• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical Description of M-Shape Sound Beams*

    2021-03-11 03:10:06
    電子器件 2021年6期

    (School of Electronic Science and Engineering,Southeast University,Nanjing 210096,China)

    Abstract:In this paper,new families of sound beams are presented,which produce the sound fields with an axialsymmetric amplitude distribution like the capital letter“M”and are termed the M-shape waves.A simple mathematical description is derived for two situations:infinite aperture and finite aperture.The beam distributions in the field of the M-shape sound source are computed on the acoustic axis and at various cross sections.A numerical example is given for a hypothetical transducer with 2.5 cm radius,1 MHz center frequency and the Hermite coefficient B2=4,this transducer will radiate M-shape beam within the regions of about 10 cm from the source and the field pattern is relatively uniform at the ranges of about 10 cm behind this distance.Possible applications of M-shape beam in some areas such as hyperthermia and advanced imaging techniques,are also discussed.

    Key words:propagation of ultrasound;beam pattern;ultrasonic transducer;analytical description

    In 1959 von Haselberg and Krautkramer presented the design of Gaussian ultrasonic transducers using the star-shape-electrode method[1],since then,a variety of transducers which can produce the sound fields with special distributions in the radial direction at specific ranges in media,have gradually attracted close attention.The transducers on the surface with the vibration velocity distributions such as Gaussian,annular andJ0Bessel functions are widely investigated and applied in the many areas of ultrasonic measurement,medical ultrasound and ultrasonic imaging for biological tissue samples.[2-8]In the particular case of hyperthermia,i.e.,the use of heat in cancer therapy by ultrasound,in order to provide a uniform heating in tissues Hynynen et al.[6]suggested to employ a kind of ultrasonic transducer,whose intensity distribution on the radiating surface is shown in Fig.7 in Ref.[5].It is required that the beam pattern is low at the center and high at the edges of heating area.Harrison et al.designed and fabricated ever a series of transducers by means of the star-shapeelectrode method(so-called asteroidal approximation)and other techniques,moreover,they estimated and measured the sound fields generated by the transducers,some of which are quite similar to the transducer imagined by Hynynen et al.However,the mathematical description for sound fields of these transducers is much complicated,in reality,which is the same as for the piston source without simple analysis,especially in the nearfield and the transition zone.The sound beam distributions are usually determined by numerical computations(the point-by-point integration according to the well-know Rayleigh integral),it will be much more complex to further deal with the hyperthermia and other effects caused by the ultrasonic fields in biological tissues.

    In this paper,we report a new class of sound fields for which the beam pattern on the sources resembles with the capital letter“M”,and term them M-shape waves or M-shape sound fields.Correspondingly,this kind of sound sources are named the M-shape ones(or transducers).In addition,because the on-source beam distributions can be described with the Hermite functions or their combinations,sometimes we refer to them as the Hermite sound beams.In this study,we first introduce the families of M waves and derive a relatively simple and universal representation for this class of M sound beams,furthermore,we analyze and calculate chiefly the case of the second-order M sound field.Next,we compute the sound fields generated by the second-order M wave with a finite aperture,and compare with those for the infinite aperture.We suggest that like the single annular transducer and others,the ultrasonic field of the M-shape transducers could be also utilized in cancer therapy by ultrasound.

    1 Theory of Infinite Aperture M-Shape Beam

    Intuitively,when the geometric size of a sound source is much greater than the wavenumber of sound in the medium,that is to say,under the conditionka?1,the sound source with one specific function distribution radiates a sound field,at least,the nearfield distribution should roughly approximate to the profile of this function,although there are some diffraction effects in the propagation of sound.Consequently,a natural idea is that in order to produce an M-shape sound field one may make the pressure amplitude distribution on the source be or approach an“M”shape by the special design of transducer.For example,the choice of a single annular source is acceptable[5],however,like the piston,the sound beam in the nearfield does not have the representation of analysis.It will be seen that for the sources with the profiles of the functionsxne-x2(Fig.1)which are called the M-shape functions or Hermite functions in this paper,as shown in Fig.1,not only do these sound fields have the M-shape distribution in the regions near the source(in the nearfield),but also they can be described in a simply mathematical analysis.

