• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于N15質(zhì)量平衡法研究養(yǎng)殖消化廢水中氨氮的去除機(jī)理

    2021-03-11 08:49王海萍鄭立國(guó)佘佳榮曹群
    土木建筑與環(huán)境工程 2021年1期

    王海萍 鄭立國(guó) 佘佳榮 曹群

    摘 要:為避免養(yǎng)豬場(chǎng)消化廢水對(duì)環(huán)境造成的污染,利用微藻去除消化廢水中營(yíng)養(yǎng)物質(zhì)的二次處理方法受到了廣泛關(guān)注。采用15N質(zhì)量平衡法研究了鞘藻去除氨氮的主要機(jī)理,重點(diǎn)研究了鞘藻生長(zhǎng)與氨氮去除的關(guān)系以及氨氮去除的主要途徑。經(jīng)高壓滅菌后的消化廢水在鞘藻培養(yǎng)期的氨氮去除率為96.2%,鞘藻特定生長(zhǎng)率為0.04~0.15;稀釋后的原消化廢水氨氮的去除率為94.1%,鞘藻特定生長(zhǎng)率為-0.14~0.13。通過(guò)曝氣的汽提效應(yīng)對(duì)氨的去除有顯著的促進(jìn)作用,尤其在高pH值試驗(yàn)條件下更有利于脫氨。15N同位素質(zhì)量平衡分析表明,原始消化廢水中存在的細(xì)菌對(duì)氨氮的去除影響小,在鞘藻培養(yǎng)期去除原消化廢水中氨氮的主要途徑是鞘藻的吸收和氣體的損失,分別占總氮量的40.97%和32.59%。氨氮的去除與主要影響因素間的回歸和通徑分析表明,要提高氨氮去除率,需要提高鞘藻Chl-a含量和DO濃度,同時(shí)限制或保持pH值在弱堿性狀態(tài)。

    關(guān)鍵詞:養(yǎng)殖廢水;鞘藻;氨氮去除;質(zhì)量平衡;藻類吸收

    Anaerobic digestion by mesophilic or thermophilic bacteria is traditionally used as a primary treatment for piggery wastewater to reduce organic matter, waste volume, and odors and to recover biogas[1]. However, nutrient levels (especially ammonium) are not reduced during anaerobic digestion because the microorganisms employed are generally incapable of sufficient autotrophic metabolism of inorganic nitrogen[2]. The discharge of digested but otherwise untreated piggery wastewater results in excessive nutrient transport and induces aquatic eutrophication, groundwater contamination, and soil degradation[3]. For these reasons, many studies have focused on effective secondary treatments to remove nutrients from digested piggery wastewater (DPW) prior to disposal.

    Most of the nitrogen retained in DPW after anaerobic digestion is in the form of ammonium nitrogen, which is readily available for use by algae in photosynthesis[4-5]. Previous studies have demonstrated that many genera of microalgae, such as Chlorella, Scenedesmus and Neochloris, are capable of nutrient removal from digested livestock effluent via uptake into cells[6-7]. For example, ammonium at an initial concentration between 81 and 178 mg/L was completely removed within 21 days from digested and diluted dairy manure and then used as a nutrient supplement for the cultivation of Chlorella sp.[8]. Scenedesmus sp. removes ammonium at rates of 5.20~6.46 mg/(L·d) when seeded at a concentration range of 0.5~1.5 g/L in anaerobically digested livestock waste effluent[9]. Neochloris oleoabundans assimilates 90%~95% of the initial nitrate and ammonium in effluent after six days[10].

    The reported NH4—N removal efficiencies vary by algae species, initial nutrient concentration, and environmental conditions. A comparison of the abilities of four green microalgae (Hydrodictyaceae reticulatum Lag., Scenedesmus obliquus, Oedogonium sp., and Chlorella pyrenoidosa) and three blue-green algae (Anabaena flos-aquae, Oscillatoria amoena Gom., and Spirulina platensis) to remove nutrients from diluted DPW suggests that Oedogonium sp. is very effective at removing nutrients, especially NH4—N, which is present at an initial concentration of approximately 55 mg/L[11]. The use of microalgae for wastewater treatment offers other advantages, such as low cost, the possibility of recycling nutrients assimilated into algal biomass as fertilizer, and the discharge of oxygenated effluent into water bodies[3].

    Although an Oedogonium sp.-based secondary wastewater treatment process provides great potential for NH4—N removal from DPW, the main mechanisms involved require further investigation to optimize the design of the treatment system utilizing this alga. The stable isotope 15N has been traditionally used to evaluate ammonium transformation pathways in ecosystems, such as wetlands, in situ mesocosms, and laboratory microcosms[12-13]. Thus, in this study, we used the 15N mass balance approach to investigate the main mechanisms by which Oedogonium sp. removes ammonium from DPW. We describe here the relationship between algal growth and ammonium removal, the influence of bacteria initially present in DPW upon ammonium removal, and the dominant ammonium removal pathway.

