影免费观看| 国产成人av激情在线播放| 国产亚洲精品久久久久久毛片| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片 | 日韩大尺度精品在线看网址 | 亚洲成a人片在线一区二区| 久久久久久久久中文| 大型黄色视频在线免费观看| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 国产成人精品久久二区二区免费| 午夜精品国产一区二区电影| 嫩草影院精品99| 久久久国产成人免费| 亚洲精品国产一区二区精华液| 热re99久久国产66热| 法律面前人人平等表现在哪些方面| 国产精品影院久久| 精品久久久精品久久久| 精品福利观看| 亚洲国产欧美日韩在线播放| 色老头精品视频在线观看| 午夜福利影视在线免费观看| 在线十欧美十亚洲十日本专区| 亚洲欧美日韩另类电影网站| 欧美一区二区精品小视频在线| 国产一区在线观看成人免费| 国产91精品成人一区二区三区| 99在线人妻在线中文字幕| 午夜福利视频1000在线观看 | 中文亚洲av片在线观看爽| av视频免费观看在线观看| av超薄肉色丝袜交足视频| 高清在线国产一区| 黄色 视频免费看| www.999成人在线观看| 成年人黄色毛片网站| xxx96com| 男人舔女人的私密视频| 国产一区二区在线av高清观看| 久久久国产成人免费| 脱女人内裤的视频| 日本五十路高清| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合久久99| 搞女人的毛片| 两个人免费观看高清视频| 亚洲一码二码三码区别大吗| 制服诱惑二区| 午夜亚洲福利在线播放| 动漫黄色视频在线观看| 丝袜美足系列| 好看av亚洲va欧美ⅴa在| 精品少妇一区二区三区视频日本电影| 亚洲伊人色综图| 国产91精品成人一区二区三区| 欧美在线一区亚洲| svipshipincom国产片| 少妇 在线观看| 亚洲视频免费观看视频| 国产熟女午夜一区二区三区| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| www.www免费av| 两个人看的免费小视频| 99国产极品粉嫩在线观看| 91av网站免费观看| 国产片内射在线| 日韩中文字幕欧美一区二区| 亚洲无线在线观看| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 国产区一区二久久| 欧美不卡视频在线免费观看 | 国产av在哪里看| 天天添夜夜摸| 久久伊人香网站| 中文亚洲av片在线观看爽| 十八禁网站免费在线| 欧美日韩一级在线毛片| 757午夜福利合集在线观看| 精品一品国产午夜福利视频| 国产色视频综合| 亚洲 欧美一区二区三区| 成人国产一区最新在线观看| а√天堂www在线а√下载| 午夜成年电影在线免费观看| 亚洲电影在线观看av| 日韩三级视频一区二区三区| 精品久久蜜臀av无| 精品不卡国产一区二区三区| 久久精品人人爽人人爽视色| 亚洲国产精品久久男人天堂| 黄色 视频免费看| 久久久精品欧美日韩精品| 在线av久久热| 国产午夜福利久久久久久| 久久香蕉国产精品| 精品久久久久久成人av| 中文亚洲av片在线观看爽| 久久香蕉国产精品| 欧美丝袜亚洲另类 | 亚洲成国产人片在线观看| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 99国产精品99久久久久| 在线观看免费视频网站a站| 日韩大码丰满熟妇| 成人欧美大片| 久久久国产欧美日韩av| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 国产高清videossex| 激情视频va一区二区三区| 变态另类丝袜制服| 自拍欧美九色日韩亚洲蝌蚪91| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| av有码第一页| 免费久久久久久久精品成人欧美视频| 999久久久国产精品视频| 精品国产乱码久久久久久男人| 欧美日韩亚洲国产一区二区在线观看| 999久久久国产精品视频| 日本免费a在线| 免费不卡黄色视频| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 亚洲av美国av| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 满18在线观看网站| 啦啦啦观看免费观看视频高清 | 黄色丝袜av网址大全| 丝袜在线中文字幕| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| a在线观看视频网站| 精品久久久久久久人妻蜜臀av | 欧美色欧美亚洲另类二区 | 久9热在线精品视频| 亚洲一区二区三区不卡视频| 亚洲男人天堂网一区| 美女 人体艺术 gogo| 久久精品亚洲熟妇少妇任你| 国产成年人精品一区二区| 免费在线观看亚洲国产| 一区二区三区激情视频| 亚洲狠狠婷婷综合久久图片| 久久影院123| www.