    Fig.1 M-shape or Hermite function distribution

    1.1 Wave Equation and Infinite Aperture M Waves

    A convenient approach which treats the propagation of sound waves radiated by an axial-symmetric sound source in the medium is to solve the linearized KZK equation.Under the parabolic approximation,a form of this equation can be written in the nondimensional form:[9]

    The description for sound fields governed by Eq.(1)is excellently accurate at very large propagative ranges except extremely close to the source(the same order of source radius).Here,ˉp=(p-p0)/ρ0u0c0is the dimensionless pressure,or the normalized one,pis the pressure,ρ0the density of medium,andc0the sound speed,whilep0is the ambient value of the pressure.randzrepresent the radial and axial coordinates,correspondingly,ξ=r/aandη=z/r0are the dimensionless radial and axial distances.r0=ka2/2 is the Rayleigh distance,k=ω/c0is the wavenumber of sound,whileωis an angular frequency of sound source.In addition,ais a characteristic radius of the sound source.For example,ais the radius of the piston source.τ=ω(t-z/c0)is the normalized retarded time,tthe time.αis the absorption coefficient of sound waves at the angular frequencyω.denotes the nondimensional transverse Laplace operation with respect toξ.

    The general solution of Eq.(1)for an arbitrary axial-symmetric distribution source which oscillates sinusoidally in time is,in terms of nondimensional variables,

    There are some unimportant differences between Eq.(3)and Eq.(2)only in the phase factor and absorption term.For brief,we assume the absorption of sound may be neglected,and directly use Eq.(3)to describe the pressure field.As a rule,Eq.(3)can be viewed as the complex amplitude of the normalized pressure and ˉq(ξ′) is termed the source distribution function.

    Suppose now that the amplitude distribution of the M-shape(Hermite)sound wave on the source is expressed in the following:

    where Γ represents the gamma function and the subscriptnis the order number,Bn=.Bnis relevant to the characteristic radiusa(in practical cases,amay be taken as the radius of the M-shape transducer)anda0that is the distance at which the pressure is maximum from the source center,as shown in Fig.1.Generally,we callBnorB′nthe Hermite coefficients of thenth-order M sound source.

    Substituting Eq.(4)into Eq.(3),we have

    Using the following formula(6)

    and the Kummer transformation

    whereM(a,b,z) is the confluent hypergeometric function that has a form of series expansion

    in which(a)n=a(a+1)(a+2)…(a+n-1) and (a)0=1[10].Without loss of generality,for an M sound source with infinite aperture,we adopt another pair of coordinate variablesXnandZn:

    Particularly,whennis an even integer,the functionM(-n/2,1,z)will become the polynomial with respect toz,in fact,which is the Laguerre polynomial.For an odd integern,this function is a series of infinite terms defined by Eq.(9).We divide further the M-shape(or Hermite)sound fields into two kinds:For an evenn,we term them thenth-order M waves of the second kind,and for an oddn,thenth-order M waves of the first kind,respectively.It can be known that the“M”waves of the second kind,like Gaussian beams,can be analytically described in an extremely simple manner,becauseM(-n/2,1,z)is a polynomial aboutz.More importantly,from Fig.1,we can see that for different order numbersn,the pressure amplitude profiles of M waves are almost similar,except for slight change in the widths of sound beam.Hence,we may choose a specific value ofnto recognize the features of the M-shape sound fields in the general case.In the following,we will mainly examine the second-order M sound beam(n=2),which is the simplest example.Some general characteristics of thenth-order M beams are presented in Appendix.

    1.2 Second-Order M Sound Beam

    Whenn=2,Eq.(8)simplifies to

    or in another form

    The pressure amplitude distribution is then expressed by

    AtX2=0,i.e.,on the acoustic axis,the pressure amplitude becomes

    Here we always refer toX2=0 as the center(or central line)of the M sound source(or beam).For clarity,we calculate the amplitude distributions of the second-order M sound beam,which are plotted in Figs.2 and 3.

    Because the description of the second-order M wave is especially easy in mathematics,the properties of sound field can be obtained by algebraic operation.We introduce

    and

    These two equations determine the positions of the maxima and minima of pressure amplitude in a section planeZ2.From Eq.(18),we can know that the amplitude maxima,called the amplitude peaks of M-shape sound field,are located on the lineOn this line,the pressure amplitude is

    For convenience,we introduce a parameter(X2w),which describes the beamwidth of the M-shape sound field and is simply defined as the distance between two peaks in a planeZ2.According to(18),we obtain the half-beamwidth with the distanceZ2as follows:

    Similarly,we can see from Eq.(19)that on the line,the pressure amplitude takes the minimum values which we refer to as the troughs of the M-shape sound beam and this amplitude distribution can be described by

