• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-performance (NH4)2V6O16·0.9H2O nanobelts modified with reduced graphene oxide for aqueous zinc ion batteries

    2021-03-14 02:31:38FngHuYoGuFuhnCuiGuihongSongKiZhu
    Chinese Chemical Letters 2021年12期

    Fng Hu,Yo Gu,Fuhn Cui,Guihong Song,Ki Zhu

    a School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    b Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education,College of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin 150010,China

    c Department of Mechanical Engineering,the Hong Kong Polytechnic University,Hong Kong 999077,China

    Keywords:(NH4)2V6O16·0.9H2O@RGO Nanobelts Aqueous Zn-ion batteries Electrochemical performance Reaction mechanism

    ABSTRACT Ammonium vanadate has been considered as a competitive high-performance cathode material for aqueous Zn-ion batteries.However,it still suffers from insufficient rate capability and poor cyclability due to the low electronic conductivity.Herein,(NH4)2V6O16·0.9H2O nanobelts with reduced graphene oxide(RGO) modification are synthesized by one-step hydrothermal reaction.Benefiting from the addition of RGO,an excellent electrochemical performance of (NH4)2V6O16·0.9H2O@RGO nanobelts can be obtained.The (NH4)2V6O16·0.9H2O@RGO displays a high-rate capacity and a high energy density of 386 Wh/kg at 72 W/kg.In particular,after 1000 cycles at 5 A/g,the capacity remains at 322 mAh/g with 92.8%capacity retention.In addition,the key reaction mechanisms of reversible Zn2+insertion/extraction in(NH4)2V6O16·0.9H2O@RGO are clarified.

    Aqueous rechargeable batteries (ARBs) have received much attention owing to high ionic conductivity,high safety,low cost and environment-friendly [1,2].Among the ARBs,zinc ion batteries (ZIBs) are particularly attractive owing to the inherent advantages of Zn metal:abound resources,the high theoretical capacity of 820 mAh/g,and low redox potential of-0.76 V (vs.SHE) [3,4].However,the strong positive polarity of Zn2+and its large atomic mass limit the choices of suitable cathode compared to the Li-ion and Na-ion batteries [5,6].

    As one of the most promising cathodes for ZIBs,the vanadiumbased compound with the open framework,such as VO2[7,8],Zn0.25V2O5·nH2O [9],H2V3O8[10,11],Na2V6O16·nH2O [12,13]and NH4V4O10[14,15],attracts many scientists to study because of its higher specific capacity,higher energy density and faster chargedischarge capability than manganese-based compound,Prussian blue or organic redox-active compound [16,17].However,the cycling and rate performance of vanadium-based compounds still need to be improved due to the poor electrical conductivity and structure collapse during the Zn2+insertion/extraction process.For instance,Xionget al.prepared layered (NH4)2V6O16·1.5H2O nanobelts with a high specific capacity of 479 mAh/g at the current density of 100 mA/g.But the capacity decreases from 284.6 mAh/g to 209.6 mAh/g after 1000 cycles at 3 A/g [18].

    Introducing carbon materials is an effective method to enhance the electron transport and the electrochemical utilization of the electrode materials [19,20].In this work,(NH4)2V6O16·0.9H2O nanobelts with reduced graphene oxide (RGO) modification are synthesized by a one-step hydrothermal reaction.Thanks to the addition of RGO,an excellent electrochemical performance of (NH4)2V6O16·0.9H2O@RGO nanobelts can be achieved.The(NH4)2V6O16·0.9H2O@RGO displays a high specific capacity of 537 mAh/g at 0.1 A/g and excellent rate capability.In particular,after 1000 cycles at 5 A/g,the capacity remains at 322 mAh/g with 92.8% capacity retention.

    In a typical procedure,(NH4)2V6O16·1.4H2O nanobelts was prepared by a facile hydrothermal method.Firstly,0.5 g NH4VO3powder was dispersed in 25 mL deionized water.Then,0.2 mL phosphoric acid (H3PO4,88%,pH 1.5) was introduced to the solution,and a wine-red clarified solution was formed through the string for 15 min.Finally,the solution was transferred into a 50 mL Teflonlined stainless autoclave and kept for 72 h at 130 °C.The product was collected by washing with deionized water three times and ethanol once.The powders were dried in a vacuum oven for 24 h at 60 °C.

    The (NH4)2V6O16·0.9H2O nanobelts with reduced graphene oxide modification were obtained by adding a concentration of 1 mg/mL graphene oxide (GO) solution into the 25 mL deionized water,and the following step was same as the above-mentioned steps.

    Fig.1.(a) XRD patterns of NHVO and NHVO@RGO.(b,c) SEM images of NHVO and NHVO@RGO.(d) TEM image of NHVO@RGO.(e) HRTEM images of NHVO@RGO.(f) Elemental mapping images of NHVO nanobelt.(g) Nitrogen adsorption-desorption isotherms curves of NHVO@RGO.(h) TG of NHVO@RGO.(i) Raman of NHVO and NHVO@RGO.