自偷自拍.com| 十八禁人妻一区二区| 看黄色毛片网站| 久久狼人影院| 精品一区二区三区四区五区乱码| 国产精品亚洲一级av第二区| 免费女性裸体啪啪无遮挡网站| 日韩欧美国产在线观看| 午夜福利18| 一边摸一边抽搐一进一小说| 免费在线观看视频国产中文字幕亚洲| 国产精品,欧美在线| 国产精品秋霞免费鲁丝片| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| 精品第一国产精品| 午夜福利欧美成人| 亚洲欧美激情综合另类| 亚洲国产欧美日韩在线播放| 免费看十八禁软件| 亚洲专区字幕在线| 国产午夜精品久久久久久| 色综合欧美亚洲国产小说| 亚洲中文字幕一区二区三区有码在线看 | 精品欧美一区二区三区在线| 18禁观看日本| 久久久久九九精品影院| 在线十欧美十亚洲十日本专区| 亚洲久久久国产精品| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 欧美日韩瑟瑟在线播放| 午夜两性在线视频| 久久久久久久久免费视频了| 欧美精品亚洲一区二区| av在线播放免费不卡| 国产成人精品无人区| 成人三级做爰电影| 亚洲国产精品合色在线| av在线播放免费不卡| 日本 欧美在线| 正在播放国产对白刺激| 精品不卡国产一区二区三区| 99国产精品免费福利视频| 欧美人与性动交α欧美精品济南到| 精品国内亚洲2022精品成人| 乱人伦中国视频| 丝袜美腿诱惑在线| 日本在线视频免费播放| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 久99久视频精品免费| 欧美大码av| 免费在线观看视频国产中文字幕亚洲| 怎么达到女性高潮| av天堂在线播放| 中文字幕另类日韩欧美亚洲嫩草| 精品日产1卡2卡| 亚洲一区中文字幕在线| 欧美黑人精品巨大| 国产成人精品无人区| 国产精品久久电影中文字幕| 成人国产综合亚洲| 亚洲激情在线av| 成人手机av| 亚洲国产精品久久男人天堂| 亚洲国产精品合色在线| 亚洲片人在线观看| 一个人观看的视频www高清免费观看 | 欧美日本亚洲视频在线播放| 一个人免费在线观看的高清视频| x7x7x7水蜜桃| 欧美性长视频在线观看| 在线视频色国产色| 极品教师在线免费播放| 国产精品亚洲av一区麻豆| 成人国产综合亚洲| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 精品第一国产精品| 成人av一区二区三区在线看| 免费高清视频大片| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频 | 一级作爱视频免费观看| 一级毛片女人18水好多| 国产一级毛片七仙女欲春2 | 午夜影院日韩av| 免费观看人在逋| 亚洲免费av在线视频| 91九色精品人成在线观看| 在线视频色国产色| 丝袜美腿诱惑在线| www.精华液| 成年版毛片免费区| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3 | 国产熟女xx| 午夜影院日韩av| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 久久久久久免费高清国产稀缺| 亚洲av日韩精品久久久久久密| 欧美黄色淫秽网站| 欧美不卡视频在线免费观看 | 91老司机精品| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 精品第一国产精品| 亚洲精品中文字幕在线视频| 老汉色av国产亚洲站长工具| 99香蕉大伊视频| 精品国产乱子伦一区二区三区| 亚洲全国av大片| 丝袜美腿诱惑在线| 可以免费在线观看a视频的电影网站| 色老头精品视频在线观看| 国产91精品成人一区二区三区| 69精品国产乱码久久久| 精品久久久久久久人妻蜜臀av | 大陆偷拍与自拍| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 亚洲人成电影观看| 欧美最黄视频在线播放免费| av在线播放免费不卡| 欧美日韩福利视频一区二区| 亚洲国产精品合色在线| 免费高清视频大片| 国产区一区二久久| 亚洲专区国产一区二区| 亚洲熟妇熟女久久| 午夜福利成人在线免费观看| 