• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于神經(jīng)網(wǎng)絡的鋼筋混凝土剪力墻抗剪承載力研究

    2021-03-11 08:49:38郭文燁張健新
    土木建筑與環(huán)境工程 2021年1期
    關鍵詞:鋼筋混凝土剪力墻神經(jīng)網(wǎng)絡

    郭文燁 張健新

    摘 要:神經(jīng)網(wǎng)絡(ANN)模型作為土木工程領域中一種有效的方法能夠用于解決復雜的問題。基于試驗數(shù)據(jù)采用神經(jīng)網(wǎng)絡對鋼筋混凝土剪力墻的抗剪承載力進行預測,收集160個鋼筋混凝土剪力墻在低周往復荷載下的試驗數(shù)據(jù),建立數(shù)據(jù)庫,選取140個試驗樣本對ANN模型進行訓練,20個試驗樣本進行測試驗證。ANN1和ANN2有14個輸入?yún)?shù):混凝土抗壓強度、剪跨比、軸壓比、豎向鋼筋強度、橫向鋼筋強度、墻體豎向分布鋼筋配筋率、墻體水平分布鋼筋配筋率、邊緣構件縱向鋼筋配筋率、邊緣構件橫向鋼筋配筋率、邊緣構件與截面面積比、截面高厚比、總截面面積、墻高和截面形狀,輸入數(shù)據(jù)分別被歸一化到區(qū)間[0, 1]和[0.1, 0.9]。兩個模型的輸出數(shù)據(jù)均為剪力。對比分析ANN模型預測的鋼筋混凝土剪力墻抗剪承載力與采用規(guī)范GB 50011和ACI 318-14公式計算的抗剪承載力,結果表明,神經(jīng)網(wǎng)絡模型能夠精確地預測鋼筋混凝土剪力墻的抗剪承載力,具有較好的預測和泛化能力。

    關鍵詞:神經(jīng)網(wǎng)絡;剪力墻;鋼筋混凝土;模型預測;抗剪承載力

    1 Introduction

    Reinforced concrete (RC)shear walls are often used in building structures due to their capacity to resist lateral loads under seismic action[1]. The concrete strength, aspect ratio, axial compression ratio, vertical or horizontal web reinforcement ratio, and vertical or horizontal boundary region reinforcement ratio are critical design parameters that govern the lateral load resistance capacity of RC shear walls[2-3]. The formula used in domestic and foreign codes to calculate the shear bearing capacity is an empirical formula determined by statistical analysis, that reflects the main physical and geometric parameters and considers the factors that influence the reliability. Differences in the calculation model and calculation method are incorporated in current codes, such as GB 50011, ACI 318, and EC2. Furthermore, the strength of the concrete used in the formula for calculating the shear bearing capacity is also different. Generally, most existing methods of calculating the shear bearing capacity of RC shear walls are based on models with limited experimental data, such as shear walls using high-strength steel bars. Therefore, further research on more reliable and effcient structural assessement is needed.

    ANNs have been used for simulating engineering problems[4-6]. To predict the axial bearing capacity, Du et al.[7] suggested two ANN models of rectangular concrete-filled steel tubular columns. Kotsovou et al.[8] established an ANN model to predict the load bearing capacity of beam-column joints. However, the ANN models and experimental data are limited. In this study, shear bearing capacity predictions of RC shear walls were developed using artificial neural networks. The developed ANN model provides a reference for prefabricated concrete shear walls, the seismic performance of which are equivalent to cast-in-place RC walls[9-12].

    2 Data collection

    As shown in Fig.1,test results for 160 RC shear walls with rectangular or barbell sections was found in the literature [2-3, 13-29]. The test information included all parameters that may have an impact on the behavior of the RC shear walls. The test samples exhibited good deformation ability. The parameters for all samples were consistent.

    The size parameters of the wall (b, h, and H), the yield strength of the horizontal reinforcements fy, the concrete compressive strength fc, the aspect ratio λ, the axial compression ratio μ, and the shear force V are included to train and test the ANN models. Finally, 160 test samples were obtained and are summarized in Table 1.

    3 Artificial neural networks

    3.1 Background information

    ANN is an operational model that mimics the neural network of the human brain from the perspective of information processing. ANN is an artificial intelligence technology that can solve complex problems based on input parameters. The effects of these parameters are not explicitly illustrated or quantified. ANNs have the ability to learn, summarize, classify, and predict, and it have been achieved remarkable results in many practical applications over the past years. In this study, ANNs are used to predict the shear bearing capacity of RC shear walls.

    This study uses a back-propagation (BP) algorithm, as shown in Fig.2. A typical artificial neuron is shown in Fig.3. Three layers are included in the ANNs: input layer, hidden layer, and output layer. Each layer comprises k neurons, three neurons, and two neurons, respectively.