    The as-prepared samples were characterized by X-ray diffraction (XRD) analysis on an X-ray diffractometer equipped with Cu Kαradiation (λ=0.1542 nm).The morphologies and microstructure of the samples were characterized by scanning electron microscopy (SEM,Hitachi-4800) and transmission electron microscopy (TEM,JEM-2100 PLUS).The elemental composition and chemical bond valence of the cathode material surface were measured by X-ray photoelectron spectroscopy (XPS).In-situXRD patterns of the samples were recorded using a Bruker D8 Advance diffractometer.

    The working electrode was preparedviamixing active materials,acetylene black,and polytetrafluoroethylene emulsion in a weight ratio of 7:2:1.Then,the mixture was rolled into uniform thickness and pressed on conductive carbon paper with a diameter of 1 cm.The average mass loading of the active materials was about 1.3 mg/cm2.The electrolyte was 3 mol/L Zn(CF3SO3)2solution.An electrochemical workstation (Bio-Logic VSP-300) was used to test the electrochemical properties and electrochemical reaction kinetics analysis of the coin cells,including cyclic voltammetry (CV),electrochemical impedance spectra (EIS),and galvanostatic intermittent titration technique (GITT) measurement.Multichannel galvanostatic (Neware CT-4000) testers were used to perform galvanostatic charge-discharge cycling.

    XRD patterns of pure (NH4)2V6O16·1.5H2O (denoted as NHVO)and (NH4)2V6O16·1.5H2O@RGO (denoted as NHVO@RGO) are shown in Fig.1a.Both of the diffraction peaks are well-matched with the monoclinic (NH4)2V6O16·1.5H2O (JCPDS No.51–0376)[21,22],and impurities are not detected.Figs.1b and c show the SEM images of NHVO and NHVO@RGO,respectively.Both of NHVO and NHVO@RGO present belts-like morphology with lengths above 5 μm.It is hard to observe the graphene from the SEM image,which will be discussed later.However,the nanobelt clustering of NHVO@RGO is more serious than NHVO,which could be due to the electrostatic interaction of RGO with NHVO nanobelts.In addition,from the TEM image of NHVO@RGO in Fig.1d,it can be seen that the nanobelt is about 200 nm in width and wrapped with RGO.HRTEM in Fig.1e displays the lattice fringes of 0.202 nm corresponding to (51ˉ1) planes of NHVO.The element mappings (Fig.1f) demonstrated that the elements (N,V and O)are uniform-distributed in the NHVO nanobelt.The BET surface area of NHVO@RGO in Fig.1g is 27.8 m2/g,which favors increasing the interface area between the electrode and electrolyte and improving the electrochemical performance of NHVO@RGO.

    To further understand the characterizations of the NHVO@RGO,thermogravimetric analysis (TG) measurement was carried out to estimate the content of water and graphene in the NHVO and NHVO@RGO,respectively.As shown in Fig.1h and Fig.S1 (Supporting information),the contents of water were 2.3 wt% and 3 wt%,respectively,corresponding to 1.4 and 0.9 water molecules per formula unit.Therefore,NHVO and NHVO@RGO should be defined to(NH4)2V6O16·1.4H2O and (NH4)2V6O16·0.9H2O@RGO,respectively.When annealed to 400 °C,a large weight loss happens,which can be attributed to the decomposition reaction from (NH4)2V6O16to V2O5phase with the volatilization of NH3and H2O.In addition,a weight loss (~1 wt%) of NHVO@RGO occurs from 400 °C to 500 °C,it can be assigned to the content of RGO.Fig.1i shows the Raman scattering spectra of NHVO and NHVO@RGO,respectively.Between the wavelength range of 200–1000 cm-1,several obvious peaks of NHVO located at 281,407,526,690 and 992 cm-1could be corresponded to the bending vibrations of the O-V-O,V-O and V-OV bonds and the stretching vibration of V-O and V=O bonds,respectively [23].In the high-wavenumber region,the peaks located at 1364,1573 and 1665 cm-1correspond to D,G and D′ bands of single layer graphene [24].Therefore,we can sure the NHVO is wrapped with RGO,even though it is hard to observe from the result of SEM.

    The electrochemical performance of NHVO@RGO is systematically investigated in Fig.2.CV curves of NHVO@RGO and NHVO in the initial three cycles at a scan rate of 0.1 mV/s are shown in Fig.2a and Fig.S2 (Supporting information),respectively.In the cathodic scan at the first cycle,there are three oxidation peaks at about 0.77,0.71 and 0.52 V,indicating a multi-step electrochemical embedding process of Zn2+.However,in the anode scan,only two reduction peaks at about 0.66 and 0.97 V are observed,demonstrating an irreversible phase transformation.After the first cycle,all the CV curves are mostly overlapped,implying high reversibility of Zn2+insertion and extraction process.The main redox peaks at 0.78 V/0.98 V can be attributed to the V5+/V4+redox couple,and 0.56 V/0.71 V represents the V4+/V3+redox couple [12].The discharge-charge curves of NHVO@RGO and NHVO in the initial three cycles at the current density of 100 mA/g are shown in Fig.2b and Fig.S3 (Supporting information),respectively.Both of the initial discharge curves are different from the back,which is consistent with the results of CV.A high discharge capacity of NHVO@RGO can be up to 540 mAh/g after three cycles.Compared to that of NHVO (463 mAh/g),the increased capacity about 80 mAh/g of NHVO@RGO can be assigned to the addition of RGO,which enhances the active sites [25].To make sure RGO has not provided those extra capacity,the electrochemical performance of RGO is also investigated in Fig.S4 (Supporting information).The initial discharge capacity is about 25 mAh/g average specific capacity of RGO is less than 20 mAh/g at the current density of 200 mA/g.Therefore,the RGO does not provide the NHVO@RGO electrode much capacity.Fig.2c shows the rate performance of NHVO and NHVO@RGO at the various current density from 0.1 A/g to 10 A/g.Compared to NHVO,NHVO@RGO cathode delivers high capacities of 536,522,496,469,435,358 and 282 mAh/g at the current densities of 0.1,0.2,0.5,1,2,5 and 10 A/g,respectively.When the current is gradually back to 0.2 A/g,an average capacity of 527 mAh/g can be obtained,demonstrating an excellent rate performance and reversibility of NHVO@RGO electrode during the Zn2+insertion/extraction process.The corresponded dischargecharge profiles of NHVO@RGO electrode at the above various current density are shown in Fig.2d,suggesting that the polarization between the discharging and charging curve increases with the raise of the current density.To evaluate the practical potential of NHVO@RGO cathode for ZIBs,Ragone plots of NHVO@RGO and other cathode materials (based on the active mass of the cathode materials) are shown in Fig.2e.The energy density and power density can be calculated by the following equations (Eqs.1 and 2)[26]:

