• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Otolith Shape Analysis as a Tool to Identify Two Pacific Saury (Cololabis saira) Groups from a Mixed Stock in the High-Seas Fishing Ground

    2021-03-06 06:39:46LIWenjiaZHANGChiTIANYongjunLIUYangLIUShigangTIANHaoandCAOChang
    Journal of Ocean University of China 2021年2期

    LI Wenjia, ZHANG Chi, TIAN Yongjun, LIU Yang, LIU Shigang,TIAN Hao, and CAO Chang

    Otolith Shape Analysis as a Tool to Identify Two Pacific Saury () Groups from a Mixed Stock in the High-Seas Fishing Ground

    LI Wenjia1), #, ZHANG Chi1), #, TIAN Yongjun1), 2), 3), *, LIU Yang1), 2), LIU Shigang4),TIAN Hao1), and CAO Chang1)

    1),,266003,2),,266100,3),,266237,4)y,,,361005,

    ThePacific sauryis a commercially important pelagic species with wide distribution in the North Pacific Ocean. Previous studies identified two geographical groups by comparing the radius of otolith annual rings (ROA) of the fish collected during the pre-fishing season. Moreover, understanding the group composition in the mixed catch from the fishing ground is essential for sustainable exploitation of this species. Using samples collected during the fishing season (July–November) from 2016 to 2018, the potential of applying otolith shape analysis as a tool to identify these two mixed groups was tested in this research. Two otolith morphotypes thatbelong to the eastern group and western group were identified by K-means cluster analysis using Fourier coefficients and ROA. The high classification success of random forest further confirmed the effectiveness of otolith shape analysis. The western group accounted for the majority of catch in July and August at 160?E. With the passing of sampling time and fishing fleets moving westward, the proportion of eastern group gradually increased and finally reached more than 60% of the whole catch in November at 150°E. This result suggests that the eastern and western groups are well mixed during spawning migration. In addition, the temporal and spatial dynamics of their catch composition provide information for their migration route. This study is helpful for improving fisheries management and understanding the short-term stock fluctuation of Pacific saury.

    Pacific saury; otolith shape analysis; geographical group; radius of otolith annual ring

    1 Introduction

    The Pacific sauryis widely distributed in the North Pacific Ocean (Hubbs and Wisner, 1980) and caught commercially by Japan, Russia, Korea, China, and Vanuatu mainly in the western area of 165?E (Tseng, 2013). They migrate northward from the Oyashio (subarc- tic cold) waters to the Kuroshio (subtropical warm) wa- ters in May and July, moving through the Kuroshio-Oya- shio transitional waters, and then start southward migration between July and August (Kurita, 2004). Pacific sau- ry is characterized by short life span (2 years), high growthrate, and early maturity (Suyama, 2010; Suyama,2019), exhibiting marked population fluctuations (Tian,2003; Watanabe, 2003). The total landings fluctuatedover the last 20 years from 187898 tons in 1999 to 260178 tons in 2017 (The Food and Agriculture Organization: http:// www.fao.org/fishery/statistics/global-capture-production/ query/en, accessed 15 October, 2019). Despite the increase in total fisheries catches, the standing stock of Pacific sau-ry has declined recently (Tohoku National Fisheries Research Institute, Fisheries Research Agency TNFRI,2017). Thus stock assessment and management aiming to achieve the sustainable exploitation of Pacific saury resources are ur- gently needed. Therefore, a regional fisheries management organization, North Pacific Fisheries Commission (www. npfc.int), was established in 2015 to take timely actions.

    One essential part of fish stock assessment and fishe- ries management is to identify distinct populations that have unique demographic properties and life history pat- terns as well as divergent responses to fishery exploitation (Begg, 1999; Stephenson, 1999), and to manage them separately (Hutchinson, 2008). For Pacific saury, Suyama(2012a) found two spatially separated groups of one year old individuals through comparing the radius of oto- lith annual rings (ROA) of samples collected during pre- fishing season (June and July): one distributed in the west of 160?E with large ROAs (western group) and the other in the east of 170?E with small ROAs (eastern group). However, the two groups are mixed in the high-seas fish- ing ground during the fishing season, which makes them difficult to be distinguished by ROA.

    The different growth and migration patterns of distinct groups can result in different dynamics. The western group, a main stock captured by Japanese fleets, has declined re- cently (Miyamoto, 2019). However, this group is also captured along with the eastern group in the high-seas fishing ground, which makes management and allocation of fishing quota difficult because of lacking effective tools to separate these two groups.

