• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A general thermodynamic model for the long-period stacking ordered phases in magnesium alloys

    2021-03-10 12:04:24KaiXuShuhongLiuKekeChangYongpengLiangYongDuZhanpengJin
    Journal of Magnesium and Alloys 2021年1期

    Kai Xu,Shuhong Liu,Keke Chang,Yongpeng Liang,Yong Du,Zhanpeng Jin

    a Key Laboratory of Marine Materials and Related Technologies,Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,Zhejiang 315201,China

    bScience and Technology on High Strength Structural Materials Laboratory,Central South University,Changsha,Hunan 410083,China

    c School of Materials Science and Engineering,Central South University,Changsha,Hunan 410083,China

    Received 19 August 2019;received in revised form 26 December 2019;accepted 30 December 2019

    Available online 12 July 2020

    Abstract A thermodynamic model Mgx(Xs,Mg)6(Xl,Mg)8(Xs and Xl are elements smaller and larger than Mg)for long-period stacking ordered phases(LPSOs)was proposed based on two key factors:the Xs6Xl8-type L12 clusters and the variation of chemical compositions.In general,all available LPSOs can be described with this model.As a representative system,Mg-Y-Zn with three LPSOs was investigated using the CALPHAD(calculation of phase diagram)approach aided with first-principles calculations.Two new three-phase equilibria were predicted and were validated by key experiments.The model-based descriptions will be the basis for the research and development of magnesium alloys.

    Keywords:LPSOs;Thermodynamic model;Formation enthalpy;CALPHAD;Solidification.

    1.Introduction

    Long-period stacking ordered phases(LPSOs)in magnesium alloys were widely concerned for their remarkable specific strength with moderate ductility[1–5].A series of LPSOs,viz.10H,12R,14H,18R-types[6,7],were observed in Mg-based alloys by different preparation methods and heat treatment processes.Here,H stands the stacking sequence is mirror-symmetrical to the base surface,while R indicates there is no mirror symmetry,and the numbers denote the stacked atomic layers.Hundreds of atoms in each supercell result in the relatively complicated crystal structure[8–10].Various clusters of solute atoms of the LPSOs have been experimentally observed and theoretically modeled.L12cluster is one of the widely accepted models in literature[6–15].In our previous work[16],the chemical compositions of LPSOs in the Mg–Ni–Y system were determined by electron probe microanalyzer(EPMA).The Ni/Y ratio equals to 0.75,which is in line with the L12cluster model.The lattice-distortionmediated HCP-to-FCC structural transformation in the LPSOs was investigated by the atomic array and solute-triplets in the supercell[17].However,the immature thermodynamic description of the LPSOs has misled the phase relations in the Mg-rich region and limited its application in engineering[18–25].Therefore,it is essential to develop a general thermodynamic model to describe the crystal structure and homogeneity region of the LPSOs simultaneously.

    Fig.1.Correlations between the general thermodynamic model Mgx(Xs,Mg)6(Xl,Mg)8 proposed in this work and the crystal structures(Xs6Xl8-type L12 clusters)[6,8,9,13,14,55]and homogeneity ranges[9,14,16]of the LPSOs.

    Mg–Y–Zn,as one of the representative LPSOs-containing systems[6,8,9,26,27],was studied in the present work.The 18R phase was formed directly after solidification.It was gradually transformed to the 14H phase during heat treatment in the temperature range of 350–500℃[28–33],where the 24R phase was proposed as an intermediate phase by Kim et al.[6].Hagihara et al.[34]observed a phase transformation from 10H to 18R at around 525℃.But later on,the insufficient annealing time for 10H might lead to the uncertainty of the phase stability[13].Phase relations in the Mg–Y–Zn system were experimentally investigated by several researchers[35–39].Five ternary compounds,viz.X(18R in this work),W,I,H,Z were reported.Thermodynamic evaluation of the Mg–Y–Zn system was also reported several times in literature[18,23–25].In order to reproduce the phase equilibria in the Mg-rich region and the solidification behavior of the Mg–Y–Zn system,an accurate thermodynamic description of the LPSOs is required.

    This work aims to develop a general thermodynamic model for the LPSOs.Based on this model,we described the Mg–Y–Zn system using the CALPHAD(calculation of phase diagram)approach supported with first-principles calculations as a typical case.The predicted phase equilibria were then validated by key experiments.

    2.Methods

    Fig.2.Calculated isothermal sections of the Mg–Y–Zn system with the proposed general thermodynamic model for LPSOs:(a)(c)isothermal sections at 400 and 500℃ with experimental data[37,39];(c)(d)local magnifications in the Mg-rich region,the phase relations are different from the calculations in literature[18,24,25],which have been confirmed by our following experiments in Fig.3.