    Fig.2.(a) CV curves of NHVO@RGO collected at a scan rate of 0.1 mV/s.(b) The first three discharge-charge profiles of NHVO@RGO at a current density of 100 mA/g.(c)Rate performances of NHVO and NHVO@RGO.(d) The discharge and charge curves of a NHVO@RGO electrode at various current densities in the voltage range 0.2–1.6 V.(e) Ragone plot of NHVO@RGO//Zn compared with other reported cathode materials.(f,g) Cyclic performances of NHVO and NHVO@RGO for 60 cycles at 200 mA/g and for 1000 cycles at 5 A/g,respectively.

    whereQis the discharge capacity (Ah);U,iandmdenote the main operating voltage (V),the discharge currents (A) and the mass of the active material (kg),respectively.When the power density is 72 W/kg,the energy density of NHVO@RGO can be up to 386 Wh/kg.Even,the power density is up to 5126 W/kg,the energy density of NHVO@RGO remains at a high value of 169 Wh/kg.The values of the energy density and power density of NHVO@RGO is larger than that of reported materials,such as Na3V2(PO4)3[27],Na2V6O16·1.63H2O [28],Zn3[Fe(CN)6]2[29],Ca0.24V2O5·0.83H2O [30]and others [31–33].

    The NHVO@RGO cathode also demonstrates superior cyclic stability as shown in Fig.2f.An initial discharge capacity of 468 mAh/g can be obtained at the current density of 0.2 A/g.After 10 cycles of activation,the maximum capacity can be up to 500 mAh/g.After 50 cycles,the capacity remains 469 mAh/g with a capacity retention of 93.8%.In contrast,the capacity of the NHVO cathode reduces from the maximum value of 476 mAh/g to 387 mAh/g,corresponding to a capacity retention of 81.3%.

    Fig.3.(a) CV curves of NHVO@RGO at different scan rates.(b) Log (i,current) versus log (mV,scan rate) plots at specific current.(c) Calculated capacitive contributions for NHVO@RGO at different scan rates.(d) The impedance spectrums for NHVO and NHVO@RGO.(e) GITT profiles of NHVO and NHVO@RGO.(f) Diffusion coefficient at various states during GITT measurement.

    Furthermore,at a high current density of 5 A/g,NHVO@RGO cathode shows a maximum capacity of 347 mAh/g after 60 cycles of activation.After 1000 cycles,the capacity can remain at 322 mAh/g with 92.8% capacity retention.However,the NHVO only presents a capacity retention of 74.4%.Compared to other ammonium vanadate materials as cathodes for AZIBs in Table S1 (Supporting information),the NHVO@RGO electrode also shows higher rate capability and excellent cycle performances.

    The kinetic properties of NHVO@RGO during Zn2+insertion/extraction are further investigated.Fig.3a displays the CV profiles of NHVO@RGO electrode from 0.1 mV/s to 1.0 mV/s.The charge transfer behavior can be determined according to the relationship between the measured current (i) and scan rate (n) by the following equation (Eq.3) [10]:

    whereaandbare adjustable parameters,in which the latter varies between 0.5 and 1.Theb-value of 0.5 indicates a diffusion-limited process,whilebclosing to 1.0 implies a capacitive process.After calculated in Fig.3b,thebvalues of peaks O1,O2,R1 and R2 are 0.81,0.95,0.76 and 0.70,respectively.It implies the kinetics of Zn2+in NHVO@RGO are main capacitive process and not significantly influenced by the diffusion process,which is favor to improve the rate capability of NHVO@RGO.To quantitative analyze the contribution ratio between diffusion-controlled and capacitive behaviors,the equation can be further described as following (Eq.4) [34]:

    wherek1vrepresents the capacitive behaviors andk2v1/2denotes the diffusion-limited contribution,respectively.For instance,there is a 63% capacitive contribution of the total capacity at the scan rate of 0.5 mV/s,as shown in Fig.S5 (Supporting information).With the scan rates increased from 0.1 mV/s to 1 mV/s in Fig.3c,the capacitive contribution ratios increased from 60% to 65.9%,indicating a tendency that the capacitive charge storage would play an important role in the total capacitance of NHVO@RGO when the rate increased.