    1 Materials and methods

    1.1 Algae strain

    Algal strains of Oedogonium sp. were obtained from the Freshwater Microalgae Culture Collection of the Institute of Hydrobiology (FACHB-Collection), Chinese Academy of Sciences, China. Cells were grown in culture media[14] at 25±2 ℃ in an incubator with a 12-h photoperiod. Cells in the exponential growth phase were filtered and then used in the experiments.

    1.2 Wastewater

    The DPW was collected from a piggery in Changsha, China; it contained 401 mg/L chemical oxygen demand (COD), 50.36 mg/L total phosphorus (TP), 525.4 mg/L total nitrogen (TN), and 508 mg/L ammonia nitrogen (NH4—N). Pretreatment in an autoclave reduced the COD, TP, TN, and NH4—N to 369, 17.88, 169.7, and 110 mg/L, respectively. Before being used as culture media, the raw and autoclaved DPW samples were diluted with distilled water at factors of 9.2 and 2, respectively, to reduce the toxic influence of the ammonia on algal growth and obtain initial ammonia concentrations of 55 mg/L.

    1.3 Experimental operation

    The experiment was carried out in an incubator set at 25±2 ℃ with a 12-h photoperiod.Oedogonium sp. cells were cultivated in 2 L flasks with a total working volume of 1 L. Cultures were continuously agitated by atmospheric air bubbling (0.5 L/min). To investigate the fate of ammonium in the Oedogonium sp. microcosm and the effect of initial bacteria in wastewater on ammonium removal, 0.67 mg 15N (as ammonium sulfate) was added with the diluted raw (DRW) or diluted autoclaved (DAW) DPW. To eliminate isotopic effects, the DRW or DAW treatments without the addition of 15N were also arranged in triplicate. The initial inoculum density of Oedogonium sp. was in the range of 300 mg/L dry weight for all treatments. DRW or DAW without Oedogonium sp. was prepared as the control in triplicate.

    1.4 Analytical procedures

    During the 9 days incubation period, 50 mL samples were taken for assay on days 0, 1, 3, 5, 7, and 9, and water evaporation losses were supplemented with distilled water before sample collection. NH4—N, pH, and dissolved oxygen (DO) analyses were performed following standard methods[15]. The cells were collected by centrifugation at 4 000 rpm for 10 min and then transferred into a 10 mL tube for algal Chl-a content (mg/L) analysis[16]. The specific growth rate, μ (day-1), was determined on the basis of the Chl-a content[16]. At the end of the experiment, a mass spectrometer (Thermo Scientific MAT 253, USA) was used to measure the 15N composition of TN in water and dried cells after filtration. As algal uptake, stripping volatilization, and microbial removal are the three main N removal processes in the Oedogonium sp. microcosm, the 15N mass balance analysis was expressed using equations modified from Zhang et al.[12].

    where Mi is the initial 15N load in wastewater, Mw is the final 15N load in DRW wastewater, Ms is the estimated 15N loss by stripping volatilization in DRW, Mc is the 15N uptake by the cells (algal and bacterial) in DRW, Ma is the 15N uptake by the algae in DAW, and Mm is the estimated microbial N removal.

    The regression and path analyses relating NH4—N removal in DAW and the independent variables were performed using SPSS 13.0 (SPSS Inc., Chicago, IL, USA).

    2 Results and discussion

    2.1 Algal growth and ammonium removal efficiencies

    During the incubation period,NH4—N concentrations decreased from the initial 55 mg/L to 3.2 mg/L (DRW) and 2.1 mg/L (DAW), and the NH4—N concentrations in the DRW and DAW controls decreased to 28.1 and 32.0 mg/L on day 9, respectively (Fig.1(a)). Meanwhile, the Chl-a content increased from 1.07 to 3.35 mg/L (DRW) and 1.29 to 4.13 mg/L (DAW) (Fig.1(b)). Data related to the growth rate of Oedogonium sp. and the ammonium removal rate are summarized in Table 1. Most of the NH4—N was removed during the first five days, accounting for 64.1%~70.4% of NH4—N removal in both treatments. By day 9, 96.2% (DAW) and 94.1% (DRW) of NH4—N was removed. After an initial adjustment to the new growth conditions, after day 3 Oedogonium sp. grew rapidly and at a steady, specific growth rate.

    Nitrogen often exists as ammonium in anaerobically digested wastewater[17]; thus, we focused our investigation of microalgal nitrogen removal on ammonium. Algal growth and ammonium removal rates were higher for DAW than for DRW, which could be due to the relatively higher initial concentration of P in DAW than in DRW, while both treatments had similar initial NH4-N levels. In the case of Nannochloropsis sp. cultivated in nutrient media, a lower N∶P supply ratio favors biomass productivity and nutrient removal[18]. It is worth noting that 41.8%~48.9% of the ammonium removed was observed on day 9 in the DRW and DAW controls without algal uptake.