    The total energies of ternary compounds and pure elements Mg,Y,and Zn were performed using the Vienna ab initio simulation package(VASP)[40–42]based on density functional theory(DFT)[43,44].All calculations were performed using the projected augmented wave(PAW)potentials[45]and the generalized gradient approximation(GGA),with the exchange-correlation functional of Perdew–Burke–Ernzerhof(PBE)[46].The electron wave function was expanded using plane waves with a cut off energy of 400eV.The gammacentered k-point mesh generated using the Monkhorst–Pack scheme was used to sample the Brillouin zone.All atoms were fully relaxed until the Hellmann-Feynman forces were smaller than 0.02eV/°A.The energy convergence criterion of electronic self-consistency was 10?6eV/atom.The total energy differences were converged to within 1.0 meV/atom.The formation enthalpies of the LPSOs were obtained with their total energies subtracting the total energies of the pure elements.More details can be found in our previous work[47,48].

    The present thermodynamic optimization was carried out by using the PARROT module of the Thermo-Calc software[49].The step-by-step optimization method reported by Du et al.[50]was used in this work.The thermodynamic parameters of pure elements are taken from the SGTEcompilation by Dinsdale[51].The constituent Mg–Zn binary system is taken from Yuan et al.[52].The order–disorder transition models in the Mg–Y and Y–Zn systems have been modified based on the previous work[23,53].With descriptions of the boundary binary systems,phase equilibria and thermodynamic properties in ternary systems can be computed via the standard procedure[54].

    Two key alloys Mg96Y3Zn1(at%)and Mg75Y15Zn10(at%)were prepared to verify our calculations.Magnesium granules(99.8wt%,Alfa Aesar),yttrium ingot(99.9wt%,Alfa Aesar)and zinc shot(99.99wt%,Alfa Aesar)were used as starting materials.The materials were sealed in small tantalum crucibles and vacuum quartz tubes in turn,and then heated up to 900℃ in a laboratory chamber furnace(Carbolite Gero Ltd.,UK)and kept at the temperature for 4 h followed by quenching in cold water.Both alloys were annealed at 400 and 500℃ for 30 and 10 days.The Mg75Y15Zn10alloy was further annealed at 525℃ for 15 days to checkthe phase stabilities reported in the literature[13].The alloys were ground into powder and their actual chemical compositions were measured by inductively coupled plasma(ICP),while their phase constituents were analysed using the XRD(D8-Advance,Bruker,Germany).Then,the alloys for the EPMA(JXA-8800R,JEOL,Japan)measurements were mounted,mechanically ground and polished under ethanol to reduce oxidation or corrosion.The ZAF program was used to calibrate the composition of each element at every detected point with standard samples of pure Mg,Y and Zn.

    Table 1Representative structural models of LPSOs in magnesium alloys.

    Table 2Ternary phases in the Mg–Y–Zn system.

    3.Results and discussion

    3.1.Thermodynamic calculations

    Table 1 summarizes the representative findings on structural models for the LPSOs via transmission electron microscope(TEM),atomic-resolution scanning transmission electron microscopy(STEM),EPMA,first-principles calculations,etc.[6–15,18,19,24,34,55–57].Though the precise crystal structures of LPSOs need more detailed experimental confirmation,the existence of the Xs6Xl8(Xs and Xl are elements smaller and larger than Mg,usually,Xs=Al and some transition metals,Xl=rare earth elements)atomic clusters with the L12-type atomic arrangement in LPSOs has been widely accepted[6–15].The clusters arrange in the unit cell regularly with the Mg atoms filling in the rest positions.Kishida et al.[14]calculated the energy required to insert one additional atom i(i=Mg,Zn or Y)in the central site of each Zn6Y8atomic cluster and found a relationship of ΔEadd?Mg<ΔEadd?Y<ΔEadd?Zn<0.In addition,the experimentally determined homogeneity ranges of LPSOs always deviated from the ideal structural models[9,14,16].Considering the average atomic size of Zn and RE(Rare Earth),the simultaneous replacement of Zn and RE atoms by two Mg atoms would minimize the resultant local strains[9].Therefore,the LPSOs can tolerate a considerable degree of disorder at the Xs and Xl sites with statistical co-occupation by Mg.The degree of order and the non-stoichiometrical composition range of the LPSOs depend on the occupation of Mg at the Xs and Xl sites.For the first time,Kim et al.[10,58]applied a four-sublattice model to describe the LPSOs with different interstitial atoms in the Mg-Al-Gd system,while limited homogeneity ranges were considered during optimization.In the present work,we proposed a general thermodynamic model Mgx(Xs,Mg)6(Xl,Mg)8.With simpler lattices and fewer parameters,the crystal structure and solid solution features of the LPSOs can also be well reproduced.

    Table 3Optimized thermodynamic parameters of the Mg-Y-Zn system in this worka.