    The connections between interrelated neurons with a set specific weight are multiplied by the input data produced by the neuron. The values obtained in a particular layer are passed through the link and summed up with the bias (refer to Fig.2)[8]. A predefined activation is used to represent the relationship between the inputs and the outputs, as shown in the followingwhere yi is the output of the ANN, wij is the weight coefficients of the jth neuron, xj is the input data, θi is the bias of the neuron, and g(·) is the activation function. In this study, input and hidden layers used sigmoid activation functions, and the output layer used the tan-sigmoid activation function.

    3.2 Input and output data

    The input parameters were selected based on the dominant effect of the parameters on the behavior of the RC shear wall, and included the concrete compressive strength (fc), the aspect ratio (λ), the axial compression ratio (μ), the vertical reinforcement yield strength (fy,vw), the horizontal reinforcement yield strength (fh,vw), the vertical reinforcement web ratio (ρvw), the horizontal reinforcement web ratio (ρhw), the vertical reinforcement boundary region ratio (ρvc), the horizontal reinforcement boundary region ratio (ρhc), the sectional area ratio of the boundary region to the total cross-section area (Ab/Ag), the sectional height thickness ratio (lw/tw), the total section area (Ag), the wall height (H), and the section shape (the rectangular section is “0” and the barbell section is “1”).

    Since the performance of the RC shear walls specified in the code is determined by the limit of the shear load capacity, we take the maximum shear (Vmax) as the target parameter. The maximum and minimum values of the input and output data are listed in Table 2. Table 3 shows the correlation between the input parameters used for the prediction of the shear bearing capacity of the RC shear walls. Some parameters are weakly correlated while others are strongly correlated. For example, the correlation coefficient between the lw/tw and Ab/Ag was -0.763, which indicates a strong negative relationship. The correlation coefficient between the H and λ was 0.449, which indicates a weak positive relationship. The sequence of the correlation for the input parameters from strong to weak were Ag, ρvc, ρhc, fc,Ab/Ag, section shape, fy,vw,fh,vw,H,ρhw,λ,ρvw, μ, and lw/tw.

    To minimize the deviation of the ANN and low convergence rates, the values of the input and output data are normalized using Eq.(2).

    3.3 Training and testing of the ANNs

    In this study, the network was built using the ANN toolbox in MATLAB. The BP network with 15 hidden layers was used to build the model of RC shear walls. The 160 experimental samples were randomly divided into two groups, 140 samples for training, and 20 samples for testing. In order to verify the effect of normalization equation on the ANNs prediction, the two control groups ANN1 and ANN2 were normalized in the range [0, 1] and [0.1, 0.9].

    The training process of the neural network involves adjusting the network's weights and deviations (initially randomly assigned) to optimize the network's performance in the iterative process. The error performance index of the forward network is MSE, which is the mean square error between the network output and the target. The neural network would modify the network node weight, according to MSE. At the same time, in order to reduce the error in each iteration, ANN used the back-error propagation algorithm. After the error was calculated, the weights and bias were readjusted.

    The calibration procedure of the ANN model is shown in Fig.4. This was repeated until one of the following conditions was met: 1) After 500 training sessions, the algorithm will stop the training process. 2) The error-index reaches 10-5. 3) The validation check occurs 10 times.

    The ANN values (ANN-output) and test values (targets) are illustrated in Fig.5. The ANNs predicted values were close to the experimental values with good deformation ability, indicating that the ANN1 and ANN2 models successfully learned the relationship between input and output data. In addition, the predicted values and test values that were closer to each other in different normalized ranges were in the range [0, 1] rather than the range [0.1, 0.9].

    The ratio of output to target OTR, mean value MV, and standard deviation SD are used to evaluate the behavior of the model.

    Where Oi and Ti are the prediction values of the ANN models and the maximum shear of the experimental samples, respectively. n is the total sample number.

    Curves of OTR and sample number for ANN1, ANN2, GB 50011, and ACI 318 are presented in Fig.6. Two predicted values in the ANN1 model exhibited the errors of 8.1% and 8.7%, which were overestimated. Two predicted values in the ANN2 model exceeded the error of 8.0%. One was underestimated and the other was overestimated. The SD was 0.036 1 in ANN1 and 0.041 2 in ANN2 (refer to Table 4). Therefore, the ANN1 model was superior to the ANN2 model in calculating the shear bearing capacity of RC shear walls.

    The outputs of the RC shear walls are the results calculated by the formulas Eqs.(6) to (9).

    Fig.6 shows the OTRs calculated by ANN1, ANN2, GB 50011, and ACI 318. Table 4 lists MVs and SDs using the testing data for ANN1, ANN2, GB 50011, and ACI 318.

    Results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well.