久久久久久免费高清国产稀缺| 亚洲性夜色夜夜综合| 高清在线国产一区| 亚洲全国av大片| 免费人成视频x8x8入口观看| 看免费av毛片| 美女午夜性视频免费| 午夜福利视频1000在线观看 | 黄频高清免费视频| 九色国产91popny在线| 纯流量卡能插随身wifi吗| 午夜亚洲福利在线播放| 国产片内射在线| 神马国产精品三级电影在线观看 | 男人舔女人的私密视频| 69av精品久久久久久| 人妻丰满熟妇av一区二区三区| 中文字幕人成人乱码亚洲影| 一级作爱视频免费观看| 国产精品乱码一区二三区的特点 | 天堂影院成人在线观看| 波多野结衣高清无吗| 大型av网站在线播放| 亚洲情色 制服丝袜| 婷婷精品国产亚洲av在线| 给我免费播放毛片高清在线观看| 两性夫妻黄色片| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 日韩有码中文字幕| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 非洲黑人性xxxx精品又粗又长| 精品福利观看| 久久久水蜜桃国产精品网| 色综合欧美亚洲国产小说| 亚洲国产欧美日韩在线播放| 国产高清有码在线观看视频 | 男女下面进入的视频免费午夜 | 大型av网站在线播放| 一级毛片女人18水好多| 欧美日本亚洲视频在线播放| 中国美女看黄片| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av香蕉五月| av福利片在线| 成年版毛片免费区| 国产午夜精品久久久久久| 精品久久久久久成人av| 国产欧美日韩一区二区三区在线| 精品免费久久久久久久清纯| 亚洲欧美日韩高清在线视频| 巨乳人妻的诱惑在线观看| 一区在线观看完整版| 手机成人av网站| 国产黄a三级三级三级人| 国产av一区在线观看免费| 亚洲自拍偷在线| 欧美人与性动交α欧美精品济南到| 免费在线观看视频国产中文字幕亚洲| 亚洲精品粉嫩美女一区| 亚洲男人的天堂狠狠| 黄网站色视频无遮挡免费观看| 99国产综合亚洲精品| 伦理电影免费视频| 99re在线观看精品视频| 国产精品久久视频播放| 国内精品久久久久精免费| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 91精品国产国语对白视频| 中文字幕人成人乱码亚洲影| 给我免费播放毛片高清在线观看| 在线观看舔阴道视频| 午夜免费观看网址| 黄色片一级片一级黄色片| 天天一区二区日本电影三级 | 操美女的视频在线观看| 在线观看66精品国产| 视频区欧美日本亚洲| 精品久久久久久成人av| 日韩免费av在线播放| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 一进一出抽搐gif免费好疼| 亚洲狠狠婷婷综合久久图片| 亚洲情色 制服丝袜| 悠悠久久av| 国产精品 国内视频| 亚洲av成人一区二区三| 国产精品免费一区二区三区在线| www.精华液| 国产精品香港三级国产av潘金莲| 如日韩欧美国产精品一区二区三区| 18禁国产床啪视频网站| 久久香蕉激情| 久久国产亚洲av麻豆专区| 午夜a级毛片| 免费在线观看亚洲国产| 麻豆成人av在线观看| 高清黄色对白视频在线免费看| 99精品在免费线老司机午夜| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 精品不卡国产一区二区三区| av视频在线观看入口| 欧美日本视频| АⅤ资源中文在线天堂| 国产精品一区二区在线不卡| av在线播放免费不卡| 极品人妻少妇av视频| 亚洲 欧美 日韩 在线 免费| 日本免费a在线| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 久久久精品国产亚洲av高清涩受| 国产精品乱码一区二三区的特点 | 少妇的丰满在线观看| 免费在线观看影片大全网站| 两个人视频免费观看高清| 黑人操中国人逼视频| 亚洲第一青青草原| www国产在线视频色| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看 | 午夜福利免费观看在线| www.