    WhenZ2=0,we getX2=0 from Eq.(19),this represents the trough position for M-shape sound source.On the source,the center coincides exactly with the trough of the M sound beam.It should be noted that from the field profiles indicated in Fig.2,the peaks do not occur in all the range and the pressure amplitudes on the central line are not always lower than those on the lineIn other words,the amplitude profiles in the M-shape sound field remain an M-shape only in certain ranges.This distance can be easily determined.Let the pressure amplitudes on these two lines be equal,namely,

    Fig.2 Radial beam distributions of the second-order M sound field with an infinite aperture

    then we haveZ2=1/e(denoting it toZe)and call the transition distance of the M-shape field.The field profile at this cross sectionZeis shown as the curve forZ2=0.368 in Fig.2.In the zone from the source(Z2=0)to the planeZe,the pressure amplitude peaks decrease slowly while the pressures along the beam center and the trough lines increase gradually,the beam pattern is primarily similar to an M-shape,this zone is defined as the nearfield of the M-shape sound beam.When the beam propagates behind the planeZe,the central pressure amplitude increases and reaches maximum value at theZ2=1 which is defined to the farfield distance of the Mshape beam and denoted byZg.The range fromZetoZgis then termed the transition zone where the central pressure are greater than those on the linesFrom Figs.2 and 3,we can see that for an infinite aperture M wave,as it travels in the nearfield and the transition zone,the sound beam does not almost spread.In the nearfield,the beamwidth changes only by about 7%.WhenZ2>1 the central pressure begins to decrease,and with increasing the propagation distance the radial pressure distribution approaches a Gaussian function,as shown by the curve ofZ2=2 in Fig.2.This range can be considered as the farfield of the M-shape beam,andZ2=1 is referred to the farfield distance.Two distances,ZeandZg,are termed the characteristic parameters for this field or transducer.In practical design of the M-shape transducer required,it is convenient to determine the field regions where the beam profile has an M-shape and the farfield distance through these two parameters in order to choose the radius and the Hermite coefficient of the transducer.

    2 Finite Aperture M-Shape Sound Beams

    Real sound beams are always produced by the radiators with finite aperture,in other words,the dimension of sources is usually finite.For the M waves with finite aperture,the source distribution function can be expressed by

    where rect(ξ)is the rectangular function defined by

    Then,the field distribution can be given by

    In general,Eq.(27)cannot be analytically integrated out.To describe the sound field distribution,it is required to make a complicated integration with numerical technique.Now we employ another approach,which can simplify this problem,and express rect(ξ′)as follows:[11-12]

    where the coefficientsakandbkhave been determined by the Wen’s or Ding’s methods.Of course,Eq.(28)is approximately valid,converging averagely the rectangular function in all the range[0,+∞).Then,Eq.(27)reduces to

    in whichBnk=bk+Bn.

    Here we consider only the second-order M-Shape sound beam of finite aperture.For an actual transducer,the choice of differentB2values matches to truncate an infinite aperture M source with different apertures.WhenB2<1,the beam distributions on the truncated source are almost the same as forB2=1 so that we take typicallyB2=1,2,and 4,this corresponds toa/a0=1,1.414,and 2.As indicated already,ais a radius of the sound source or the transducer,a0is the distance for the maximum pressure amplitude whenB2is greater than or equal to 1.In such an example ofB2=1,the truncated aperture radius is just equal to the half-beamwidth of the second-order M-shape source with an infinite aperture,namely,a0=a.The beam distributions are calculated from Eq.(29)and drawn in Fig.3.It can be known that due to the“truncated effect”of source,there are many ripples in the sound field,except for the original peaks and troughs of pressure amplitude.In comparison with the infinite aperture M sound beam,there exists a considerable difference for the field distributions of finite aperture,especially whenB2is relatively small.For the large values ofB2(B2=4),however,this distinction is not very obvious and the beam distribution of finite aperture is basically the same as the case of infinite aperture,a comparison is not shown here.Of course,we may select such a coefficientB2=4 in the design of the Mshape transducer that we can describe yet the sound field of the transducer with this coefficient using the theory of the infinite aperture M-shape sound field.This could simplify theoretical analysis of hyperthermia effect and others by ultrasound in tissues,just like in most cases that Gaussian transducer fields in practical applications can be easily described by the theory of Gaussian beam with infinite aperture.