    The results predicted by the ANN1 and ANN2 models matched those calculated by GB 50011 and ACI 318 very well. There were two outputs with an error of over 8% for both ANN1 and ANN2, but they did not exceed 10%. Two out of twenty in ANN1 were overestimated. One was overestimated in ANN2, and the other was underestimated. These results show that the ANN model exhibited a significant improvement compared to the standard GB 50011 and ACI 318. Compared with the experimental data, fourteen results predicted by GB 50011 exceed 10% difference based on the OTRs. There were sixteen predicted results with errors exceeding 10% in ACI 318. The SDs of ANN1 and ANN2 were 0.036 1 and 0.041 2, much lower than those of GB 50011 and ACI 318 (refer to Table 3). Compared with GB 50011 and ACI 318, the ANNs exhibited better performance on predicting the shear bearing capacity of RC shear walls.

    There were thirteen results with errors exceeding 10% in GB 50011 and three in ACI 318 were underestimated. The MVs of the results predicted by GB 50011 and ACI 318 were 0.954 4 and 0.825 6, respectively. ANN models exhibited higher MVs than GB 50011 and ACI 318, indicating that the formulas were conservative in GB 50011 and ACI 318 due to the usage of high strength materials. The SD of GB 50011 and ACI 318 reached 0.189 7 and 0.223 6, which were larger than the ANN models.

    The ANN1 and ANN2 models had the two largest MVs, while ANN1 and ANN2 exhibited smaller SDs. Thus, ANN models can accurately predict the shear bearing capacity of RC shear walls. Compared with the design codes, ANN models may be safer.

    5 Conclusions

    Two ANN models with fourteen input parameters were developed, based on experimental data. An efficient learning model based on ANNs was proposed to evaluate the load bearing capacity of RC shear walls. The prediction results show that ANN models predict the load bearing capacity favorably using parameters such as the aspect ratio, the axial compression ratio, the concrete and reinforcement strength, the boundary region and web reinforcement ratio, and the sectional ratio and size, thus accurate predictions can be provided.

    The ANN1 and ANN2 models exhibit a better correlation with the experimental results than the codes GB 50011 and ACI 318. The ANN models exhibit better accuracy in prediction and generalization capacity. The BP algorithm can be effectively adopted in the shear strength prediction of RC shear walls.

    Application of developed ANNs can be extended by further experimental tests including other shaped sections as input data. More studies on RC shear walls including high strength concrete and high strength reinforcements are valuable for the structures adopting RC shear walls.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Natural Science Foundation of Hebei Province (No. E2018202290).

    References:

    [1] NI X Y, CAO S Y, LIANG S, et al. High-strength bar reinforced concrete walls: Cyclic loading test and strength prediction [J]. Engineering Structures, 2019, 198: 109508.

    [2] PARK H G, BAEK J W, LEE J H, et al. Cyclic loading tests for shear strength of low-rise reinforced concrete walls with grade 550 MPa bars [J]. ACI Structural Journal, 2015, 112(3): 299-310.

    [3] CHENG M Y, HUNG S C, LEQUESNE R D, et al. Earthquake-resistant squat walls reinforced with high-strength steel [J]. ACI Structural Journal, 2016, 113(5): 1065-1076.

    [4] SIAM A, EZZELDIN M, EL-DAKHAKHNI W. Machine learning algorithms for structural performance classifications and predictions: Application to reinforced masonry shear walls [J]. Structures, 2019, 22: 252-265.

    [5] TRUNG N T, SHAHGOLI A F, ZANDI Y, et al. Moment-rotation prediction of precast beam-to-column connections using extreme learning machine [J]. Structural Engineering and Mechanics, 2019, 70(5): 639-647.

    [6] GEYER P, SINGARAVEL S. Component-based machine learning for performance prediction in building design [J]. Applied Energy, 2018, 228: 1439-1453.

    [7] DU Y S, CHEN Z H, ZHANG C Q, et al. Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks [J]. Frontiers of Computer Science, 2017, 11(5): 863-873.

    [8] KOTSOVOU G M, COTSOVOS D M, LAGAROS N D. Assessment of RC exterior beam-column joints based on artificial neural networks and other methods [J]. Engineering Structures, 2017, 144: 1-18.

    [9] SOUDKI K, WEST J S, RIZKALLA S H, et al. Horizontal connections for precast concrete shear wall panels under cyclic shear loading [J].PCI Journal, 1996, 41(3): 64-80.

    [10] SMITH B J, KURAMA Y C, MCGINNIS M J. Behavior of precast concrete shear walls for seismic regions: comparison of hybrid and emulative specimens [J]. Journal of Structural Engineering, 2013, 139(11): 1917-1927.