    2.2 Changes in pH and DO concentration

    From an initial pH value of 9.0, the pH of the DRW and DRW controls decreased to 8.3 and 8.4 on day 9, respectively. The pH of DAW decreased from 9.3 to 8.0 on day 3 and reached a pH of 7.7 on day 9. The DAW control followed a similar trend, reaching a pH of 7.8 on day 9 (Fig.2(a)). These data demonstrate that during ammonium removal, the pH of the wastewater was maintained within 7.7~9.3 and mostly > 8.0. Such high values (> 8.0) favor ammonia stripping due to the shifting equilibrium from NH4 to ammonia (NH3)[19]. Therefore, the extent of ammonia removal with time can be explained by NH3 volatilization.

    The DO concentrations in DRW and DAW increased from 4.9 and 4.7 mg/L to 6.3 and 5.8 mg/L on day 1, respectively, and then remained between 6.0 and 6.4 mg/L for both treatments. The DO concentration of the DAW control increased to 6.3 mg/L on day 1 and then remained around 6.2 mg/L, while that of the DRW control ranged from 5.7~6.4 mg/L after day 1 (Fig.2(b)). Molecular oxygen is normally released during photosynthesis when treating wastewater with microalgae[20].

    However, DO saturation (6.2 mg/L) can be maintained by appropriate aeration, which is favorable for algal cell growth and algal ammonia uptake[9]. The net algal growth rate without aeration is enhanced 1.7-fold by aeration. Moreover, the ammonium removal rate in algal cultures with aeration is approximately three times that of algal cultures without aeration[9]. At the same time, aeration contributes to ammonium removal by stripping ammonia out of wastewater directly; this process is highly favored at high pH[19]. Therefore, the NH4—N removal rate in this experiment was probably due to gas loss by NH3 volatilization under conditions of high pH conditions and the stripping of ammonia by aeration in the controls as well as in DAW and DRW. These results are consistent with the aforementioned observation that 41.8%~48.9% of ammonium was removed in the controls without algal uptake.

    2.3 15N mass balance analysis

    The 15N mass balance in Oedogonium sp. cultures at the end of the incubation period is shown in Fig.3. We assumed that the influence of the other microorganisms on ammonium removal was negligible compared to the initial bacteria in DRW and the added algae. Based on the value of 15N uptake by Oedogonium sp. in DAW and DRW with isotope and the equations (1) and (2), the estimated quantities of 15N in the final wastewater, algae, and bacteria were 0.12, 0.27, and 0.06 mg, respectively, accounting for 17.31%, 40.97%, and 9.13% of the initial 0.67 mg 15N in the DRW Oedogonium sp. culture. The residual 15N ratio in the final wastewater at day 9 was higher than that of NH4—N in the final DRW without isotope, indicating that 14N is preferentially incorporated relative to 15N. This has been observed previously in studies on nitrogen isotopic fractionation associated with N uptake and assimilation by microorganisms[21-22]. Mass balance analysis showed that 0.22 mg 15N disappeared from the Oedogonium sp. culture, indicating that 32.59% of the added 15N was lost through gas. Ammonia stripping could be considered an important pathway for NH4—N removal from DRW; the results of the 15N tracer analysis showed that NH4—N removal from DRW could be mainly attributed to NH4—N incorporation into Oedogonium sp. and gaseous loss.

    2.4 Ammonium removal regression and path analyses

    The Shapiro-Wilk test was used to analyze the normality of NH4—N removal in DAW as the dependent variable. The resulting Shapiro-Wilk statistic is 0.950 (p value of 0.736 > 0.05), which means that the dependent variable (Y) is distributed normally, that is, Y is a normal variable for regression analysis. The regression equation to define the relationship between Y and the main influencing factors or independent variables, namely, DO (X1), pH (X2), and Chl-a content (X3), was established by stepwise regression using quadratic polynomials expressed as follows:

    The correlation coefficient resulting from the equation is close to 1 (R=0.994) with a small standard deviation (S=0.045), indicating the high accuracy of fit of the equation.

    The correlation values between different independent variables and NH4—N removal are shown in Table 2. The results suggest that the degree of influence of the three independent variables on NH4—N removal is ranked as follows: Chl-a content > DO > pH. However, it is often difficult to clearly show which variable plays the major decisive or restrictive role on the dependent variable based on subdividing the correlation coefficient between different variables. Path analysis can check whether Xi has a significant effect on Y, and most importantly, it determines whether Xi directly or indirectly affects the dependent variable through other independent variables.

    The path analysis yields the path coefficient between three independent variables and NH4—N removal (Table 3). Among the three independent variables, Chl-a content has the greatest direct effect on Y (P3y) followed by pH, and DO has the smallest direct effect. An analysis of various indirect path coefficients demonstrated that, despite the large value of P2y, the indirect effect of pH on Y through DO and Chl-a content produced a large negative value (P21y= -1.192 and P23y=-1.956), and the correlation coefficient R2y between pH and Y is highly negative (-0.966). The Chl-a content had the greatest indirect effect on Y through DO, yielding an indirect path coefficient P31y of 0.542, while DO had the second greatest indirect effect on Y through Chl-a content, yielding an indirect path coefficient P13y of 0.207. Therefore, Chl-a content plays an important role in NH4—N removal. To improve NH4—N removal, Chl-a content and DO must increase while the pH is maintained in a weakly alkaline range.