    To account for the extraordinary high-rate performance,the EIS result of the NHVO and NHVO@RGO cells are recorded in Fig.3d and Table S2 (Supporting information).Based on the equivalent circuit and quantitative fitting of the EIS spectra,the charge-transfer resistance (Rct) of NHVO@RGO is about 37Ω,which is lower than that of NHVO (58.3Ω).It confirms that the RGO enhanced the charge transfer kinetics of the NHVO electrode.The diffusion coefficient of Zn2+during the front two cycles were carried out by GITT in Fig.3e.The data of NHVO and NHVO@RGO was collected at a current density of 100 mA/g in the discharge state for 10 min and rest intervals of 30 min.The Zn2+diffusion coefficient in the NHVO@RGO electrode can be calculated by the following equation(Eq.5) [35]:

    wheremB,VM,MBandSdenote the mass,molar volume,molecular mass of the active material,and the active surface area of the electrode,respectively.ΔEsandΔEτrepresent the steady-state potential change by the current pulse and the potential change during the constant current pulse after eliminating theiRdrop,respectively.As shown in Fig.3f,the minimal values at about 0.8 V correspond to the voltage plateaus of the discharge process.The calculated ionic diffusion coefficients of NHVO@RGO are between 1.1×10-8m2/s and 6.1×10-10cm2/s,which is higher than that of NHVO.It confirms the better electrochemical kinetic properties of NHVO@RGO than NHVO.It can be attributed to that the more active sites of NHVO@RGO than NHVO provide more pathways of Zn2+transport and improve the Zn2+diffusion coefficients.

    To investigate the structure evolution during the dischargecharge process,in-situXRD spectra of the NHVO@RGO electrode was performed at 100 mA/g during the front two cycles in Fig.4a and Fig.S6 (Supporting information).The main (002) peak shifts slightly from 2θ=10.8° to 11.0° in the first discharge process corresponding to the reduction of interlayer distance from 0.82 nm to 0.8 nm,which demonstrates the electrostatic intercalation between the inserted Zn2+and (V6O16)2-layers [36].Meanwhile,the (10ˉ1)and (20ˉ2) peaks of NHVO at 2θ=8.5° and 17° disappear gradually and a new series peaks of the second phase at 2θ=6.5°,13.1°,19.6°,26.3° and 33.0° appears.It can be assigned to the set of (00l)reflections of the layered ZnxV2O5·nH2O phase,which is similar to the case in previously reported studies [37,38].The second phase might originate from the insertion of hydrated Zn(H2O)62+and react with the surface of the NHVO framework,resulting in the formation of the ZnxV2O5·nH2O phase.After charging,the (002) peak of NHVO is shifted back to 10.85°,corresponding to the Zn2+extraction.The (10ˉ1) and (20ˉ2) peaks appear,and the ZnxV2O5·nH2O phase disappears gradually,indicating the reversibility of phase transformation between NHVO and ZnxV2O5·nH2O.Subsequently,the (002) peak of NHVO@RGO remains during the second cycle,and ZnxV2O5·nH2O phase appears in the discharge and disappears in the charging process,demonstrating the stable framework of NHVO.

    Fig.4.(a) In-situ XRD patterns of NHVO@RGO obtained in the first two cycles at the applied current density of 100 mA/g.(b-e) Ex-situ high resolution XPS spectrums of Zn 2p,N 1s,V 2p and O 1s at different discharge/charge states of NHVO@RGO.(f) Schematic illustration of the reaction mechanism of NHVO.

    To better understand the mechanism of Zn ion storage in NHVO@RGO,ex-situXPS was carried out.As shown in Fig.4b,no Zn signal can be detected in the initial electrode.After discharge to 0.2 V,two strong peaks located at 1023.2 eV and 1046.4 eV appear,declaring the insertion of Zn2+into the layered NHVO.After charging,the two peaks with shifts and comparatively weak intensities can also be observed.In general,the irreversible ion extraction would result in charge-capacity fading.However,there is no capacity fading in the first cycle with~100% coulombic efficiency (as depicted in Fig.2b).Fig.4c shows the evolution of XPS spectra of N 1s during the Zn2+intercalation/extraction process.A signal located at 401.3 eV corresponding to the N 1s in the pristine electrode.However,after discharge and charge over,no peaks are found.Combined with the result of XPS spectra of Zn 2p,it suggests that the Zn2+intercalation irreversibly displaces with NH4+in the discharge-charge process and acts as a new pillar to stabilize the framework of NHVO.To further confirm the above displacement mechanism,ex-situFTIR was carried out in Fig.S7(Supporting information).In the initial electrode,an obvious broad peak located at about 3130 cm-1can be attributed to the asymmetric stretching vibration of N–H from NH4+[39].When discharged to 0.2 V and charged to 1.6 V,the intensity of the broad peak is obviously decreased,suggesting the NH4+was indeed extracted from the structure of NHVO.In the V 2p region (Fig.4d),the peak of pristine electrode is composed of V4+(516.1 eV) and V5+(517.3 eV) [40].After discharging,the intensity of the V4+signal became strong,and the V5+signal becomes weak,indicating the reduction of V5+with the Zn2+intercalation.When the cell is charged fully,the intensity of the V4+and V5+signal is back to the initial state,indicating high reversibility during the cycling.In addition,three peaks of O 1s (Fig.4e) located at 529.9,531.5,and 532.2 eV can be assigned to O2-,OH-and H2O molecules,respectively [41].When discharged to 0.2 V,the peak of H2O strengthens,corresponding to the formation of the ZnxV2O5·nH2O phase.After charging,the H2O signal is retained,which is also in accordance with thein-situXRD result.