    [11] CHEN Y, ZHANG Q, FENG J, et al. Experimental study on shear resistance of precast RC shear walls with novel bundled connections [J]. Journal of Earthquake and Tsunami, 2019, 13: 1940002.

    [12] LI J B, WANG L, LU Z, et al. Experimental study of L-shaped precast RC shear walls with middle cast-in-situ joint [J]. The Structural Design of Tall and Special Buildings, 2018, 27(6): e1457.

    [13] OESTERLE R G, FIORATO A E, JOHAL L S, et al. Earthquake resistant structural walls tests of isolated walls [R]//Report to National Science Foundation, Skokie (IL, USA): PCA Construction Technology Laboratories, 1976.

    [14] LEFAS I D, KOTSOVOS M D, AMBRASEYS N N. Behavior of reinforced concrete structural walls: strength, deformation characteristics, and failure mechanism [J].ACI Structural Journal, 1990, 87(1): 23-31.

    [15] PILAKOUTAS K, ELNASHAI A. Cyclic behavior of RC cantilever walls, part I: Experimental results [J]. ACI Structural Journal, 1995, 92(3): 271-281.

    [16] SALONIKIOS T N, KAPPOS A J, TEGOS I A, et al. Cyclic load behavior of low-slenderness reinforced concrete walls: Design basis and test results [J]. ACI Structural Journal, 1999, 96(4): 649-660.

    [17] RIVA P, FRANCHI A. Behavior of reinforced concrete walls with welded wire mesh subjected to cyclic loading [J].ACI Structural Journal, 2001, 98(3): 324-334.

    [18] HIDALGO P, LEDEZMA C, JORDAN R. Seismic behavior of squat reinforced concrete shear walls [J]. Earthquake Spectra, 2002, 18(2): 287-308.

    [19] DAZIO A, BEYER K, BACHMANN H. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls [J]. Engineering Structures, 2009, 31(7): 1556-1571.

    [20] LIU X, BURGUEO R, EGLESTON E, et al. Inelastic web crushing performance limits of high-strength-concrete structural wall: Single wall test program: Report No. CEE-RR-2009/03 [R]. Michigan State University, East Lansing, MI, 2009, 281.

    [21] TRAN T. Experimental and analytical studies of moderate aspect ratio reinforced concrete structural walls [D]. University of California, 2012.

    [22] ALARCON C, HUBE M A, DE LA LLERA J C. Effect of axial loads in the seismic behavior of reinforced concrete walls with unconfined wall boundaries [J]. Engineering Structures, 2014, 73: 13-23.

    [23] HUBE M A, MARIHUN A, DE LA LLERA J C, et al. Seismic behavior of slender reinforced concrete walls [J]. Engineering Structures, 2014, 80: 377-388.

    [24] WANG Y. Effects of web reinforcement discontinuities on the seismic response of structural walls [D]. West Lafayette, Indiana: Purdue University. 2014.

    [25] TENG S, CHANDRA J. Cyclic shear behavior of high-strength concrete structural walls [J].ACI Structural Journal, 2016, 113(6): 1335-1345.

    [26] GUO R,ZHU K. Experimental research on seismic behavior of RC shear wall with 600 megapascal high-strength reinforced bars [J]. Industrial Construction, 2017, 47(6): 34-39.

    [27] HUBE M, SANTA-MARIA H, LOPEZ M. Experimental campaign of thin reinforced concrete shear walls for low-rise constructions [C]//Proceedings of Sixteenth World Conference on Earthquake, Santiago, 2017.

    [28] CHEN X L. Study on seismic performance of RC shear wall structure reinforced with HRB600 high strength reinforcement [D]. Chongqing: Chongqing University, 2018.

    [29] LIU Y. Experimental study on seismic performance of concrete shear walls with 600 MPa steel bars [D]. Nanjing: Southeast University, 2019.

    (編輯 章潤紅)