    Fig.1 shows the correlations between the general model(successfully applied in ternary Mg–Y–Zn and Mg–Y–Ni systems)proposed in this work and the crystal structures(Xs6Xl8-type L12clusters)[6–15]and homogeneity ranges[9,14,16]of the LPSOs.Different types of LPSOs can be distinguished by a varying number of internal Mg layers,which has 1,3 or 2 sub-layers for 10H,14H and 18R,respectively.The structural feature results in different amounts of Mg atoms.We can thermodynamically describe different LPSOs by controlling the value of x while considering the L12cluster occupied by the Mg atom in the central site[14].In detail,for the common stable LPSOs,the values of x are 47,71,35,59 or 83 for 10H,14H,12R,18R and 24R,respectively.This model can not only reflect the crystal structures of different LPSOs,but also describe their homogeneity ranges reasonably.The Gibbs energy per mole atoms of LPSO phaseis described as follows:

    Table 4Results of XRD and EPMA in the Mg–Y–Zn system.

    in which,a and b are the parameters to be optimized in this work.The calculated enthalpies of formation for LPSOs can be a reference equivalent for value a.

    Table 2 shows the detailed crystal structure information and formation enthalpies of the stable ternary phases in the Mg–Y–Zn system.Using our model,the Mg–Y–Zn system has been optimized based on the reported experimental data[37,39],while different phase relations can be obtained due to the uncertainty of LPSOs.Three sublattices are involved in this general model,many parameters will be optimized with following strategy.There are four end-members with respect to the three-sublattice model.As presented in Eq.(2),the expressionis the Gibbs energy of the ideal stoi-LPSOs,w chiometry here the calculated formation enthalpies for LPSOs from first-principles calculations can be a reference equivalent for variable a.The other three end-members describe the solid solution ability in thermodynamics.Genmogeneity ranges carefully,while other interaction parameters are set to zero due to the little effect on the homogeneity ranges of LPSOs.

    Fig.2 is the calculated isothermal sections at 400 and 500℃ using the presently obtained thermodynamic description,which was verified by our following experiments.The corresponding parameters together with the thermodynamic models are listed in Table 3.Three LPSOs(10H,14H and 18R),modeled as Mgx(Zn,Mg)6(Y,Mg)8,are stable in the Mg–Y–Zn system.Five other ternary phases(τ1-τ5)are described as stable phases for the first time,leading to the agreement between our calculations and the newly published isothermal section at 500℃[39].It should be noted that the reported phase equilibriumτ1+W+10H[39]is presently assessed and optimized to beτ1+W+18R at 500℃ based on their X-ray diffraction(XRD)and EPMA results.The threephase equilibria(Mg)+H+I and(Mg)+H+W obtained in our calculations are in reasonable agreement with the observations at 400℃[37].Moreover,two new phase equilibria(Mg)+14H+18R and Mg24Y5+10H+τ5 related to LPSOs are obtained by the present calculations at 400 and 500℃.

    Fig.3.XRD patterns for the Mg–Y–Zn alloys at different states:(a)alloy Mg96Y3Zn1(at%),the 14H and 18R LPSOs can be indexed by the first diffraction peaks at 4.90 and 5.60℃orrespond to(002)and(001),respectively;(b)alloy Mg75Y15Zn10(at%),the 10H phase can be indexed by the first diffraction peaks at 6.90℃orrespond to(002).

    3.2.Experimental confirmation

    The actual chemical composition of the two alloys were measured to be Mg95.38Y3.58Zn1.04for the alloy Mg96Y3Zn1(at%)and Mg74.07Y15.59Zn10.34for the alloy Mg75Y15Zn10(at%),respectively.The determined compositions and identified phases together with the heat treatment procedures are given in Table 4.

    Fig.3 shows the XRD patterns at different temperatures for comparison.From the XRD patterns of the alloy Mg96Y3Zn1(at%)shown in Fig.3a,we can identify the(Mg)phase easily.The 14H and 18R LPSO phases can be indexed by the first diffraction peaks at 4.90 and 5.60℃orrespond to(002)and(001)[8,9,14,59].However,only 18R phase can be observed in the as-cast state of this alloy.Fig.3b presents the XRD patterns of the alloy Mg75Y15Zn10(at%)at four different states.Another LPSO phase 10H,instead of 14H and 18R,is indexed by the first diffraction peak at 6.90℃orrespond to(002),as reported by Yamasaki et al.[13].Another LPSO phase 10H,instead of 14H and 18R,is indexed by the first diffraction peak at 6.90℃orrespond to(002)[13].Other peaks indicate a phaseτ5,which is rarely reported in the literature except the work of Yamasaki et al.[13].