    Based on the above analysis,the structure evolution during the Zn2+insertion/extraction process can be graphically summarized to illustrate the phase transformation.As shown in Fig.4f,with the co-insertion of Zn2+and H2O molecules into the layer of (NH4)2V6O16·1.5H2O,NH4+was displaced by the Zn2+,and the phase are transformed to ZnyV6O16·nH2O and a new ZnxV2O5·nH2O phase on the surface [42].After charging,the Zn ions are extracted from the new ZnxV2O5·nH2O phase and ZnyV6O16·nH2O,and ZnmV6O16·nH2O phase is formed.In the subsequent cycles,the ZnmV6O16·nH2O phase is reversibly transformed to ZnyV6O16·nH2O and ZnxV2O5·nH2O phase with Zn2+insertion.

    In conclusion,(NH4)2V6O16·0.9H2O nanobelts with reduced graphene oxide modification have been synthesized by a one-step hydrothermal reaction.When used in aqueous Zn//(NH4)2V6O16·0.9H2O@RGO cell,the cathode demonstrates significantly enhanced electrochemical performance with a high energy density of 386 Wh/kg at 72 W/kg and excellent long-term cycles (92.8% capacity retention after 1000 cycles at 5A/g).The findings presented in our work exhibit the promising applications of this material as the prospective cathode of ZIBs with ultrahigh power density.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was partly supported by the National Natural Science Foundation of China (No.51772193),China Postdoctoral Science Foundation (No.2019T120254) and Hong Kong Scholar Program (No.XJ2019024).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.04.032.