    猜你喜歡
    鋼筋混凝土剪力墻神經(jīng)網(wǎng)絡
    民用建筑結構設計中短肢剪力墻技術應用
    剪力墻結構設計應用淺析
    神經(jīng)網(wǎng)絡抑制無線通信干擾探究
    電子制作(2019年19期)2019-11-23 08:42:00
    非加勁鋼板剪力墻顯著屈服位移角的研究
    “鋼筋混凝土”治療動脈瘤
    祝您健康(2016年11期)2016-10-31 11:41:27
    基于鋼筋混凝土的結構設計論述
    淺析建筑物鋼筋砼與砌體結構抗震加固的技術方法
    房屋建筑鋼筋混凝土預制樁的施工技術
    基于神經(jīng)網(wǎng)絡的拉矯機控制模型建立
    重型機械(2016年1期)2016-03-01 03:42:04
    復數(shù)神經(jīng)網(wǎng)絡在基于WiFi的室內LBS應用
    身体一侧抽搐| 一进一出好大好爽视频| 在线国产一区二区在线| 免费人成在线观看视频色| 老司机午夜福利在线观看视频| 国产成人aa在线观看| 午夜精品久久久久久毛片777| tocl精华| 久久久精品欧美日韩精品| 亚洲美女视频黄频| 国产三级黄色录像| 午夜老司机福利剧场| 熟女人妻精品中文字幕| 国产成人啪精品午夜网站| 成人欧美大片| 亚洲 欧美 日韩 在线 免费| 精品国产三级普通话版| 亚洲精品色激情综合| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区三区四区久久| 久久午夜亚洲精品久久| 亚洲一区高清亚洲精品| 757午夜福利合集在线观看| 亚洲 国产 在线| 国产精品免费一区二区三区在线| 欧美在线一区亚洲| 99久久综合精品五月天人人| 真人做人爱边吃奶动态| 国产免费一级a男人的天堂| 精品乱码久久久久久99久播| 免费搜索国产男女视频| 精品日产1卡2卡| 午夜免费男女啪啪视频观看 | 亚洲熟妇熟女久久| 一本久久中文字幕| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 午夜两性在线视频| 高清日韩中文字幕在线| 中国美女看黄片| 久久精品国产99精品国产亚洲性色| 亚洲在线自拍视频| 又粗又爽又猛毛片免费看| 有码 亚洲区| 一边摸一边抽搐一进一小说| 精品久久久久久久久久久久久| 淫妇啪啪啪对白视频| 国产乱人伦免费视频| 亚洲精品一区av在线观看| 国产国拍精品亚洲av在线观看 | 一区二区三区国产精品乱码| 日本黄色视频三级网站网址| 久久婷婷人人爽人人干人人爱| 亚洲无线在线观看| 在线观看免费午夜福利视频| 成人一区二区视频在线观看| 两个人的视频大全免费| 亚洲精品美女久久久久99蜜臀| 嫩草影院入口| 日韩欧美在线二视频| 看黄色毛片网站| 老司机在亚洲福利影院| 亚洲精品日韩av片在线观看 | 亚洲美女视频黄频| 国产精品日韩av在线免费观看| 欧美性感艳星| 欧美丝袜亚洲另类 | 一个人免费在线观看的高清视频| 男插女下体视频免费在线播放| 欧美成人免费av一区二区三区| 亚洲国产欧美网| 动漫黄色视频在线观看| 亚洲av美国av| 啪啪无遮挡十八禁网站| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| 国产高潮美女av| 国产免费av片在线观看野外av| av在线天堂中文字幕| 日韩亚洲欧美综合| 一级毛片女人18水好多| 两个人的视频大全免费| 国产成人福利小说| 毛片女人毛片| 亚洲人成网站在线播| 久久精品国产综合久久久| 1000部很黄的大片| 国产av不卡久久| 成人无遮挡网站| 老司机福利观看| 国产亚洲精品综合一区在线观看| 波多野结衣高清无吗| 黄片小视频在线播放| 色播亚洲综合网| 欧美3d第一页| 久久精品亚洲精品国产色婷小说| 色在线成人网| 国产精品久久视频播放| 亚洲精品乱码久久久v下载方式 | 黄片大片在线免费观看| 国产真实乱freesex| 国产成人欧美在线观看| 黄色日韩在线| 一二三四社区在线视频社区8| 国产麻豆成人av免费视频| 免费av观看视频| 亚洲自拍偷在线| а√天堂www在线а√下载| 99久国产av精品| 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 国内毛片毛片毛片毛片毛片| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 色综合亚洲欧美另类图片| 日本a在线网址| 首页视频小说图片口味搜索| 久久久久国产精品人妻aⅴ院| 女人高潮潮喷娇喘18禁视频| 欧美日韩乱码在线| 色综合欧美亚洲国产小说| 一个人看视频在线观看www免费 | 中国美女看黄片| 51国产日韩欧美| 日日夜夜操网爽| 身体一侧抽搐| 亚洲av日韩精品久久久久久密| 好男人在线观看高清免费视频| 人人妻人人看人人澡| 亚洲专区中文字幕在线| 日韩欧美免费精品| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品av在线| 中文字幕av成人在线电影| 国产三级黄色录像| 久久久国产成人精品二区| 91九色精品人成在线观看| 国产免费一级a男人的天堂| 中文字幕熟女人妻在线| 国内精品久久久久久久电影| 99国产精品一区二区三区| 亚洲欧美日韩无卡精品| 免费搜索国产男女视频| 麻豆一二三区av精品| 精品人妻偷拍中文字幕| 免费大片18禁| 亚洲久久久久久中文字幕| 免费无遮挡裸体视频| 黄片小视频在线播放| 久久久久国内视频| www.