    Fig.3 Axial beam distribution of the second-order M sound field with an infinite aperture

    Fig.4 Radial beam distributions of the finite aperture second-order M-shape fields with Hermite coefficient B2=1

    3 DISCUSSION

    Hynynen et al.estimated the radial temperature distribution at the distance of 10 cm from the transducer that has a hypothetical intensity distribution on the surface,and found this intensity distribution causes a uniform temperature rise in radial regions after about 30 minute heating in the tissue.Noting the M-shape intensity distributions on the source are much similar to that they imagined,it is certain that this M-shape beam can provide the identical effect in hyperthermia.It has been shown that in medical ultrasonics,usually,the operation frequencies of transducers employed are about from 1 to 10 MHz,about 1 MHz-frequencies are found to be most useful for hyperthermia.[6]As an example,we provide a computer simulation of the intensity distribution for a finite aperture M sound field.We assume that the M-shape transducer has the diameter of 5 cm(ora=2.5 cm) anda0=1.25 cm.(From the definition of Hermite coefficientBn,in this case,B2=4).The center frequency of this transducer is 1 MHz and the sound speed of the medium(water)is about 1 500 m/s.The nearfield and farfield distances are approximated to 12 and 32.7 cm respectively.The sound intensity distributions are depicted in Fig.5.Very obviously,these distributions are very much similar to the results in Fig.7 of Ref.[5].The beam intensity profiles in the region of about 10 cm from the transducer surface have an M-shape.Besides,as pointed out by Harrison et al.,a wide constant-amplitude beam profile would be useful in advanced imaging techniques such as holography or in advanced tissue characterization schemes using deconvolution.This kind of M-shape source generates relatively uniform amplitude distribution in the transition zone(about from 10 to 20 cm along the propagation axisz),as shown in Fig.5,it could be utilized in holography and other imaging techniques.

    Fig.5 Relative beam intensity distribution

    Finally,we should point out how to realize the transducers for generating the M-shape ultrasonic beams.In principle,ones may control the amplitude profile of a sound wave radiated by a transducer in several ways such as the star-shape-electrode and curved-backelectrode methods.It has been shown that the curvedback-electrode method is simple and efficient to obtain desired beam profiles on the transducer surface.In next part of this study,we will employ this approach to realize this kind of M-shape transducers and test experimentally the sound field distributions.

    4 SUMMARY

    We have developed a class of M sound sources that may provide a novel way to generate sound beam applied in hyperthermia by ultrasound.The mathematical description for infinite aperture M beams is analytically obtained.Also,the“truncated”finite aperture M beams are addressed.The M-shape sound field is possibly applicable in the different conditions.The beam distribution in the nearfield of the transducer is very much similar to that suggested by Hynynen et al.,it may be used to produce a uniform heating in tissues.The transition field distribution is relatively uniform in the radial direction,it may be useful in imaging techniques that need a uniform lateral field distribution within a narrow beam.Furthermore,the curved-back-electrode technique is being investigated to design transducers that yield the M-shape pressures distribotions.

    APPENDIX:The nth-Order M-Shape Beam

    1 Axial Beam Distribution

    No matter thatnis an even or an odd number,due toM(a,b,0)=1,it always follows

    whenξ=0.This is the normalized complex amplitude distribution of thenth-order M-shape beam along the acoutic axis.

    2 Farfield Distribution

    For largeBnη,|zη|is small.Assuming |zη|→0,thenM(a,b,z)→1,we have the the beam distribution in the farfield as follows:

    Here,it has been assumed thatBnξ2is small in comparison withBηin Eq.(8).

    3 Nearfield Distribution

    For large |z|,M(a,b,z)has an asymptotic expansion

    In the case when the beam propagates in the nearfield,Bnηis small and |zη|is large,we may use(A3)to calculate the nearfield beam distribution by choosing appreciateRandS.A small number of terms suffice to give the accurate results of the nearfield distributions.It may be proven thatη→0,the distribution approximated from this expression will approach Eq.(4)describing the on-source beam distribution.

    In fact,whennis an even number,M(-n/2,1,z)transforms to a polynomial,as pointed out in the text.The above approximate expressions are useful on the condition thatnis not even numbers(the M-shape sound beam of the first kind).It is easy to verify that the M-shape sound field for arbitrary value of the numbernhas the beam pattern much similar to the second-order M-shape field.