    Fig.4a–c shows the corresponding back scattered electron(BSE)images of the alloy Mg96Y3Zn1(at%).As we can see,we can first identify the(Mg)phase in this alloy,which presents as the primary phase(Fig.4a).After annealing at 400(Fig.4b)and 500℃(Fig.4c)for 30 and 10 days,the acicular 14H evolves inside the(Mg)matrix with different directions[6]and the phase relation(Mg)+14H+18R remains unchanged,which is completely distinct from the previous works[18,23].The corresponding BSE images of the alloy Mg75Y15Zn10(at%)at as-cast and annealed states are shown in Fig.4d–g.Fig.4d indicates that the bright phaseτ5 forms directly from the melts and presents as the primary phase,which is surrounded by 10H.Moreover,these phases are still stable after annealing,presenting a new three-phase equilibrium Mg24Y5+10H+τ5 at 400(Fig.4e),500(Fig.4f)and 525℃(Fig.4g)simultaneously.The experimental results give strong supports to our calculations.

    3.3.Applications

    Liquid phase reactions and solidification processes are of great importance to the enhancement of mechanical properties in engineering.Fig.5a is the predicted liquidus projection of the Mg–Y–Zn system together with the experiment data[37,60].Except for theτ4 phase,all the other ternary compounds(including three LPSOs:10H,14H,and 18R)have their own primary phase regions during solidification.The primary phase region of 14H does exist but is relatively limited,which is consistent with our previous observation[60].The predicted primary phase region of(Mg)is much larger than the previous calculations[18,23,24],but agrees well with the newly published experimental data[37,60].The primary phase region of I phase predicted in this work includes the alloy Mg67.5Y2.5Zn30(at%)[23],which is different from the former calculations[18,23,24].

    The magnification in Mg-rich region is shown in Fig.5b,where the primary phase region of(Mg)covers the blue and green dash-dotted lines.Different Zn/Y molar ratios divided by the dash-dotted lines lead to three solidification processes according to our prediction:(i)when the ratio is lower than 0.803,there is no 14H formed during solidification;(ii)when it is higher than 0.803,14H can be precipitated after 18R with appropriate cooling rate;(iii)when the ratio is higher than 7.957,the icosahedral I phase is formed and there is no LPSO.

    Fig.4.BSE images of the corresponding Mg–Y–Zn alloys in this work:(a)as-cast state for alloy Mg96Y3Zn1(at%),(Mg)presented as the primary phase;(b),(c)alloy Mg96Y3Zn1 annealed at 400 and 500℃ for 10 days,presenting a new three-phase equilibrium(Mg)+14H+18R,consistent with our calculations;(d)as-cast state for alloy Mg75Y15Zn10(at%),τ5 phase presented as the primary phase;(e)–(g)alloy Mg75Y15Zn10 annealed at 400 and 500℃ for 10 days and at 525℃ for 15 days,presenting a new three-phase equilibrium Mg24Y5+10H+τ5,consistent with the previous calculations.

    Gulliver–Scheil model is one of the frequently used approximations to analyze the complicated solidification process[61–65].The solidification paths of three representative alloys Mg80Y14Zn6(wt%),Mg80Y12Zn8(wt%)and Mg90Y1Zn9(at%)located in different regions are predicted in this work.Fig.6a presents the calculated solidification path of the alloy Mg80Y14Zn6(wt%),which precipitates(Mg),18R,and Mg24Y5sequentially.The 14H phase is formed in the solidification process of the alloy Mg80Y12Zn8(wt%),as shown in Fig.6b.In Fig.6c,the I phase instead of any LPSOs is precipitated for the alloy Mg90Y1Zn9(at%).Our predictions are consistent with the reported experimental results[23,37,60].Liang[60]reported that the as-cast alloys Mg79.4Y12Zn8Zr0.6and Mg79.4Y14Zn6Zr0.6(wt%)exhibited completely different microstructures.The 14H phase was observed in the former alloy,while in the latter one,Mg24Y5was formed after the solidification of 18R.The as-cast alloy Mg90Y1Zn9(at%)was reported to consist of the(Mg)matrix and the eutectic network of(Mg)and I,no LPSOs were observed[37].

    Fig.5.Predicted liquidus projection of the Mg–Y–Zn system with the applications of the general thermodynamic model for LPSOs:(a)liquidus projection and invariant reactions with experimental data[23,37,60];(b)local magnification in the Mg-rich region,blue and green dashed lines represent the divide of different solidification paths.

    Fig.6.Predicted non-equilibria solidification paths of the Mg–Y–Zn alloys at different Zn/Y ratio in the Mg-rich region:(a)alloy Mg80Y14Zn6(wt%),Zn/Y<0.803[60],(b)alloy Mg80Y12Zn8(wt%),Zn/Y>0.803[60],(c)alloy Mg90Y1Zn9(at%),Zn/Y>7.957[37].