    免费播放大片免费观看视频在线观看| 国产有黄有色有爽视频| 午夜免费男女啪啪视频观看| 精品亚洲成a人片在线观看 | 精品久久久噜噜| 人妻少妇偷人精品九色| 国产精品久久久久久av不卡| 国产精品欧美亚洲77777| 国产亚洲午夜精品一区二区久久| 日本猛色少妇xxxxx猛交久久| 国产精品av视频在线免费观看| 亚洲成人中文字幕在线播放| av.在线天堂| 亚洲精品一二三| 80岁老熟妇乱子伦牲交| 国产视频内射| 免费看日本二区| 中文字幕精品免费在线观看视频 | 亚洲欧美精品自产自拍| 亚洲性久久影院| 午夜免费观看性视频| 黄色欧美视频在线观看| 天堂俺去俺来也www色官网| 成年免费大片在线观看| 99久久精品国产国产毛片| 亚洲精品久久午夜乱码| 日日撸夜夜添| 亚洲精品视频女| 亚洲经典国产精华液单| 亚洲av中文字字幕乱码综合| 国产久久久一区二区三区| 少妇 在线观看| 美女内射精品一级片tv| 超碰av人人做人人爽久久| 久久久久人妻精品一区果冻| 麻豆国产97在线/欧美| 十分钟在线观看高清视频www | 国产白丝娇喘喷水9色精品| 熟女电影av网| 免费看不卡的av| 观看免费一级毛片| 国产精品久久久久久精品古装| 国产精品嫩草影院av在线观看| 综合色丁香网| 色婷婷av一区二区三区视频| 91久久精品电影网| 中文资源天堂在线| 精品少妇黑人巨大在线播放| 国产精品人妻久久久久久| 国产深夜福利视频在线观看| 久久精品国产亚洲网站| 国产黄色视频一区二区在线观看| 热99国产精品久久久久久7| 能在线免费看毛片的网站| 春色校园在线视频观看| 18禁裸乳无遮挡免费网站照片| 亚洲精品久久午夜乱码| 日韩成人av中文字幕在线观看| 激情 狠狠 欧美| 亚洲av福利一区| 免费不卡的大黄色大毛片视频在线观看| 2018国产大陆天天弄谢| 少妇人妻久久综合中文| 欧美日韩视频精品一区| 久久久久久九九精品二区国产| 久久国产精品大桥未久av | 在线观看人妻少妇| 国产一级毛片在线| av女优亚洲男人天堂| videossex国产| 亚洲精品久久午夜乱码| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久午夜欧美精品| 国产有黄有色有爽视频| 日韩国内少妇激情av| 国产欧美日韩精品一区二区| 亚洲图色成人| 日本黄色片子视频| a 毛片基地| 午夜老司机福利剧场| 在线观看美女被高潮喷水网站| 777米奇影视久久| 草草在线视频免费看| 久久99蜜桃精品久久| 天天躁夜夜躁狠狠久久av| 欧美日韩综合久久久久久| 国产精品99久久久久久久久| 秋霞伦理黄片| 最近最新中文字幕大全电影3| 欧美日韩亚洲高清精品| 亚洲精品第二区| 女的被弄到高潮叫床怎么办| 久久99热6这里只有精品| 亚洲欧美中文字幕日韩二区| 美女视频免费永久观看网站| 美女视频免费永久观看网站| 在线免费观看不下载黄p国产| 在线 av 中文字幕| 下体分泌物呈黄色| 亚洲四区av| 性色avwww在线观看| 亚洲aⅴ乱码一区二区在线播放| 日日摸夜夜添夜夜爱| 18禁在线播放成人免费| 成人18禁高潮啪啪吃奶动态图 | 日本色播在线视频| 人妻一区二区av| 国产伦理片在线播放av一区| 日韩一区二区视频免费看| 国产一区有黄有色的免费视频| 国产日韩欧美亚洲二区| 伊人久久国产一区二区| 蜜桃亚洲精品一区二区三区| 国产深夜福利视频在线观看| 美女视频免费永久观看网站| 特大巨黑吊av在线直播| 国产一级毛片在线| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品电影小说 | 久久99精品国语久久久| 国产一区二区三区av在线| 欧美bdsm另类| 成人国产av品久久久| 亚洲美女搞黄在线观看| 尤物成人国产欧美一区二区三区| 在线观看一区二区三区激情| 精品酒店卫生间| 寂寞人妻少妇视频99o| 日本免费在线观看一区| 精品国产一区二区三区久久久樱花 | 中文字幕人妻熟人妻熟丝袜美| 免费黄网站久久成人精品| 男人狂女人下面高潮的视频| 国产精品一二三区在线看| 99热6这里只有精品| 日韩 亚洲 欧美在线| 国产精品嫩草影院av在线观看| 大香蕉97超碰在线| 夜夜骑夜夜射夜夜干| 久久久久久久大尺度免费视频| 少妇精品久久久久久久| 黄色欧美视频在线观看| 成人美女网站在线观看视频| 中文在线观看免费www的网站| 高清在线视频一区二区三区| 亚洲精品乱码久久久v下载方式| 免费黄网站久久成人精品| 午夜精品国产一区二区电影| 久热久热在线精品观看| 欧美成人精品欧美一级黄| 国产一级毛片在线| 中文字幕制服av| 国产91av在线免费观看| 99热这里只有精品一区| 亚洲图色成人| 中文在线观看免费www的网站| 中文在线观看免费www的网站| 一个人免费看片子| 国产探花极品一区二区| 黑丝袜美女国产一区| 久久久久久久久久人人人人人人| 成年美女黄网站色视频大全免费 | 中文字幕精品免费在线观看视频 | 精品人妻熟女av久视频| 女性被躁到高潮视频| 狂野欧美激情性bbbbbb| 少妇人妻精品综合一区二区| 久久精品国产亚洲网站| 久热久热在线精品观看| 色视频www国产| 亚洲av在线观看美女高潮| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| 久久精品国产亚洲av涩爱| 插逼视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 免费观看av网站的网址| 成人毛片60女人毛片免费| 边亲边吃奶的免费视频| 搡女人真爽免费视频火全软件| 久久人人爽人人爽人人片va| 免费不卡的大黄色大毛片视频在线观看| 青春草亚洲视频在线观看| 一区二区三区免费毛片| 国产视频内射| 最近最新中文字幕大全电影3| 中国美白少妇内射xxxbb| 国产精品一区二区在线观看99| 在线观看av片永久免费下载| 五月伊人婷婷丁香| 中文精品一卡2卡3卡4更新| 久久久久久久精品精品| 亚洲精品国产av成人精品| 如何舔出高潮| 内地一区二区视频在线| 久久精品国产鲁丝片午夜精品| 一个人免费看片子| 国产高清有码在线观看视频| 麻豆国产97在线/欧美| 成人18禁高潮啪啪吃奶动态图 | 午夜福利影视在线免费观看| 国产精品熟女久久久久浪| 少妇 在线观看| 国产一级毛片在线| 亚洲不卡免费看| 又黄又爽又刺激的免费视频.