    久久久久国产一级毛片高清牌| 久久99蜜桃精品久久| 亚洲精品自拍成人| 电影成人av| 电影成人av| 日本av免费视频播放| 国产黄频视频在线观看| 免费播放大片免费观看视频在线观看| 日日撸夜夜添| 亚洲av.av天堂| 一级毛片电影观看| 97人妻天天添夜夜摸| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 一级毛片 在线播放| av.在线天堂| 五月伊人婷婷丁香| 日本av手机在线免费观看| 黄色视频在线播放观看不卡| 国产午夜精品一二区理论片| 免费人妻精品一区二区三区视频| 亚洲综合色网址| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 18禁国产床啪视频网站| 91国产中文字幕| 国产高清国产精品国产三级| 亚洲av综合色区一区| 亚洲欧美成人精品一区二区| 国产黄色免费在线视频| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 国产野战对白在线观看| 免费观看av网站的网址| 日本猛色少妇xxxxx猛交久久| 欧美人与性动交α欧美软件| 一区福利在线观看| 日韩av不卡免费在线播放| 国产精品免费大片| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| 成人毛片60女人毛片免费| av又黄又爽大尺度在线免费看| 最近手机中文字幕大全| 一个人免费看片子| 美女大奶头黄色视频| 国产亚洲欧美精品永久| 国产精品嫩草影院av在线观看| 丁香六月天网| 天天操日日干夜夜撸| 在线观看三级黄色| 中文乱码字字幕精品一区二区三区| 国产一区有黄有色的免费视频| 99国产综合亚洲精品| 美女国产视频在线观看| 在线 av 中文字幕| 美女午夜性视频免费| 国产福利在线免费观看视频| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 国产av一区二区精品久久| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 国精品久久久久久国模美| 国产亚洲欧美精品永久| av在线老鸭窝| 精品国产超薄肉色丝袜足j| 午夜精品国产一区二区电影| 欧美变态另类bdsm刘玥| 久久免费观看电影| 亚洲欧洲国产日韩| 国产精品女同一区二区软件| 欧美人与性动交α欧美软件| 又黄又粗又硬又大视频| 国产片特级美女逼逼视频| 精品国产一区二区三区四区第35| 日韩人妻精品一区2区三区| 男女国产视频网站| 少妇 在线观看| 亚洲视频免费观看视频| 91国产中文字幕| 日本爱情动作片www.在线观看| 欧美成人精品欧美一级黄| www.av在线官网国产| 又大又黄又爽视频免费| 热re99久久国产66热| 亚洲伊人色综图| 亚洲成人av在线免费| 女人精品久久久久毛片| 超碰成人久久| 亚洲人成网站在线观看播放| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 三级国产精品片| 国产不卡av网站在线观看| 亚洲精品,欧美精品| 我的亚洲天堂| 曰老女人黄片| 欧美日韩亚洲高清精品| 妹子高潮喷水视频| 在线观看人妻少妇| 久久久欧美国产精品| 欧美日本中文国产一区发布| 久久久久久久久久人人人人人人| 国产精品 国内视频| 69精品国产乱码久久久| 一边亲一边摸免费视频| av国产精品久久久久影院| 国产精品熟女久久久久浪| 久热久热在线精品观看| 亚洲三级黄色毛片| 在线精品无人区一区二区三| 成年美女黄网站色视频大全免费| 午夜av观看不卡| 97在线视频观看| 日韩一区二区三区影片| 久久精品国产亚洲av涩爱| 中文字幕人妻熟女乱码| 亚洲国产色片| 久久久久国产网址| 一级片'在线观看视频| 97精品久久久久久久久久精品| 深夜精品福利| 亚洲伊人久久精品综合| 777久久人妻少妇嫩草av网站| 18+在线观看网站| 国产精品一国产av| av卡一久久| 欧美精品高潮呻吟av久久| 老鸭窝网址在线观看| 国产高清国产精品国产三级| 午夜精品国产一区二区电影| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩一区二区三区精品不卡| 高清在线视频一区二区三区| 午夜日本视频在线| 高清不卡的av网站| 国产av一区二区精品久久| 国产精品一国产av| 午夜91福利影院| 国产色婷婷99| 国产精品无大码| 最近中文字幕高清免费大全6| 在线 av 中文字幕| 九九爱精品视频在线观看| 精品99又大又爽又粗少妇毛片| www.自偷自拍.com| 久久亚洲国产成人精品v| 永久免费av网站大全| 熟女少妇亚洲综合色aaa.