    4.Conclusions

    In summary,we have proposed a general thermodynamic model Mgx(Xs,Mg)6(Xl,Mg)8for the LPSOs in magnesium alloys,which can not only reflect the crystal structures of LPSOs,but also describe their homogeneity ranges reasonably.It has been successfully applied to describe the Mg-Y-Zn system.Two new three-phase regions,(Mg)+14H+18R and Mg24Y5+10H+τ5,were predicted and confirmed by key experiments.Critical conditions during non-equilibrium solidification in Mg-rich region were predicted,which is consistent with the reported data.Our general model can be extended to multi-component system.More than one Xs elements results in a general model written as Mgx(Xs1,Xs2,…,Mg)6(Xl,Mg)8,which is well confirmed by our ongoing work on the quaternary Mg–Y–Zn–Ni system(including four LPSOs:10H,12R,14H,and 18R).Moreover,if there is more detailed and reliable experimental information about the solid solution mechanisms and the interstitial atoms in the central site of the L12clusters,this model can also be further extended.

    Declarations of Competing Interest

    None.

    Acknowledgments

    This work was supported by the National Key Research and Development Plan(No.2016YFB0701202).K.Chang acknowledges the CAS Pioneer Hundred Talents Program.Professor Zi-Kui Liu is greatly acknowledged for the discussion about the general thermodynamic model for LPSOs.