    3 Conclusion

    In conclusion, 96.2% ammonium removal and 0.04~0.15 specific growth rate of Oedogonium sp. were observed in DAW during the incubation period, while 94.1% ammonium removal and -0.14~0.13 specific growth rate of Oedogonium sp. were observed in DRW. High pH and aeration provided a significant benefit to ammonium removal by NH3 volatilization and the stripping effect during the incubation period. 15N isotope mass balance analysis indicates that bacteria initially present in DPW have little effect on ammonium removal in Oedogonium sp. cultures in DRW, as this occurs primarily through algal uptake, ammonia volatilization, and stripping processes. The statistical analysis between three independent variables and NH4—N removal indicates that increased levels of Oedogonium sp. and DO under weakly alkaline conditions can improve the efficiency of NH4—N removal. Using the ammonium-based isotope tracing method, we hypothesize that Oedogonium sp. is effective for treating DPW with high ammonium loading under adapted DO and pH values. Thus, culture conditions should be evaluated to improve the efficiency of nutrient treatment when microalgae are used for the secondary agricultural wastewater treatment process. Further investigation of whether Oedogonium sp. has the capacity to simultaneously remove other pollutants, such as phosphorus and heavy metals, will be useful in assessing the practical potential of this organism as a biological agent for secondary treatment of DPW. In addition, as it affects the growth of algae, the influence of light time on ammonium removal will be further studied.

    Acknowledgements

    This work was nancially supported by the Research Project of Education Department of Hunan Province (No. 19C0026), the Natural Science Foundation of Hunan Province (2017JJ5061). We gratefully acknowledge anonymous reviewers for their constructive comments and suggestions.

    References:

    [1] CHENG J, LIU B. Swine wastewater treatment in anaerobic digesters with floating medium [J]. Transactions of the ASAE, 2002, 45(3): 799-805.

    [2] NOIKE T, GOO I S, MATSUMOTO H, et al. Development of a new type of anaerobic digestion process equipped with the function of nitrogen removal [J].Water Science & Technology, 2004, 49(5/6): 173-179.

    [3] ASLAN S, KAPDAN I K. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae [J]. Ecological Engineering, 2006, 28(1): 64-70.

    [4] KIM M K, PARK J W, PARK C S, et al. Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater [J]. Bioresource Technology, 2007, 98(11): 2220-2228.

    [5] KUMAR M, MIAO Z, WYATT S. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium [J]. Bioresource Technology, 2010, 101: 6012-6018.

    [6] MICHELON W, SILVA M L B D, MEZZARI M P, et al. Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate [J].Applied Biochemistry and Biotechnology, 2015, 178: 1407-1419.

    [7] SUN Z L, SUN L Q, CHEN G Z. Microalgal cultivation and nutrient removal from digested piggery wastewater in a thin-film flat plate photobioreactor [J]. Applied Biochemistry and Biotechnology, 2019, 187(4): 1488-1501.

    [8] WANG L, LI Y, CHEN P, et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. [J]. Bioresource Technology, 2010, 101: 2623-2628.

    [9] PARK J, JIN H F, LIM B R, et al. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. [J] Bioresource Technology, 2010, 101: 8649-8657.

    [10] LEVINE R B, COSTANZA-ROBINSON M S, SPATAFORA G A.Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production [J]. Biomass and Bioenergy, 2011, 35(1): 40-49.

    [11] WANG H P, HU Z Q, XIAO B, et al. Ammonium nitrogen removal in batch cultures treating digested piggery wastewater with microalgae Oedogonium sp. [J]. Water Science and Technology, 2013, 68(2): 269-275.

    [12] ZHANG S N, LIU F, XIAO R L, et al. Nitrogen removal in Myriophyllum aquaticum wetland microcosms for swine wastewater treatment: 15N-labelled nitrogen mass balance analysis [J]. Journal of the Science of Food and Agriculture, 2017, 97(2): 505-511.

    [13] HARRISON M D, GROFFMAN P M, MAYER P M, et al. Nitrate removal in two relict oxbow urban wetlands: A 15N mass-balance approach [J]. Biogeochemistry, 2012, 111(1/2/3): 647-660.

    [14] FACHB-Collection. Fresh-water algae collection[EB/OL], http://algae.ihb.ac.cn/Dictionary.aspx. 2019.

    [15] APHA.Standard methods for the examination of water and wastewater [S]. American Public Health Association/ American Water Works Association/Water Environment Federation, Washington, DC, USA, 1998.