熟女人妻精品国产| 亚洲精品在线观看二区| 黄片大片在线免费观看| 亚洲专区字幕在线| 日韩三级视频一区二区三区| 亚洲精品国产一区二区精华液| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 精品久久久精品久久久| 91精品三级在线观看| 法律面前人人平等表现在哪些方面| 婷婷精品国产亚洲av在线| 波多野结衣一区麻豆| 在线观看免费视频日本深夜| 人成视频在线观看免费观看| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 十分钟在线观看高清视频www| 老司机靠b影院| 嫁个100分男人电影在线观看| 超碰成人久久| 亚洲av日韩精品久久久久久密| 色尼玛亚洲综合影院| 一边摸一边做爽爽视频免费| 91av网站免费观看| 可以在线观看毛片的网站| 丰满的人妻完整版| 亚洲免费av在线视频| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av高清一级| 波多野结衣巨乳人妻| 99热只有精品国产| 色综合欧美亚洲国产小说| 自线自在国产av| 国产av又大| 妹子高潮喷水视频| 色播亚洲综合网| www日本在线高清视频| 亚洲中文av在线| 久久人人爽av亚洲精品天堂| 1024香蕉在线观看| 亚洲av美国av| 99久久综合精品五月天人人| 嫩草影视91久久| 香蕉国产在线看| 国产精品1区2区在线观看.| 日韩视频一区二区在线观看| 黄色毛片三级朝国网站| 变态另类丝袜制服| 免费观看精品视频网站| 欧美激情极品国产一区二区三区| 国产精品野战在线观看| 视频区欧美日本亚洲| 亚洲国产日韩欧美精品在线观看 | 亚洲国产毛片av蜜桃av| 久久久精品国产亚洲av高清涩受| 国产精品影院久久| 夜夜夜夜夜久久久久| 日韩成人在线观看一区二区三区| x7x7x7水蜜桃| 亚洲美女黄片视频| 亚洲精品国产一区二区精华液| 精品国产一区二区三区四区第35| 极品人妻少妇av视频| 自线自在国产av| 极品人妻少妇av视频| 午夜影院日韩av| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 老司机福利观看| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 久久狼人影院| 最近最新中文字幕大全电影3 | 欧美黑人精品巨大| 国产精品永久免费网站| 午夜福利一区二区在线看| 九色国产91popny在线| 男女床上黄色一级片免费看| 久久影院123| 老汉色av国产亚洲站长工具| 午夜成年电影在线免费观看| 嫩草影视91久久| 99香蕉大伊视频| 97碰自拍视频| 精品无人区乱码1区二区| 波多野结衣高清无吗| 久久久国产成人精品二区| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费观看网址| 啦啦啦韩国在线观看视频| 亚洲精品国产精品久久久不卡| 在线国产一区二区在线| 亚洲性夜色夜夜综合| 熟妇人妻久久中文字幕3abv| 免费观看人在逋| 曰老女人黄片| 桃红色精品国产亚洲av| 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 久热这里只有精品99| www.精华液| 午夜福利,免费看| 中文字幕久久专区| 久久久水蜜桃国产精品网| 国产成人免费无遮挡视频| 亚洲无线在线观看| 国产精品乱码一区二三区的特点 | 国产精品亚洲一级av第二区| 欧美日韩一级在线毛片| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| 亚洲第一av免费看| 亚洲国产精品久久男人天堂| 亚洲男人天堂网一区| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 久久精品亚洲精品国产色婷小说| 黄色视频,在线免费观看| 久久 成人 亚洲| 国产精品av久久久久免费| 一本大道久久a久久精品| cao死你这个sao货| 侵犯人妻中文字幕一二三四区| 大香蕉久久成人网| 国产欧美日韩一区二区三区在线| 免费在线观看亚洲国产| 村上凉子中文字幕在线| 久久草成人影院| 久热这里只有精品99| xxx96com| 亚洲av日韩精品久久久久久密| 欧美 亚洲 国产 日韩一| 午夜福利在线观看吧| 国产成人欧美| 性少妇av在线| 精品一品国产午夜福利视频| xxx96com| 国产精品爽爽va在线观看网站 | 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看| 一级毛片精品| 黄频高清免费视频| 少妇 在线观看| 在线观看日韩欧美| 欧美av亚洲av综合av国产av| 黄色丝袜av网址大全| 变态另类丝袜制服| 国产伦一二天堂av在线观看| av超薄肉色丝袜交足视频| 亚洲成人久久性| 日韩欧美在线二视频| 久久久精品欧美日韩精品| 不卡一级毛片| 日本在线视频免费播放| 国产亚洲精品久久久久5区| 午夜精品国产一区二区电影| 制服人妻中文乱码| 国产成人精品无人区| av中文乱码字幕在线| 欧美最黄视频在线播放免费| 亚洲精品久久国产高清桃花|