| 联通29元200g的流量卡| 日韩成人伦理影院| 国产成人精品福利久久| 免费观看在线日韩| 亚洲av国产av综合av卡| 亚州av有码| 国产亚洲最大av| 91精品伊人久久大香线蕉| 狂野欧美白嫩少妇大欣赏| 亚洲av在线观看美女高潮| 国产又色又爽无遮挡免| 免费av不卡在线播放| 欧美日韩视频精品一区| 亚洲国产欧美在线一区| 久久久久久久精品精品| 一本久久精品| 色视频www国产| tube8黄色片| 久久婷婷青草| 熟女av电影| 你懂的网址亚洲精品在线观看| 免费高清在线观看视频在线观看| 观看av在线不卡| 国产精品人妻久久久影院| 亚洲aⅴ乱码一区二区在线播放| 天天躁日日操中文字幕| 午夜激情福利司机影院| 最近最新中文字幕大全电影3| 日韩国内少妇激情av| 欧美xxⅹ黑人| 久久精品国产自在天天线| 日韩强制内射视频| 最近手机中文字幕大全| 国产69精品久久久久777片| 99热这里只有是精品50| 国产精品不卡视频一区二区| 日韩人妻高清精品专区| 啦啦啦在线观看免费高清www| 久久午夜福利片| 干丝袜人妻中文字幕| 麻豆成人av视频| 在线看a的网站| 亚洲激情五月婷婷啪啪| 国产精品av视频在线免费观看| 一级a做视频免费观看| 91在线精品国自产拍蜜月| 最近手机中文字幕大全| 国产精品一二三区在线看| 国产日韩欧美亚洲二区| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩东京热| 制服丝袜香蕉在线| av免费在线看不卡| 国产精品爽爽va在线观看网站| 精品久久久精品久久久| 久久精品夜色国产| 国产 一区 欧美 日韩| 人妻制服诱惑在线中文字幕| 男女免费视频国产| 少妇人妻 视频| 18禁在线播放成人免费| 插阴视频在线观看视频| 久久精品国产a三级三级三级| 国产精品99久久久久久久久| 在线看a的网站| 日日撸夜夜添| 国产成人免费无遮挡视频| 建设人人有责人人尽责人人享有的 | 丝袜脚勾引网站| 国产日韩欧美在线精品| 国产精品一区二区在线观看99| 免费人妻精品一区二区三区视频| 国产亚洲午夜精品一区二区久久| 日本欧美国产在线视频| 中文在线观看免费www的网站| 日本免费在线观看一区| 国产精品成人在线| 亚洲自偷自拍三级| av国产精品久久久久影院| 欧美精品亚洲一区二区| 老熟女久久久| 欧美激情国产日韩精品一区| 寂寞人妻少妇视频99o| 久久精品久久久久久噜噜老黄| 多毛熟女@视频| 18禁在线无遮挡免费观看视频| 99热这里只有是精品在线观看| 欧美97在线视频| 网址你懂的国产日韩在线| 日韩人妻高清精品专区| 美女国产视频在线观看| 观看美女的网站| 黄色视频在线播放观看不卡| 精品一品国产午夜福利视频| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 亚洲国产欧美在线一区| 国产精品久久久久久av不卡| 纯流量卡能插随身wifi吗| 亚洲精华国产精华液的使用体验| 久久人妻熟女aⅴ| 一级毛片 在线播放| 91久久精品国产一区二区成人| 99热全是精品| 赤兔流量卡办理| 欧美日韩国产mv在线观看视频 | 国产精品.久久久| 草草在线视频免费看| av卡一久久| 在线亚洲精品国产二区图片欧美 | av一本久久久久| 欧美精品亚洲一区二区| 国产色爽女视频免费观看| 女人久久www免费人成看片| 欧美亚洲 丝袜 人妻 在线| 91久久精品国产一区二区三区| 插阴视频在线观看视频| 又爽又黄a免费视频| 国产精品一区二区在线观看99| 一区二区av电影网| 免费观看无遮挡的男女| 国产亚洲一区二区精品| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 久久久久久伊人网av| av国产精品久久久久影院| 韩国av在线不卡| 亚洲丝袜综合中文字幕| 欧美日韩一区二区视频在线观看视频在线| 久久精品久久久久久噜噜老黄| 美女xxoo啪啪120秒动态图| 水蜜桃什么品种好| 国产一区有黄有色的免费视频| 国产黄片美女视频| 美女主播在线视频| 一级毛片久久久久久久久女| 免费黄色在线免费观看| 秋霞伦理黄片| 中文天堂在线官网| 爱豆传媒免费全集在线观看| 亚洲aⅴ乱码一区二区在线播放| 99热全是精品| 国产又色又爽无遮挡免| 午夜福利高清视频| 日本猛色少妇xxxxx猛交久久| 国产在视频线精品| 亚洲美女搞黄在线观看| 国产精品一区二区三区四区免费观看| 中文欧美无线码| 国产精品精品国产色婷婷| 国产淫片久久久久久久久| 一级爰片在线观看| 人体艺术视频欧美日本| 精品一区二区免费观看| 亚洲高清免费不卡视频| 99久久人妻综合| 大话2 男鬼变身卡| 黑人猛操日本美女一级片| 人妻系列 视频| 网址你懂的国产日韩在线| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 国产在线男女| 2022亚洲国产成人精品| 男女国产视频网站| 午夜激情福利司机影院| 亚洲久久久国产精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 日韩欧美一区视频在线观看 | 少妇高潮的动态图| 欧美日韩精品成人综合77777| 91精品伊人久久大香线蕉| 女的被弄到高潮叫床怎么办| 成人亚洲精品一区在线观看 | 久久影院123| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 色哟哟·www| 国产精品99久久99久久久不卡 | 成人午夜精彩视频在线观看| 永久免费av网站大全| 久久ye,这里只有精品| 中文字幕亚洲精品专区| 大陆偷拍与自拍| 久久久国产一区二区| 国产黄色视频一区二区在线观看| 午夜免费观看性视频| 国产午夜精品久久久久久一区二区三区| 久久精品久久精品一区二区三区| 极品少妇高潮喷水抽搐| 成年美女黄网站色视频大全免费 | 日韩欧美一区视频在线观看 | 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看 | 成人国产麻豆网| 国产成人免费无遮挡视频| 乱码一卡2卡4卡精品| 久久热精品热| 国产高清有码在线观看视频| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 少妇裸体淫交视频免费看高清| 丝瓜视频免费看黄片| 在线看a的网站| 偷拍熟女少妇极品色| 伊人久久国产一区二区| 精品人妻偷拍中文字幕| av国产精品久久久久影院| 