    免费观看无遮挡的男女| av国产精品久久久久影院| 韩国精品一区二区三区 | 丰满乱子伦码专区| 男女国产视频网站| 国产成人aa在线观看| 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 国产成人精品久久久久久| 日韩伦理黄色片| 欧美少妇被猛烈插入视频| 国产欧美另类精品又又久久亚洲欧美| 制服丝袜香蕉在线| 国产午夜精品一二区理论片| 99热这里只有是精品在线观看| 一二三四中文在线观看免费高清| 51国产日韩欧美| 一个人免费看片子| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 精品一区二区三区四区五区乱码 | 亚洲av在线观看美女高潮| 欧美+日韩+精品| 22中文网久久字幕| 国产亚洲午夜精品一区二区久久| 2021少妇久久久久久久久久久| 韩国高清视频一区二区三区| 久久这里有精品视频免费| 香蕉丝袜av| 五月伊人婷婷丁香| 免费观看性生交大片5| 亚洲精品第二区| 亚洲第一av免费看| 国产免费现黄频在线看| 日韩伦理黄色片| 黑人欧美特级aaaaaa片| 亚洲精品成人av观看孕妇| 久久国产精品男人的天堂亚洲 | 婷婷色综合www| 九九爱精品视频在线观看| 免费在线观看完整版高清| av网站免费在线观看视频| 十分钟在线观看高清视频www| av在线播放精品| 秋霞在线观看毛片| 尾随美女入室| 国产 一区精品| 国产精品欧美亚洲77777| 精品久久久精品久久久| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 亚洲精品日韩在线中文字幕| 多毛熟女@视频| 99久久综合免费| 国产一级毛片在线| 九草在线视频观看| 国产精品偷伦视频观看了| 国产男女内射视频| 少妇人妻精品综合一区二区| 在线观看免费视频网站a站| av.在线天堂| 亚洲精品日韩在线中文字幕| 久久久久人妻精品一区果冻| 国产69精品久久久久777片| 一区二区日韩欧美中文字幕 | 九九在线视频观看精品| 久久精品国产自在天天线| 成人漫画全彩无遮挡| 欧美xxxx性猛交bbbb| 亚洲国产看品久久| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲婷婷狠狠爱综合网| 精品亚洲成a人片在线观看| 亚洲经典国产精华液单| 亚洲国产精品专区欧美| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 另类亚洲欧美激情| 一级片免费观看大全| 亚洲国产毛片av蜜桃av| 亚洲av欧美aⅴ国产| 欧美精品国产亚洲| 汤姆久久久久久久影院中文字幕| 亚洲人成77777在线视频| 色94色欧美一区二区| 国产欧美亚洲国产| 欧美日本中文国产一区发布| 免费大片黄手机在线观看| 女人久久www免费人成看片| 九九在线视频观看精品| 天天操日日干夜夜撸| 最新的欧美精品一区二区| 亚洲熟女精品中文字幕| 草草在线视频免费看| av免费在线看不卡| av一本久久久久| 久久久国产一区二区| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 一级,二级,三级黄色视频| 国国产精品蜜臀av免费| 欧美丝袜亚洲另类| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 黄网站色视频无遮挡免费观看| 亚洲精华国产精华液的使用体验| 免费观看a级毛片全部| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 免费日韩欧美在线观看| 精品人妻在线不人妻| 丝袜人妻中文字幕| 青春草亚洲视频在线观看| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 欧美人与性动交α欧美精品济南到 | 免费看不卡的av| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 亚洲av在线观看美女高潮| 香蕉丝袜av| 国产成人精品婷婷| 蜜桃国产av成人99| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 国产精品一区www在线观看| 国产又色又爽无遮挡免| 又大又黄又爽视频免费| 五月天丁香电影| 久热这里只有精品99| 婷婷色麻豆天堂久久| 久久热在线av| 日日啪夜夜爽| 国产永久视频网站| 亚洲综合色网址| 王馨瑶露胸无遮挡在线观看| 日本91视频免费播放| 国产不卡av网站在线观看| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 久久久国产欧美日韩av| 免费人妻精品一区二区三区视频| 男男h啪啪无遮挡| 国产乱人偷精品视频| 永久网站在线| 精品少妇久久久久久888优播| 亚洲图色成人| 汤姆久久久久久久影院中文字幕| 大片免费播放器 马上看| 巨乳人妻的诱惑在线观看| 91午夜精品亚洲一区二区三区| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 18在线观看网站| 中文字幕av电影在线播放| 亚洲国产精品国产精品| 超色免费av| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 22中文网久久字幕| av国产精品久久久久影院| 丝袜喷水一区| 成人黄色视频免费在线看| 午夜老司机福利剧场| 成年女人在线观看亚洲视频| 久久精品国产自在天天线| 久久国内精品自在自线图片| 91精品三级在线观看| 色婷婷av一区二区三区视频| 欧美精品亚洲一区二区| 国产高清不卡午夜福利| 人人澡人人妻人| 日日啪夜夜爽| 亚洲熟女精品中文字幕| 黄色视频在线播放观看不卡| 大香蕉久久网| 日韩av免费高清视频| 欧美丝袜亚洲另类| 肉色欧美久久久久久久蜜桃| 国产亚洲最大av| 午夜精品国产一区二区电影| 久久免费观看电影| 好男人视频免费观看在线| 精品人妻在线不人妻| 精品国产乱码久久久久久小说| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 国产高清国产精品国产三级| 亚洲欧美色中文字幕在线| 在线观看免费日韩欧美大片| 亚洲精品日本国产第一区| 久久久久久久久久成人| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 精品久久久精品久久久| 日韩电影二区| 亚洲综合色惰| 一级黄片播放器| 90打野战视频偷拍视频| 