| 一级片'在线观看视频| 色哟哟·www| 校园人妻丝袜中文字幕| 国产一区二区 视频在线| 国产高清国产精品国产三级| 日本av手机在线免费观看| 国产成人av激情在线播放| 亚洲欧美一区二区三区久久| 欧美日韩av久久| 国产一级毛片在线| 久久人人97超碰香蕉20202| 国产精品一区二区在线观看99| 熟女av电影| 天天影视国产精品| 90打野战视频偷拍视频| 男的添女的下面高潮视频| 日韩三级伦理在线观看| 两个人看的免费小视频| 99久久精品国产国产毛片| 最近2019中文字幕mv第一页| 99热全是精品| 国产成人午夜福利电影在线观看| 电影成人av| 国产精品一区二区在线不卡| 国产片特级美女逼逼视频| 一区福利在线观看| 国产女主播在线喷水免费视频网站| 成人国产av品久久久| 免费黄频网站在线观看国产| 国产av精品麻豆| 免费高清在线观看日韩| 街头女战士在线观看网站| 男女国产视频网站| 热99国产精品久久久久久7| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 1024视频免费在线观看| 久久影院123| 欧美日韩av久久| 在线观看免费视频网站a站| 精品人妻偷拍中文字幕| 欧美中文综合在线视频| a 毛片基地| 欧美av亚洲av综合av国产av | 蜜桃在线观看..| 青春草视频在线免费观看| 黑丝袜美女国产一区| 欧美亚洲 丝袜 人妻 在线| 日本vs欧美在线观看视频| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 美女午夜性视频免费| 国产免费福利视频在线观看| 久久久国产一区二区| 午夜福利视频精品| 欧美亚洲日本最大视频资源| 欧美+日韩+精品| 日韩中字成人| 亚洲av电影在线观看一区二区三区| 韩国高清视频一区二区三区| 久久狼人影院| 免费观看在线日韩| 日韩一卡2卡3卡4卡2021年| 国产成人a∨麻豆精品| 99久久人妻综合| 精品国产乱码久久久久久男人| 搡女人真爽免费视频火全软件| 热re99久久国产66热| 91成人精品电影| 人妻人人澡人人爽人人| 黄色视频在线播放观看不卡| 国产成人精品无人区| 亚洲激情五月婷婷啪啪| 午夜激情久久久久久久| 精品久久久精品久久久| 亚洲av在线观看美女高潮| 久久久久国产网址| 日本av免费视频播放| 在线观看美女被高潮喷水网站| 成人二区视频| 亚洲视频免费观看视频| 国产精品国产三级专区第一集| 黑人猛操日本美女一级片| 激情视频va一区二区三区| 黄片小视频在线播放| 少妇人妻 视频| 国产精品嫩草影院av在线观看| 亚洲,欧美,日韩| 精品久久蜜臀av无| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲男人天堂网一区| 女人精品久久久久毛片| 亚洲精品中文字幕在线视频| 超色免费av| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 日韩成人av中文字幕在线观看| 亚洲国产看品久久| 亚洲成国产人片在线观看| 国产精品久久久久久精品古装| 国产福利在线免费观看视频| 又黄又粗又硬又大视频| 久久久久久久久久人人人人人人| 免费观看无遮挡的男女| 午夜福利一区二区在线看| 99热网站在线观看| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 免费大片黄手机在线观看| 黑人猛操日本美女一级片| 在线观看人妻少妇| 一二三四在线观看免费中文在| 香蕉精品网在线| 欧美激情高清一区二区三区 | 亚洲精品中文字幕在线视频| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 我的亚洲天堂| 国产毛片在线视频| 中文字幕最新亚洲高清| 少妇被粗大的猛进出69影院| 欧美日韩亚洲国产一区二区在线观看 | 国产国语露脸激情在线看| 亚洲欧美日韩另类电影网站| 黄频高清免费视频| 午夜老司机福利剧场| 不卡视频在线观看欧美| 亚洲情色 制服丝袜| 一区福利在线观看| 又粗又硬又长又爽又黄的视频| 久久精品国产亚洲av天美| 青草久久国产| 韩国av在线不卡| 边亲边吃奶的免费视频| 高清欧美精品videossex| 久久久久久久久久久免费av| av国产精品久久久久影院| 蜜桃在线观看..