    [16] WANG H P, LIU F, LUO P, et al. Allelopathic effects of Myriophyllum aquaticum on two cyanobacteria of Anabaena flos-aquae and Microcystis aeruginosa [J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(4): 556-561.

    [17] ULUDAG-DEMIRER S, DEMIRER G N, FREAR C, et al. Anaerobic digestion of dairy manure with enhanced ammonia removal [J]. Journal of Environmental Management, 2008, 86(1): 193-200.

    [18] MAYERS J J, FLYNN K J, SHIELDS R J. Influence of the N∶P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp. [J] Bioresource Technology, 2014, 169: 588-595.

    [19] DAMMAK M, HADRICH B, MILADI R, et al. Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. [J/OL]. Lipids in Health and Disease, 2017, 16, 41, https://doi.org/10.1186/s12944-016-0378-1.

    [20] MARQUEZ F J, SASAKI K, NISHIO N, et al. Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis [J]. Biotechnology Letters, 1995, 17(2): 225-228.

    [21] WASER N A D, HARRISON P J, NIELSEN B, et al. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom [J]. Limnology and Oceanography, 1998, 43(2): 215-224.

    [22] PENNOCK J R, VELINSKY D J, LUDLAM J M, et al. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for δ15N dynamics under bloom conditions [J]. Limnology and Oceanography, 1996, 41(3): 451-459.

    (編輯 胡英奎)