狂野欧美激情性xxxx在线观看| 久久精品国产a三级三级三级| 美女大奶头黄色视频| 国精品久久久久久国模美| 日本欧美视频一区| 美女主播在线视频| 少妇人妻精品综合一区二区| 午夜福利在线观看免费完整高清在| 欧美性感艳星| 精品亚洲成国产av| 丝袜人妻中文字幕| 一区二区三区乱码不卡18| 国产精品人妻久久久久久| 国产精品秋霞免费鲁丝片| 我要看黄色一级片免费的| 乱人伦中国视频| 亚洲国产精品999| 大香蕉久久网| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| 久久99热6这里只有精品| 宅男免费午夜| 国产精品国产三级专区第一集| 免费av中文字幕在线| 最近2019中文字幕mv第一页| 秋霞伦理黄片| 视频在线观看一区二区三区| 激情五月婷婷亚洲| a级毛色黄片| 人人妻人人爽人人添夜夜欢视频| 欧美精品一区二区免费开放| 青青草视频在线视频观看| 欧美3d第一页| 黄色一级大片看看| 亚洲国产av新网站| 99久国产av精品国产电影| 成年动漫av网址| 最新中文字幕久久久久| 丰满饥渴人妻一区二区三| 精品国产露脸久久av麻豆| 免费大片18禁| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 中文字幕免费在线视频6| av网站免费在线观看视频| 久久午夜福利片| 亚洲精品一二三| 色吧在线观看| 亚洲美女搞黄在线观看| 国产精品一国产av| 一级黄片播放器| 精品熟女少妇av免费看| 91精品伊人久久大香线蕉| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 热re99久久精品国产66热6| 天堂中文最新版在线下载| 久久97久久精品| 久久久欧美国产精品| 日韩三级伦理在线观看| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 韩国高清视频一区二区三区| 午夜日本视频在线| 亚洲国产色片| 日本免费在线观看一区| 午夜老司机福利剧场| 日本黄色日本黄色录像| 视频中文字幕在线观看| 蜜桃在线观看..| 久久人人爽人人爽人人片va| 国产高清三级在线| 精品一区二区三区四区五区乱码 | 你懂的网址亚洲精品在线观看| 看免费av毛片| 久久精品国产亚洲av涩爱| 欧美国产精品一级二级三级| 国产淫语在线视频| 日韩中文字幕视频在线看片| 久久久国产欧美日韩av| 桃花免费在线播放| 久久精品国产a三级三级三级| 香蕉国产在线看| 丝袜脚勾引网站| 免费高清在线观看日韩| 丝袜美足系列| 国产白丝娇喘喷水9色精品| 国产综合精华液| 日韩欧美一区视频在线观看| 中文精品一卡2卡3卡4更新| av线在线观看网站| 少妇人妻 视频| 国产无遮挡羞羞视频在线观看| 国产精品 国内视频| 日韩欧美精品免费久久| 欧美最新免费一区二区三区| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| 一级毛片 在线播放| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 日韩 亚洲 欧美在线| 免费观看av网站的网址| 国产亚洲精品久久久com| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲精品美女久久av网站| 亚洲欧洲精品一区二区精品久久久 | 男女国产视频网站| 亚洲三级黄色毛片| 在线观看三级黄色| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 中文字幕免费在线视频6| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 亚洲一码二码三码区别大吗| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 国产成人免费无遮挡视频| 亚洲在久久综合| 久久影院123| 秋霞伦理黄片| 男女国产视频网站| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 蜜桃在线观看..| 免费av中文字幕在线| 免费人成在线观看视频色| 日韩大片免费观看网站| 欧美精品高潮呻吟av久久| 国产成人免费观看mmmm| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| videos熟女内射| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 日韩不卡一区二区三区视频在线| 乱人伦中国视频| 亚洲欧美成人综合另类久久久| 飞空精品影院首页| 欧美bdsm另类| av线在线观看网站| 99久久中文字幕三级久久日本| 久久精品国产亚洲av天美| 观看av在线不卡| 丝袜在线中文字幕| av福利片在线| 老熟女久久久| av免费在线看不卡| 免费少妇av软件| av又黄又爽大尺度在线免费看| videos熟女内射| av免费在线看不卡| 夜夜爽夜夜爽视频| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 免费黄频网站在线观看国产| 99久久中文字幕三级久久日本| 91在线精品国自产拍蜜月| 精品一品国产午夜福利视频| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 国产福利在线免费观看视频| 丝袜美足系列| 欧美激情国产日韩精品一区| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 69精品国产乱码久久久| 日韩一区二区三区影片| 亚洲欧美一区二区三区黑人 | 欧美日韩av久久| 最近中文字幕2019免费版| 亚洲精品av麻豆狂野| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 色视频在线一区二区三区| 捣出白浆h1v1| 久久ye,这里只有精品| 精品亚洲成国产av| 国产极品天堂在线| 高清av免费在线| 久久人人97超碰香蕉20202| 国产女主播在线喷水免费视频网站| 青青草视频在线视频观看| 亚洲国产看品久久| 少妇被粗大猛烈的视频| 18在线观看网站| 久久午夜综合久久蜜桃| 国产精品蜜桃在线观看| 免费观看av网站的网址| videossex国产| 亚洲经典国产精华液单| av在线播放精品| 国产午夜精品一二区理论片| 女人精品久久久久毛片| a级毛色黄片| 久久99一区二区三区| 国产成人免费无遮挡视频| 