| 一边亲一边摸免费视频| 久久狼人影院| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产一区二区| 日日啪夜夜爽| av片东京热男人的天堂| 乱人伦中国视频| 亚洲熟女精品中文字幕| 婷婷成人精品国产| 日本av免费视频播放| 秋霞在线观看毛片| 视频在线观看一区二区三区| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 高清不卡的av网站| 亚洲精品美女久久久久99蜜臀 | 精品久久蜜臀av无| 午夜福利视频在线观看免费| 最近最新中文字幕免费大全7| 18禁观看日本| 午夜av观看不卡| 日韩一区二区三区影片| av在线观看视频网站免费| 国产 精品1| 在线看a的网站| 国语对白做爰xxxⅹ性视频网站| 国产成人精品福利久久| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 久久人人爽av亚洲精品天堂| 久久av网站| 欧美另类一区| 亚洲人成网站在线观看播放| 国产人伦9x9x在线观看 | 久久精品久久精品一区二区三区| 国产精品二区激情视频| 我的亚洲天堂| 国产一区二区三区综合在线观看| 国产综合精华液| 国产不卡av网站在线观看| 熟女少妇亚洲综合色aaa.| 国产成人精品一,二区| 国产97色在线日韩免费| tube8黄色片| 一级毛片 在线播放| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 亚洲精品中文字幕在线视频| 日本午夜av视频| 婷婷色av中文字幕| 国产 一区精品| 天堂俺去俺来也www色官网| 视频在线观看一区二区三区| 国产精品国产三级国产专区5o| 1024视频免费在线观看| 三级国产精品片| 2022亚洲国产成人精品| 日韩一区二区三区影片| 香蕉国产在线看| 国产精品一二三区在线看| 丝袜人妻中文字幕| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 国产乱来视频区| 91午夜精品亚洲一区二区三区| 水蜜桃什么品种好| 汤姆久久久久久久影院中文字幕| 亚洲精品在线美女| 婷婷色综合大香蕉| 久久久久久人妻| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 国产精品秋霞免费鲁丝片| 欧美成人午夜免费资源| 亚洲av成人精品一二三区| 中文字幕制服av| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片| 亚洲综合精品二区| 另类精品久久| 一级毛片我不卡| 国产成人精品一,二区| 成人手机av| 午夜福利视频精品| 午夜福利,免费看| 亚洲av男天堂| 99久久综合免费| 另类亚洲欧美激情| 精品一区二区三区四区五区乱码 | 亚洲欧美成人精品一区二区| 中国三级夫妇交换| 999精品在线视频| 亚洲av欧美aⅴ国产| 99久久综合免费| 亚洲第一青青草原| 亚洲国产欧美在线一区| 18禁动态无遮挡网站| 久久免费观看电影| 久久精品国产综合久久久| 国产成人一区二区在线| 国产男人的电影天堂91| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 久热久热在线精品观看| 精品一区二区三区四区五区乱码 | 2021少妇久久久久久久久久久| 黄频高清免费视频| 亚洲欧美精品综合一区二区三区 | 中文乱码字字幕精品一区二区三区| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 国产精品免费大片| 欧美激情 高清一区二区三区| 午夜免费鲁丝| 亚洲成色77777| 精品久久久精品久久久| 男的添女的下面高潮视频| 精品少妇一区二区三区视频日本电影 | 日本-黄色视频高清免费观看| 五月天丁香电影| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| 午夜福利乱码中文字幕| 国产成人av激情在线播放| 国产在线免费精品| 中文字幕精品免费在线观看视频| 一级片免费观看大全| 国产亚洲一区二区精品| 免费播放大片免费观看视频在线观看| av在线老鸭窝| 国产视频首页在线观看| 九草在线视频观看| 一本久久精品| av在线老鸭窝| 国产亚洲午夜精品一区二区久久| 亚洲,欧美,日韩| 在线观看免费高清a一片| 国产精品av久久久久免费| 99久国产av精品国产电影| 精品福利永久在线观看| 日韩中文字幕欧美一区二区 | 日韩av不卡免费在线播放| 午夜激情av网站| 2022亚洲国产成人精品| 丝袜在线中文字幕| 国产97色在线日韩免费| 少妇的逼水好多| 久久综合国产亚洲精品| 成人亚洲精品一区在线观看| 国产精品嫩草影院av在线观看| 视频在线观看一区二区三区| 午夜精品国产一区二区电影| 国产精品人妻久久久影院| 成人午夜精彩视频在线观看| 亚洲 欧美一区二区三区| 99精国产麻豆久久婷婷| 国产精品99久久99久久久不卡 | 老汉色av国产亚洲站长工具| 嫩草影院入口| 成人毛片60女人毛片免费| 侵犯人妻中文字幕一二三四区| 香蕉国产在线看| 乱人伦中国视频| 亚洲综合色网址| 亚洲,欧美精品.