    日日夜夜操网爽| 国产精品,欧美在线| 欧美日韩国产亚洲二区| 亚洲欧美激情综合另类| 欧美午夜高清在线| 午夜免费观看网址| 日韩 欧美 亚洲 中文字幕| 亚洲成人免费电影在线观看| 真人做人爱边吃奶动态| 老司机福利观看| 欧美成狂野欧美在线观看| 69av精品久久久久久| 在线视频色国产色| 2021天堂中文幕一二区在线观| 精品福利观看| 国产探花极品一区二区| av专区在线播放| 在线播放无遮挡| 国产亚洲欧美98| 女警被强在线播放| 一个人观看的视频www高清免费观看| 日本精品一区二区三区蜜桃| 有码 亚洲区| 午夜福利在线在线| 麻豆一二三区av精品| a在线观看视频网站| 亚洲片人在线观看| 国产成年人精品一区二区| 一二三四社区在线视频社区8| 两个人的视频大全免费| 少妇熟女aⅴ在线视频| 天天一区二区日本电影三级| 一个人看视频在线观看www免费 | 精品福利观看| 久久精品91蜜桃| 国产又黄又爽又无遮挡在线| a级一级毛片免费在线观看| 成人鲁丝片一二三区免费| 欧美黄色淫秽网站| 18禁美女被吸乳视频| 免费大片18禁| av中文乱码字幕在线| 一区福利在线观看| 免费在线观看影片大全网站| 熟女电影av网| 一个人看的www免费观看视频| 三级男女做爰猛烈吃奶摸视频| 国产老妇女一区| 欧美三级亚洲精品| 中文资源天堂在线| 色综合婷婷激情| 免费看光身美女| 亚洲av五月六月丁香网| 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩无卡精品| 久久精品人妻少妇| 神马国产精品三级电影在线观看| 日本成人三级电影网站| 中文资源天堂在线| 看免费av毛片| 内射极品少妇av片p| 香蕉久久夜色| 午夜免费男女啪啪视频观看 | 两性午夜刺激爽爽歪歪视频在线观看| 国产成人欧美在线观看| 午夜福利成人在线免费观看| 亚洲欧美一区二区三区黑人| 亚洲av第一区精品v没综合| ponron亚洲| 婷婷精品国产亚洲av在线| 日韩欧美在线乱码| 女同久久另类99精品国产91| 亚洲人成网站高清观看| xxxwww97欧美| 婷婷丁香在线五月| 精品欧美国产一区二区三| 亚洲欧美激情综合另类| 亚洲欧美精品综合久久99| 熟女少妇亚洲综合色aaa.| 老司机午夜十八禁免费视频| 在线免费观看不下载黄p国产 | 欧美日本视频| 天天一区二区日本电影三级| 特大巨黑吊av在线直播| 尤物成人国产欧美一区二区三区| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| 女人被狂操c到高潮| 一个人观看的视频www高清免费观看| 免费观看的影片在线观看| 亚洲精品久久国产高清桃花| 精品熟女少妇八av免费久了| 天天添夜夜摸| 日韩欧美精品免费久久 | 国产精品女同一区二区软件 | 男女那种视频在线观看| 国产精品 欧美亚洲| 久久精品国产综合久久久| 国产色婷婷99| 国产亚洲精品一区二区www| 真人做人爱边吃奶动态| 精品日产1卡2卡| 麻豆一二三区av精品| 法律面前人人平等表现在哪些方面| 最新在线观看一区二区三区| 内地一区二区视频在线| 免费av观看视频| 成人永久免费在线观看视频| 国产成人a区在线观看| 真实男女啪啪啪动态图| 中文字幕人妻熟人妻熟丝袜美 | 偷拍熟女少妇极品色| 久久精品影院6| 日韩av在线大香蕉| 男插女下体视频免费在线播放| 女警被强在线播放| 国产淫片久久久久久久久 | 午夜福利在线观看吧| 亚洲片人在线观看| 哪里可以看免费的av片| 国产精品一区二区三区四区久久| 老汉色av国产亚洲站长工具| 国产蜜桃级精品一区二区三区| 中文字幕人成人乱码亚洲影| 老汉色∧v一级毛片| 丰满的人妻完整版| 国产免费av片在线观看野外av| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久久久精品电影| 国产真实伦视频高清在线观看 | 日韩欧美国产在线观看| 国产精品一区二区免费欧美| 脱女人内裤的视频| 级片在线观看| 免费一级毛片在线播放高清视频| 欧美日韩瑟瑟在线播放| 成人国产一区最新在线观看| 一a级毛片在线观看| 噜噜噜噜噜久久久久久91| 69人妻影院| 男女视频在线观看网站免费| 一个人免费在线观看电影| 免费观看的影片在线观看| 色av中文字幕| 毛片女人毛片| www.熟女人妻精品国产| 欧美乱色亚洲激情| 久久国产精品人妻蜜桃| 18+在线观看网站| 亚洲av二区三区四区| 无遮挡黄片免费观看| 色综合站精品国产| 淫秽高清视频在线观看| 麻豆国产av国片精品| 桃色一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| 99国产综合亚洲精品| 午夜福利视频1000在线观看| 欧美3d第一页| 夜夜躁狠狠躁天天躁| www.熟女人妻精品国产| 国产毛片a区久久久久| 全区人妻精品视频| 亚洲午夜理论影院| 91久久精品电影网| 午夜a级毛片| 超碰av人人做人人爽久久 | 制服人妻中文乱码| 特大巨黑吊av在线直播| 国产精品久久久久久久久免 | av女优亚洲男人天堂| 亚洲五月婷婷丁香| 日韩欧美在线二视频| 岛国在线观看网站| 看片在线看免费视频| 国产视频一区二区在线看| 不卡一级毛片| 村上凉子中文字幕在线| 人人妻人人澡欧美一区二区| 一夜夜www| 国产一区二区激情短视频| 91久久精品国产一区二区成人 | 少妇高潮的动态图| 国产精品1区2区在线观看.| 好男人电影高清在线观看| 国产三级在线视频| 欧美一区二区国产精品久久精品| 国产精品爽爽va在线观看网站| 国产亚洲av嫩草精品影院| 亚洲不卡免费看| 久久国产精品人妻蜜桃| 免费在线观看亚洲国产| 天堂av国产一区二区熟女人妻| 久久久久久久亚洲中文字幕 | 怎么达到女性高潮| 一级作爱视频免费观看| 黑人欧美特级aaaaaa片| 91麻豆av在线| 99久久99久久久精品蜜桃| 两个人的视频大全免费| 中文字幕人妻丝袜一区二区| 久久精品综合一区二区三区| 一进一出抽搐动态| 亚洲在线观看片| 在线十欧美十亚洲十日本专区| 亚洲国产精品999在线| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 亚洲成人久久爱视频| 特大巨黑吊av在线直播| 少妇高潮的动态图| 久久这里只有精品中国| 日本免费一区二区三区高清不卡| 搡女人真爽免费视频火全软件 | 久久精品国产亚洲av香蕉五月| 欧美性感艳星| 男女视频在线观看网站免费| 蜜桃亚洲精品一区二区三区| 