国产不卡av网站在线观看| 最近最新中文字幕免费大全7| 国产精品久久久久久精品古装| 男女免费视频国产| 国产成人a∨麻豆精品| 五月伊人婷婷丁香| 香蕉精品网在线| 最黄视频免费看| 免费黄网站久久成人精品| 一区二区av电影网| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久 | 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 国产男人的电影天堂91| 日韩在线高清观看一区二区三区| 国产av国产精品国产| 亚洲成色77777| 国产在视频线精品| 日韩一本色道免费dvd| 久久99热6这里只有精品| 欧美人与性动交α欧美精品济南到 | 国产精品久久久久久精品电影小说| 男女啪啪激烈高潮av片| 香蕉精品网在线| 精品国产一区二区久久| 欧美精品高潮呻吟av久久| 夫妻午夜视频| 国产一区二区三区综合在线观看 | 精品福利永久在线观看| 国产精品国产三级国产专区5o| 欧美日韩视频精品一区| 亚洲图色成人| 一边亲一边摸免费视频| 久久久久久久久久成人| 亚洲婷婷狠狠爱综合网| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 国产一区二区在线观看日韩| tube8黄色片| 国产男女内射视频| 午夜福利,免费看| 久久国产亚洲av麻豆专区| 欧美日韩综合久久久久久| 成年人午夜在线观看视频| 亚洲精品视频女| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 国产精品久久久av美女十八| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 国产老妇伦熟女老妇高清| 视频在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 插逼视频在线观看| 99久久综合免费| 亚洲第一区二区三区不卡| 黄色视频在线播放观看不卡| 观看av在线不卡| 老女人水多毛片| 有码 亚洲区| 亚洲久久久国产精品| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 久久99热6这里只有精品| 亚洲欧美成人综合另类久久久| 天天影视国产精品| 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 曰老女人黄片| 两性夫妻黄色片 | 国产 一区精品| 久久精品国产a三级三级三级| 国产国拍精品亚洲av在线观看| 国产精品不卡视频一区二区| 精品卡一卡二卡四卡免费| 国产女主播在线喷水免费视频网站| 韩国高清视频一区二区三区| 美女国产视频在线观看| 成人午夜精彩视频在线观看| 啦啦啦中文免费视频观看日本| 一级毛片黄色毛片免费观看视频| 人妻系列 视频| 国产欧美日韩综合在线一区二区| 夜夜爽夜夜爽视频| 免费大片18禁| 日本免费在线观看一区| 黄色 视频免费看| 女人精品久久久久毛片| kizo精华| 99九九在线精品视频| 日韩人妻精品一区2区三区| 亚洲国产欧美日韩在线播放| 国产精品人妻久久久影院| 日韩在线高清观看一区二区三区| 9191精品国产免费久久| 美女大奶头黄色视频| 国产精品蜜桃在线观看| 亚洲综合色网址| 91精品三级在线观看| 一区二区三区乱码不卡18| 1024视频免费在线观看| 久久精品国产亚洲av天美| 国产亚洲午夜精品一区二区久久| 国产成人精品福利久久| 亚洲精品日本国产第一区| 欧美日韩视频精品一区| 亚洲第一av免费看| 久久99热这里只频精品6学生| 久久国产精品大桥未久av| 欧美xxxx性猛交bbbb| 国产熟女午夜一区二区三区| 国产xxxxx性猛交| 色视频在线一区二区三区| 一级毛片黄色毛片免费观看视频| 国产亚洲一区二区精品| 一本色道久久久久久精品综合| 国产精品不卡视频一区二区| 午夜福利视频精品| 亚洲av电影在线进入| 午夜老司机福利剧场| 免费观看av网站的网址| 亚洲四区av| 日本黄大片高清| 色婷婷久久久亚洲欧美| 99国产综合亚洲精品| 9191精品国产免费久久| 肉色欧美久久久久久久蜜桃| 精品久久久精品久久久| 美女脱内裤让男人舔精品视频| 亚洲高清免费不卡视频| 97精品久久久久久久久久精品| 国产福利在线免费观看视频| 男人爽女人下面视频在线观看| 永久网站在线| 最近手机中文字幕大全| 肉色欧美久久久久久久蜜桃| 春色校园在线视频观看| 成年美女黄网站色视频大全免费| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 久久久亚洲精品成人影院| 人妻系列 视频| 国产熟女午夜一区二区三区| 自线自在国产av| 桃花免费在线播放| 亚洲欧美色中文字幕在线| 国产亚洲欧美精品永久| 久久精品aⅴ一区二区三区四区 | 久久久久国产网址| 男男h啪啪无遮挡| 全区人妻精品视频| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 激情视频va一区二区三区| 国产 一区精品| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品一区蜜桃| 精品午夜福利在线看| 国产av一区二区精品久久| 嫩草影院入口| av在线观看视频网站免费| 国产精品麻豆人妻色哟哟久久| xxxhd国产人妻xxx| 边亲边吃奶的免费视频| 久久精品国产亚洲av天美| 久久久久人妻精品一区果冻| 免费观看在线日韩| 蜜桃国产av成人99| 日韩av免费高清视频| 国产精品.久久久| 少妇熟女欧美另类| 日韩中文字幕视频在线看片| 大香蕉久久网| 秋霞在线观看毛片| 精品久久蜜臀av无| 五月开心婷婷网| 麻豆乱淫一区二区| xxx大片免费视频| 女性生殖器流出的白浆| 亚洲五月色婷婷综合| 桃花免费在线播放| 日本黄色日本黄色录像| 亚洲人与动物交配视频| av片东京热男人的天堂| 不卡视频在线观看欧美| 国产黄色视频一区二区在线观看| 亚洲综合色惰| 亚洲成av片中文字幕在线观看 | 黄色 视频免费看| 多毛熟女@视频| 在线天堂最新版资源| 欧美 日韩 精品 国产| 亚洲内射少妇av| 色网站视频免费| 妹子高潮喷水视频| 免费久久久久久久精品成人欧美视频 | 蜜臀久久99精品久久宅男| 日本91视频免费播放| 亚洲精品av麻豆狂野| 日产精品乱码卡一卡2卡三| 国产高清三级在线| 91精品国产国语对白视频| 国产黄色免费在线视频| 一级爰片在线观看| 男男h啪啪无遮挡| 两性夫妻黄色片 | 黑人高潮一二区| 久久久国产精品麻豆| 性色av一级|