| 国精品久久久久久国模美| 国产av码专区亚洲av| 九色亚洲精品在线播放| 免费观看a级毛片全部| 高清在线视频一区二区三区| 精品久久久久久电影网| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 欧美成人午夜精品| 天堂中文最新版在线下载| 嫩草影院入口| 精品酒店卫生间| 91在线精品国自产拍蜜月| 久久精品aⅴ一区二区三区四区 | 黄网站色视频无遮挡免费观看| 99香蕉大伊视频| 久久久a久久爽久久v久久| 97在线视频观看| 看免费成人av毛片| 国产精品久久久久成人av| 日韩人妻精品一区2区三区| 999精品在线视频| 一级毛片 在线播放| 人妻 亚洲 视频| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 一边摸一边做爽爽视频免费| 国产麻豆69| 亚洲精品久久成人aⅴ小说| 校园人妻丝袜中文字幕| 亚洲第一区二区三区不卡| 国产精品国产三级国产专区5o| 亚洲美女视频黄频| 亚洲精品久久成人aⅴ小说| 校园人妻丝袜中文字幕| 免费女性裸体啪啪无遮挡网站| 欧美成人午夜精品| 少妇人妻久久综合中文| 久久久欧美国产精品| 午夜福利视频精品| 伊人亚洲综合成人网| 亚洲国产欧美日韩在线播放| xxx大片免费视频| 亚洲,欧美,日韩| 亚洲综合精品二区| 久久99精品国语久久久| 高清在线视频一区二区三区| 国产亚洲最大av| videosex国产| 丝袜脚勾引网站| 99香蕉大伊视频| 欧美在线黄色| 亚洲 欧美一区二区三区| 亚洲欧美精品自产自拍| 性色av一级| 中国三级夫妇交换| 国产成人一区二区在线| 春色校园在线视频观看| 一区二区三区精品91| 男女午夜视频在线观看| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 麻豆乱淫一区二区| 少妇人妻久久综合中文| 亚洲欧美成人精品一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久久久久婷婷小说| 国产在线一区二区三区精| av一本久久久久| 国产男女超爽视频在线观看| 日韩一区二区三区影片| 十分钟在线观看高清视频www| 欧美激情 高清一区二区三区| 精品久久久精品久久久| 青草久久国产| 天天影视国产精品| 亚洲 欧美一区二区三区| 永久免费av网站大全| 在线亚洲精品国产二区图片欧美| www.精华液| 国产白丝娇喘喷水9色精品| 国产成人aa在线观看| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 午夜福利视频精品| 婷婷色麻豆天堂久久| 女人高潮潮喷娇喘18禁视频| 两个人看的免费小视频| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 国产精品 欧美亚洲| 波野结衣二区三区在线| 国产精品国产三级国产专区5o| 最近最新中文字幕免费大全7| 伦精品一区二区三区| www日本在线高清视频| 99香蕉大伊视频| 日韩欧美一区视频在线观看| 精品少妇内射三级| 免费高清在线观看视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 亚洲欧美一区二区三区黑人 | 可以免费在线观看a视频的电影网站 | 亚洲av电影在线进入| 一边摸一边做爽爽视频免费| 一本—道久久a久久精品蜜桃钙片| 99re6热这里在线精品视频| a级毛片黄视频| 最新中文字幕久久久久| 另类亚洲欧美激情| 日韩免费高清中文字幕av| 亚洲精品日韩在线中文字幕| 亚洲精品中文字幕在线视频| 欧美bdsm另类| 男女午夜视频在线观看| 成年女人毛片免费观看观看9 | 日韩一卡2卡3卡4卡2021年| a级片在线免费高清观看视频| 国产在视频线精品| 观看av在线不卡| 赤兔流量卡办理| 婷婷色综合www| av福利片在线| 亚洲视频免费观看视频| 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| 久久毛片免费看一区二区三区| 亚洲综合精品二区| 最黄视频免费看| 国产精品国产av在线观看| 夜夜骑夜夜射夜夜干| 日韩中字成人| 亚洲视频免费观看视频| av不卡在线播放| 少妇被粗大猛烈的视频| 午夜免费男女啪啪视频观看| 欧美 亚洲 国产 日韩一| 最新中文字幕久久久久| 亚洲第一青青草原| 国产老妇伦熟女老妇高清| 亚洲国产av影院在线观看| 欧美人与善性xxx| 国产精品99久久99久久久不卡 | 99久国产av精品国产电影| 视频区图区小说| 国产成人一区二区在线| 午夜激情av网站| 亚洲一级一片aⅴ在线观看| 精品酒店卫生间|