欧美一级a爱片免费观看看| 亚洲中文日韩欧美视频| 每晚都被弄得嗷嗷叫到高潮| 在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 国产精品久久久人人做人人爽| 俺也久久电影网| 亚洲欧美日韩高清专用| 国内久久婷婷六月综合欲色啪| 一个人看视频在线观看www免费 | 午夜精品久久久久久毛片777| 人妻久久中文字幕网| 中文字幕久久专区| 在线a可以看的网站| 网址你懂的国产日韩在线| 国内精品美女久久久久久| 天堂av国产一区二区熟女人妻| 在线观看66精品国产| 国产午夜福利久久久久久| 身体一侧抽搐| 国产私拍福利视频在线观看| 岛国视频午夜一区免费看| 日韩高清综合在线| 婷婷丁香在线五月| 亚洲无线观看免费| 成年女人看的毛片在线观看| 在线天堂最新版资源| 在线免费观看的www视频| 日本免费a在线| 午夜福利免费观看在线| 色精品久久人妻99蜜桃| 久9热在线精品视频| 女人被狂操c到高潮| 成人欧美大片| 国产精品98久久久久久宅男小说| 亚洲美女视频黄频| 久久久久九九精品影院| 一进一出抽搐动态| 无限看片的www在线观看| 天堂影院成人在线观看| 欧美三级亚洲精品| 亚洲成人久久性| 五月伊人婷婷丁香| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 男女之事视频高清在线观看| 18禁裸乳无遮挡免费网站照片| 老司机午夜福利在线观看视频| 欧美激情在线99| 久久久国产成人免费| 9191精品国产免费久久| 久久久久久久久中文| 午夜影院日韩av| 久久这里只有精品中国| 久久久色成人| 国产成人av教育| 18+在线观看网站| 免费看a级黄色片| 十八禁网站免费在线| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 2021天堂中文幕一二区在线观| 一二三四社区在线视频社区8| 午夜激情福利司机影院| 一个人看视频在线观看www免费 | 99精品久久久久人妻精品| 女警被强在线播放| 九色国产91popny在线| 色哟哟哟哟哟哟| 久久久国产精品麻豆| 18禁美女被吸乳视频| 熟女少妇亚洲综合色aaa.| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9 | 成人亚洲精品av一区二区| 中文字幕精品亚洲无线码一区| 在线播放无遮挡| 午夜免费男女啪啪视频观看 | 久久久久久九九精品二区国产| 亚洲熟妇熟女久久| 成人无遮挡网站| 国内久久婷婷六月综合欲色啪| 国产精品98久久久久久宅男小说| 男女下面进入的视频免费午夜| 久久久久国内视频| 国产av麻豆久久久久久久| 在线观看免费视频日本深夜| 有码 亚洲区| 亚洲av电影在线进入| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| 少妇人妻一区二区三区视频| 婷婷六月久久综合丁香| 国产国拍精品亚洲av在线观看 | 免费大片18禁| 男女那种视频在线观看| 99国产极品粉嫩在线观看| 女人十人毛片免费观看3o分钟| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| 伊人久久精品亚洲午夜| 在线免费观看的www视频| 母亲3免费完整高清在线观看| 国产欧美日韩一区二区精品| 内射极品少妇av片p| 亚洲国产高清在线一区二区三| 亚洲av电影在线进入| 国产精品三级大全| www国产在线视频色| 日韩大尺度精品在线看网址| 91字幕亚洲| 听说在线观看完整版免费高清| 一本久久中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 九九在线视频观看精品| 精品人妻1区二区| 欧美成人一区二区免费高清观看| 久久久久性生活片| 国产乱人伦免费视频| 欧美在线黄色| 九九热线精品视视频播放| 国产成人av教育| 老熟妇乱子伦视频在线观看| 大型黄色视频在线免费观看| 九九热线精品视视频播放| 51国产日韩欧美| 一区二区三区国产精品乱码| 亚洲在线观看片| 欧美在线黄色| 午夜a级毛片| 给我免费播放毛片高清在线观看| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 伊人久久大香线蕉亚洲五| 亚洲欧美一区二区三区黑人| 国产日本99.免费观看| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 欧美3d第一页| 亚洲无线观看免费| 久久精品影院6| 熟女人妻精品中文字幕| 国产精品 欧美亚洲| 熟妇人妻久久中文字幕3abv| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 老司机在亚洲福利影院| 久久这里只有精品中国| 好男人在线观看高清免费视频| 中文字幕久久专区| 国产高潮美女av| 一夜夜www| 内地一区二区视频在线| 国产爱豆传媒在线观看| 久久久久久久久大av| 99精品久久久久人妻精品| 人人妻人人看人人澡| 宅男免费午夜| 久久久久九九精品影院| 国产精品99久久久久久久久| 欧美又色又爽又黄视频| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 国产精品98久久久久久宅男小说| 国产高清视频在线观看网站| 欧美成人一区二区免费高清观看| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 久久久国产成人免费| 又黄又粗又硬又大视频| 午夜福利欧美成人| 久久久国产成人免费| 一个人看视频在线观看www免费 | 脱女人内裤的视频| 亚洲片人在线观看| 在线免费观看不下载黄p国产 | а√天堂www在线а√下载| 亚洲第一电影网av| 日韩免费av在线播放| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 男人舔女人下体高潮全视频| 国产成人aa在线观看| 国产老妇女一区| 琪琪午夜伦伦电影理论片6080| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 国产一区二区在线av高清观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日日夜夜操网爽| 国产精品一及| 国产美女午夜福利| 久久精品91蜜桃| 日韩av在线大香蕉| 