99热这里只有是精品50| 久久99蜜桃精品久久| 免费观看的影片在线观看| 国产伦精品一区二区三区四那| 日本午夜av视频| 男男h啪啪无遮挡| 一个人免费看片子| 国产爱豆传媒在线观看| 久久ye,这里只有精品| 亚洲精品国产av蜜桃| 亚洲国产高清在线一区二区三| 久久久国产一区二区| 韩国av在线不卡| videossex国产| 熟妇人妻不卡中文字幕| 全区人妻精品视频| av一本久久久久| 亚洲精品456在线播放app| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 亚洲精华国产精华液的使用体验| 日本午夜av视频| 国产男人的电影天堂91| 国产乱来视频区| 网址你懂的国产日韩在线| 各种免费的搞黄视频| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| 大片电影免费在线观看免费| 国产69精品久久久久777片| 国产男女超爽视频在线观看| 国产男女内射视频| 18禁动态无遮挡网站| 日本黄大片高清| 成人漫画全彩无遮挡| 国产久久久一区二区三区| 国产免费一级a男人的天堂| 欧美一区二区亚洲| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 亚洲高清免费不卡视频| 亚洲av中文字字幕乱码综合| 精品国产乱码久久久久久小说| 毛片女人毛片| 中国美白少妇内射xxxbb| 99久久精品热视频| 国产 精品1| 国产精品.久久久| 丰满乱子伦码专区| 亚洲不卡免费看| 91午夜精品亚洲一区二区三区| 午夜福利视频精品| a级一级毛片免费在线观看| xxx大片免费视频| 久久久久久人妻| 最新中文字幕久久久久| 免费看日本二区| 人妻夜夜爽99麻豆av| 日本av手机在线免费观看| 在线观看一区二区三区激情| 精品人妻视频免费看| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 欧美成人a在线观看| 91精品一卡2卡3卡4卡| 大片电影免费在线观看免费| 亚洲美女搞黄在线观看| 国产精品成人在线| av不卡在线播放| 国产白丝娇喘喷水9色精品| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| freevideosex欧美| 大香蕉97超碰在线| 波野结衣二区三区在线| 国产综合精华液| av视频免费观看在线观看| 日韩大片免费观看网站| 亚洲精品456在线播放app| 亚洲第一区二区三区不卡| xxx大片免费视频| 日本黄色片子视频| 国产有黄有色有爽视频| 一本色道久久久久久精品综合| 国产亚洲一区二区精品| 中文字幕av成人在线电影| 一区二区三区乱码不卡18| 国产成人精品福利久久| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 久久久久久伊人网av| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 99久久精品国产国产毛片| 五月开心婷婷网| 亚洲国产精品一区三区| 国产av一区二区精品久久 | 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 国产午夜精品久久久久久一区二区三区| 熟女人妻精品中文字幕| 高清黄色对白视频在线免费看 | 能在线免费看毛片的网站| 国产欧美亚洲国产| 女人十人毛片免费观看3o分钟| 亚洲中文av在线| 国产成人免费无遮挡视频| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 九九爱精品视频在线观看| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 国产爱豆传媒在线观看| 高清欧美精品videossex| 黑丝袜美女国产一区| 美女福利国产在线 | 黄片wwwwww| 欧美3d第一页| 亚洲欧美精品专区久久| 三级国产精品片| 一区二区三区精品91| 免费看av在线观看网站| 国产 一区精品| 午夜精品国产一区二区电影| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| 免费播放大片免费观看视频在线观看| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 亚洲欧美成人综合另类久久久| 观看免费一级毛片| 国国产精品蜜臀av免费| h视频一区二区三区| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 97超视频在线观看视频| videos熟女内射| 九色成人免费人妻av| 国产午夜精品一二区理论片| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 人人妻人人爽人人添夜夜欢视频 | 街头女战士在线观看网站| 久久99蜜桃精品久久| 午夜老司机福利剧场| 欧美日韩一区二区视频在线观看视频在线| 性色avwww在线观看| 精品熟女少妇av免费看| 大香蕉97超碰在线| 国产爱豆传媒在线观看| 亚洲人与动物交配视频| 婷婷色麻豆天堂久久| 久久久久久久大尺度免费视频| 又大又黄又爽视频免费| 日日啪夜夜爽| 丰满人妻一区二区三区视频av| 丝袜喷水一区| 欧美精品国产亚洲| 精品一品国产午夜福利视频| 久久久精品94久久精品| 久久久欧美国产精品| 激情五月婷婷亚洲| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 国产一区二区三区综合在线观看 | 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 亚洲综合精品二区| 大话2 男鬼变身卡| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 在线 av 中文字幕| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 美女主播在线视频| av黄色大香蕉| 啦啦啦在线观看免费高清www| 成人一区二区视频在线观看| 亚洲国产欧美人成| 另类亚洲欧美激情| 亚洲av电影在线观看一区二区三区| 亚洲性久久影院| 久久6这里有精品| 国产av精品麻豆| 日本欧美国产在线视频|