熟女人妻精品国产| 悠悠久久av| 亚洲国产欧美人成| 国产视频内射| h日本视频在线播放| 久久精品国产清高在天天线| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 国产中年淑女户外野战色| 日本撒尿小便嘘嘘汇集6| 久久精品综合一区二区三区| 日本a在线网址| 最近最新免费中文字幕在线| 午夜激情福利司机影院| 亚洲不卡免费看| 午夜日韩欧美国产| 亚洲专区国产一区二区| 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 欧美成人a在线观看| 国产成人啪精品午夜网站| 人人妻人人看人人澡| 欧美区成人在线视频| 亚洲美女黄片视频| 九色成人免费人妻av| 天天躁日日操中文字幕| 桃色一区二区三区在线观看| 18+在线观看网站| 国产免费一级a男人的天堂| 最新中文字幕久久久久| 免费看a级黄色片| 伊人久久大香线蕉亚洲五| 亚洲美女黄片视频| 99在线人妻在线中文字幕| 99国产综合亚洲精品| 亚洲成av人片免费观看| 精品99又大又爽又粗少妇毛片 | 看黄色毛片网站| 欧美日韩黄片免| 欧美bdsm另类| 女生性感内裤真人,穿戴方法视频| 久久亚洲真实| 精品无人区乱码1区二区| 日韩大尺度精品在线看网址| 天天一区二区日本电影三级| 嫩草影视91久久| 88av欧美| 欧美一区二区国产精品久久精品| 亚洲av免费高清在线观看| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 又黄又粗又硬又大视频| 国产欧美日韩精品一区二区| 国产精品久久久久久久久免 | 国产午夜精品论理片| 99国产精品一区二区三区| 欧美+亚洲+日韩+国产| 国产精品久久久久久亚洲av鲁大| 日韩成人在线观看一区二区三区| 久久久久久久午夜电影| 91麻豆精品激情在线观看国产| 91在线精品国自产拍蜜月 | 12—13女人毛片做爰片一| 亚洲精品美女久久久久99蜜臀| 51午夜福利影视在线观看| 中文字幕精品亚洲无线码一区| 怎么达到女性高潮| 91av网一区二区| 国产亚洲欧美在线一区二区| 男人的好看免费观看在线视频| 狂野欧美激情性xxxx| 真人做人爱边吃奶动态| 老熟妇乱子伦视频在线观看| 91九色精品人成在线观看| 欧美区成人在线视频| 亚洲美女视频黄频| 在线观看美女被高潮喷水网站 | 99热精品在线国产| 成人精品一区二区免费| 欧美乱色亚洲激情| 亚洲一区二区三区不卡视频| 国产视频一区二区在线看| 亚洲国产精品999在线| 精品久久久久久,| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 国产伦精品一区二区三区视频9 | 五月伊人婷婷丁香| 国产精品久久久人人做人人爽| 午夜福利欧美成人| 3wmmmm亚洲av在线观看| 国产欧美日韩精品亚洲av| 超碰av人人做人人爽久久 | 国产又黄又爽又无遮挡在线| 免费av观看视频| 两个人的视频大全免费| 久久久久久久久大av| 精品久久久久久久末码| 两人在一起打扑克的视频| 午夜免费男女啪啪视频观看 | 精品不卡国产一区二区三区| 美女大奶头视频| 乱人视频在线观看| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 亚洲成人久久性| 亚洲av美国av| 国产精品久久视频播放| svipshipincom国产片| 日本熟妇午夜| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 色精品久久人妻99蜜桃| 级片在线观看| 国产久久久一区二区三区| 欧美一级a爱片免费观看看| 免费人成在线观看视频色| 亚洲午夜理论影院| 国产精品久久久久久亚洲av鲁大| 国产精品嫩草影院av在线观看 | 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| 岛国视频午夜一区免费看| 亚洲aⅴ乱码一区二区在线播放| 国产麻豆成人av免费视频| 脱女人内裤的视频| 成年版毛片免费区| 亚洲专区中文字幕在线| 97碰自拍视频| 久久精品国产清高在天天线| 露出奶头的视频| 国产成人影院久久av| 国产成人欧美在线观看| 99久久成人亚洲精品观看| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网| 天堂√8在线中文| 日本一二三区视频观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 美女高潮的动态| 国产麻豆成人av免费视频| 国产成人啪精品午夜网站| 午夜免费男女啪啪视频观看 | 久久精品国产自在天天线| 九九热线精品视视频播放| 99riav亚洲国产免费| 精品久久久久久成人av| a级一级毛片免费在线观看| 亚洲国产精品合色在线| 婷婷精品国产亚洲av| 男女下面进入的视频免费午夜| 亚洲精品影视一区二区三区av| a级一级毛片免费在线观看| 日韩 欧美 亚洲 中文字幕| 男插女下体视频免费在线播放| 久久人妻av系列| h日本视频在线播放| 波多野结衣高清无吗| 国产精品久久久久久亚洲av鲁大| 美女免费视频网站| 噜噜噜噜噜久久久久久91| 久久久色成人| 最新美女视频免费是黄的| 久久久久国产精品人妻aⅴ院| 久久国产乱子伦精品免费另类| 19禁男女啪啪无遮挡网站| 日本黄色片子视频| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 亚洲成人久久爱视频| 国产精品 欧美亚洲| 日韩精品中文字幕看吧| 亚洲自拍偷在线| 亚洲熟妇熟女久久| 在线观看免费午夜福利视频| 亚洲国产欧美网| 99热只有精品国产| 国产单亲对白刺激| 91久久精品电影网| 一边摸一边抽搐一进一小说| 伊人久久精品亚洲午夜| 在线免费观看的www视频| 男插女下体视频免费在线播放| 亚洲男人的天堂狠狠| 天堂av国产一区二区熟女人妻| 日本熟妇午夜| 12—13女人毛片做爰片一| 欧美午夜高清在线| 18美女黄网站色大片免费观看| 色av中文字幕| 无限看片的www在线观看| 神马国产精品三级电影在线观看| 亚洲熟妇中文字幕五十中出| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产| 久久6这里有精品| 日韩欧美国产在线观看| 日韩中文字幕欧美一区二区| 九九久久精品国产亚洲av麻豆| 有码 亚洲区| 18禁美女被吸乳视频| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式 | 欧美日韩瑟瑟在线播放| 国产精品三级大全| 国产色婷婷99| 久久精品国产自在天天线| 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| av天堂中文字幕网| 亚洲 国产 在线| 久久久国产精品麻豆| 在线观看美女被高潮喷水网站 | 好看av亚洲va欧美ⅴa在| 久久久久亚洲av毛片大全| 乱人视频在线观看| www国产在线视频色| 757午夜福利合集在线观看| 日本免费一区二区三区高清不卡| 免费av毛片视频| 香蕉丝袜av| 欧美3d第一页| 搞女人的毛片| 国产主播在线观看一区二区| 变态另类丝袜制服| 在线观看午夜福利视频| 亚洲精品456在线播放app | 女人十人毛片免费观看3o分钟| 91麻豆av在线| 婷婷精品国产亚洲av| 3wmmmm亚洲av在线观看| 俄罗斯特黄特色一大片| 中文字幕精品亚洲无线码一区| 免费观看精品视频网站| 两个人的视频大全免费| 一个人免费在线观看的高清视频| 免费看日本二区| 三级男女做爰猛烈吃奶摸视频| 我要搜黄色片| 人人妻人人看人人澡| 国产黄a三级三级三级人| 日本一本二区三区精品| 久久国产乱子伦精品免费另类| 丰满乱子伦码专区| 黄色片一级片一级黄色片| 麻豆一二三区av精品| 全区人妻精品视频| 国产免费av片在线观看野外av| 母亲3免费完整高清在线观看| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 五月伊人婷婷丁香| 欧美成人一区二区免费高清观看| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 久久久精品欧美日韩精品| 国产单亲对白刺激| 成人高潮视频无遮挡免费网站| 伊人久久大香线蕉亚洲五| 久久精品综合一区二区三区| 国产精品嫩草影院av在线观看 | 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 日日夜夜操网爽| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 特大巨黑吊av在线直播| 亚洲 欧美 日韩 在线 免费| 天美传媒精品一区二区| 男女那种视频在线观看| 久久精品人妻少妇| 亚洲精品久久国产高清桃花| 久久精品国产综合久久久| 国产成年人精品一区二区| 亚洲不卡免费看| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 叶爱在线成人免费视频播放| 欧美精品啪啪一区二区三区| 久久6这里有精品| 99久久精品一区二区三区| 亚洲激情在线av| 99久久综合精品五月天人人| 国产高潮美女av| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 女人高潮潮喷娇喘18禁视频| www.