久久久久久久久中文| 国产精品久久久久久亚洲av鲁大| 欧美乱妇无乱码| 亚洲av二区三区四区| 热99在线观看视频| av专区在线播放| 久久99热这里只有精品18| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站| 最近视频中文字幕2019在线8| 淫妇啪啪啪对白视频| 99久久精品热视频| 性色av乱码一区二区三区2| 国产激情偷乱视频一区二区| 国产三级在线视频| 国产成人aa在线观看| 免费无遮挡裸体视频| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 18美女黄网站色大片免费观看| 少妇熟女aⅴ在线视频| 一区二区三区高清视频在线| 国产欧美日韩精品亚洲av| 国产99白浆流出| 久久久久国产精品人妻aⅴ院| 午夜福利免费观看在线| 欧美日韩福利视频一区二区| 亚洲中文字幕日韩| 午夜免费观看网址| 首页视频小说图片口味搜索| 手机成人av网站| 亚洲美女视频黄频| 中国美女看黄片| 天堂影院成人在线观看| 搡女人真爽免费视频火全软件 | 天堂√8在线中文| 成人亚洲精品av一区二区| 色在线成人网| 亚洲精品久久国产高清桃花| 国产av麻豆久久久久久久| 18禁国产床啪视频网站| 国产精品美女特级片免费视频播放器| 性欧美人与动物交配| 国内精品美女久久久久久| 性色av乱码一区二区三区2| 欧美乱码精品一区二区三区| 国产亚洲精品av在线| 久久久久久国产a免费观看| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 高清日韩中文字幕在线| 天堂影院成人在线观看| 免费在线观看影片大全网站| 亚洲av免费高清在线观看| 亚洲无线观看免费| 啦啦啦观看免费观看视频高清| 欧美午夜高清在线| 亚洲国产精品久久男人天堂| 久久久久久人人人人人| 麻豆国产av国片精品| 免费看光身美女| 在线免费观看的www视频| 性色avwww在线观看| av天堂中文字幕网| 色精品久久人妻99蜜桃| 免费观看的影片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 久久久久性生活片| 欧美又色又爽又黄视频| x7x7x7水蜜桃| 欧美+日韩+精品| 性色av乱码一区二区三区2| 国产午夜精品论理片| 欧美一区二区国产精品久久精品| 国产欧美日韩精品一区二区| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 男女午夜视频在线观看| e午夜精品久久久久久久| av在线蜜桃| 两个人视频免费观看高清| 欧美+日韩+精品| 国产一区二区亚洲精品在线观看| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 亚洲欧美日韩高清专用| 每晚都被弄得嗷嗷叫到高潮| 最后的刺客免费高清国语| 欧美日韩综合久久久久久 | 国产精品美女特级片免费视频播放器| 在线十欧美十亚洲十日本专区| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式 | 精品无人区乱码1区二区| 欧美激情久久久久久爽电影| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区三区四区免费观看 | 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站 | 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 国产精品精品国产色婷婷| 在线观看舔阴道视频| 国产亚洲精品久久久久久毛片| 久久久久九九精品影院| 亚洲电影在线观看av| 最近在线观看免费完整版| 亚洲色图av天堂| 69av精品久久久久久| 日韩国内少妇激情av| 91在线精品国自产拍蜜月 | 国产一区在线观看成人免费| 99久久综合精品五月天人人| 国产主播在线观看一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 国产极品精品免费视频能看的| 黄片小视频在线播放| 成人一区二区视频在线观看| 乱人视频在线观看| 香蕉久久夜色| 成人午夜高清在线视频| 日本成人三级电影网站| 给我免费播放毛片高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲真实| 99视频精品全部免费 在线| 欧美黑人巨大hd| 全区人妻精品视频| 高清日韩中文字幕在线| 99精品在免费线老司机午夜| or卡值多少钱| 久久九九热精品免费| 国产乱人视频| 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 久久久成人免费电影| 一本精品99久久精品77| 国产成年人精品一区二区| 两个人看的免费小视频| 日韩 欧美 亚洲 中文字幕| 99热这里只有精品一区| 18禁黄网站禁片免费观看直播| 国产精品永久免费网站| 丁香六月欧美| 超碰av人人做人人爽久久 | 一区福利在线观看| 亚洲精品一区av在线观看| 美女高潮的动态| 一区福利在线观看| av黄色大香蕉| 少妇人妻一区二区三区视频| 久久久久精品国产欧美久久久| 日韩欧美精品v在线| www.熟女人妻精品国产| 在线观看舔阴道视频| 欧美zozozo另类| 日本黄色视频三级网站网址| 18禁黄网站禁片午夜丰满| 亚洲不卡免费看| 亚洲国产欧洲综合997久久,| 欧美日本视频| 黄色视频,在线免费观看| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 国产精品99久久99久久久不卡| 国产精品嫩草影院av在线观看 | 99久久无色码亚洲精品果冻| 波野结衣二区三区在线 | 男人的好看免费观看在线视频| 亚洲专区中文字幕在线| 亚洲精品456在线播放app | 午夜激情福利司机影院| avwww免费| 久久精品国产99精品国产亚洲性色| 久久人人精品亚洲av| av黄色大香蕉| 色综合站精品国产| 小蜜桃在线观看免费完整版高清| 日本a在线网址| av片东京热男人的天堂| 91久久精品电影网| 亚洲精品456在线播放app | 最新在线观看一区二区三区| 日本 av在线| 高潮久久久久久久久久久不卡| 久久精品国产清高在天天线| 成人一区二区视频在线观看| 一夜夜www| 免费观看精品视频网站| 超碰av人人做人人爽久久 | 全区人妻精品视频| 国产日本99.免费观看|