熟女人妻精品国产| 国产探花极品一区二区| 国产一区在线观看成人免费| 99在线视频只有这里精品首页| 国产黄片美女视频| 中文字幕熟女人妻在线| 欧美区成人在线视频| 免费观看人在逋| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 国产精品亚洲av一区麻豆| 少妇人妻一区二区三区视频| av黄色大香蕉| 波多野结衣高清作品| 午夜视频国产福利| 搡老妇女老女人老熟妇| 免费无遮挡裸体视频| 日本一二三区视频观看| 国产精品久久久久久亚洲av鲁大| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品色激情综合| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 99热这里只有是精品50| 国内揄拍国产精品人妻在线| 成人鲁丝片一二三区免费| 久久久久亚洲av毛片大全| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 丁香六月欧美| 午夜亚洲福利在线播放| 久久香蕉精品热| 久99久视频精品免费| 日本与韩国留学比较| 欧美中文日本在线观看视频| 丁香欧美五月| 女人被狂操c到高潮| 久久人人精品亚洲av| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 19禁男女啪啪无遮挡网站| 国产精品99久久久久久久久| 高清毛片免费观看视频网站| 亚洲精品在线观看二区| 熟女少妇亚洲综合色aaa.| 亚洲精品色激情综合| 在线播放无遮挡| 一个人观看的视频www高清免费观看| 999久久久精品免费观看国产| 在线看三级毛片| 国产伦精品一区二区三区视频9 | 男人舔奶头视频| 欧美另类亚洲清纯唯美| 少妇的逼好多水| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲av嫩草精品影院| av天堂在线播放| 亚洲久久久久久中文字幕| 长腿黑丝高跟| 熟妇人妻久久中文字幕3abv| 99riav亚洲国产免费| 久久欧美精品欧美久久欧美| 欧美国产日韩亚洲一区| 亚洲无线在线观看| 免费av不卡在线播放| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区| 中文字幕久久专区| 岛国在线免费视频观看| 成人av一区二区三区在线看| 色av中文字幕| 国产高清视频在线观看网站| 淫妇啪啪啪对白视频| 一二三四社区在线视频社区8| 麻豆一二三区av精品| 色播亚洲综合网| 久久香蕉精品热| 亚洲最大成人手机在线| 老熟妇仑乱视频hdxx| 欧美极品一区二区三区四区| 亚洲熟妇熟女久久| 婷婷亚洲欧美| 一进一出抽搐动态| 九九久久精品国产亚洲av麻豆| 波多野结衣巨乳人妻| 老鸭窝网址在线观看| 国产乱人视频| 成人18禁在线播放| a级毛片a级免费在线| 麻豆成人av在线观看| 很黄的视频免费| 午夜免费观看网址| 欧美日韩国产亚洲二区| 成年人黄色毛片网站| 97人妻精品一区二区三区麻豆| 亚洲在线观看片| 18禁在线播放成人免费| 精品一区二区三区视频在线观看免费| www国产在线视频色| 亚洲国产欧洲综合997久久,| 亚洲国产精品合色在线| 久99久视频精品免费| 热99在线观看视频| 天堂网av新在线| 国产精品女同一区二区软件 | 好看av亚洲va欧美ⅴa在| 俺也久久电影网| 亚洲自拍偷在线| 国产成人av激情在线播放| 91在线精品国自产拍蜜月 | 欧美一级毛片孕妇| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 一级黄片播放器| 免费电影在线观看免费观看| 特级一级黄色大片| 国产淫片久久久久久久久 | 麻豆国产97在线/欧美| 欧美不卡视频在线免费观看| 51国产日韩欧美| 亚洲激情在线av| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 啦啦啦免费观看视频1| 丁香六月欧美| 久久久久国内视频| 亚洲欧美日韩无卡精品| 日日夜夜操网爽| 精品久久久久久久末码| 午夜影院日韩av| 怎么达到女性高潮| 母亲3免费完整高清在线观看| 欧美又色又爽又黄视频| 国产在线精品亚洲第一网站| 成人午夜高清在线视频| 午夜福利高清视频| 老司机福利观看| 丰满乱子伦码专区| 国产精品久久久久久久电影 | 中文字幕人妻丝袜一区二区| 婷婷亚洲欧美| 在线看三级毛片| 波多野结衣高清作品| 老司机在亚洲福利影院| 国产视频内射| 国产国拍精品亚洲av在线观看 | 免费观看人在逋| 又紧又爽又黄一区二区| 男人和女人高潮做爰伦理| 午夜免费成人在线视频| 欧美中文综合在线视频| АⅤ资源中文在线天堂| 国产精品99久久99久久久不卡| 中文字幕精品亚洲无线码一区| 久久中文看片网| 久久久久国产精品人妻aⅴ院| 美女 人体艺术 gogo| 久久中文看片网| 日韩精品中文字幕看吧| 国内精品久久久久久久电影| 国产高清视频在线观看网站| 国语自产精品视频在线第100页| 亚洲人成伊人成综合网2020| 五月玫瑰六月丁香| 国产黄片美女视频| 国产精品亚洲av一区麻豆| 久久香蕉国产精品| 夜夜看夜夜爽夜夜摸| 熟女少妇亚洲综合色aaa.| 国产精品精品国产色婷婷| 99久久久亚洲精品蜜臀av| 国产高清videossex| 亚洲七黄色美女视频|