    Due to the effects of both genetics and environment, fish with different life histories often vary in otolith morphol- ogy (Vignon, 2012). This variation has led to the deve- lopment and wide application of otolith shape analysis as an ideal tool to identify groups of fish that may have been spatially or temporally discrete at some stages in their life history (Stransky, 2008; Agüera and Brophy, 2011; Bacha, 2014; Keating, 2014; Chi, 2016). If the separated habitats for the two groups of the Pacific saury during the first year result in differences in ROAs, it could also cause differences in otolith shape. Such dif- ferences could last during spawning migration because of the different environmental conditions they experienced, which thus allow the quantification of group composition in the fishing ground. In this study, we tested the potential of using otolith shape analysis combined with ROAs to identify the two groups of one year old Pacific saury. The aims of this study were 1) to separate the two groups and quantify the spatial and temporal dynamics of group com- position of Pacific saury in the fishing ground; and 2) to provide information on the timing of migration to facili- tate sustainable fisheries management.

    2 Materials and Methods

    2.1 Sampling

    Pacific saury were randomly sampled from commercial catch (using stick-held net) in the fishing ground of high- seas (147.7?–163.1?E, 37.8?–47.6?N) during the fishing sea- son (July–November) from 2016 to 2018 with the vessels of Qingdao Zhongtai Oceanic Fishery Co., Ltd., China. Fishsamples were frozen on board. After being transported to the laboratory, all fish samples were measured by knoblength and weighted. Otoliths were extracted, washed with ultrapure water, air-dried, and then stored in plastic tubes. The left undamaged otolith of each individual was placed on glass slides and photographed using a micrographic sys- tem (Olympus BX53 and DP74) at a magnification of 40. For Fourier analysis, the otoliths were placed along the sul- cus side, facing down and rostrumsresting horizontally to the left. Polarized light was used to produce high-contrast images and to enhance the clarity of translucent zones, where otoliths were bright objects on a black background.

    All animal experiments were conducted in accordance with the guidelines and approval of the respective Animal Research and Ethics Committees of Ocean University of China (Permit Number: 20141201. http://www.gov.cn/gong bao/ content/2011/content_1860757.htm). The studies did not involve endangered or protected species.

    2.2 Radius of Annual Ring Measurement and Otolith Shape Analysis

    Only one year old individuals were selected for subse- quent analysis based on the otolith classification method recommended by Suyama(2009) to exclude age-re- lated variability in otolith shape. Only the otoliths enclosed by a broad translucent area (type II) or containing a com- plete hyaline zone within the otolith (type III) were select- ed.

    The ROA of each selected otolith, which is defined as the distance from the otolith core to the inner edge of the first annual ring (Suyama, 2012b), was measured withand recorded. Then, the images were analyzed us- ing the R package ‘’ specifically designed for oto- lith shape analysis (Libungan and Pálsson, 2014). This package ‘’ has built-in functions that allow users toextract the otolith outlines from images, visualize the mean shape, smooth the outline by eliminating pixel noise, and transform the outlines into independent coefficients using either normalized elliptic Fourier or discrete wavelet. El- liptic Fourier analysis was chosen and 48 normalized el- liptic Fourier coefficients were produced for each otolith. The first three coefficients were degenerated and constant for all outlines and thus were omitted, leaving 45 (48?3=45) normalized elliptic Fourier coefficients left.

    2.3 Statistical Analysis

    Samples were identified according to sampling time and location to demonstrate the spatial and temporal changes of group compositions (Table 1). K-means cluster analy- sis was carried out on the Fourier coefficients and ROAs. This method allows a priori assumptions on the number of clusters to compute, and two morphotypes were speci- fied based on a previous study (Suyama, 2012b). Then, the algorithm estimates iteratively the cluster means and assigns each case to its respective cluster until the sum of squares of the assigned cluster centers is minimized. Clus-ter was performed for each year respectively to exclude po-tential effects of year-class shape differences. ROA fre- quency distribution histograms and Gauss fitting curves ofthe clustered groups in three years were plotted using OriginPro 9.1. Random forest was also used to compare the otolith shapes of the clustered groups. Out-of-bag er- ror was estimated internally in the model runs, which is conceptually similar to cross-validation, and used to esti- mate classification success (Breiman, 2001).

    3 Results

    K-means cluster dendrograms identified two otolith mor- photypes (Fig.1). The ROA cluster centers of Morphotype I were 0.5173778, 0.52516270, and 0.5283049 in the three years, respectively, whereas those of Morphotype II were 0.6084395, 0.6296290, and 0.6033788. The ROA frequen- cy distribution histograms and Gauss fitting curves of the two clusters across the three years showed consistent pat- terns with a smaller ROA of Morphotype Ithan Morpho- type II (Fig.2). The average contours of the two morpho- types also showed high consistency across the three years (Fig.3). The major differences lie on the dorsal and ven- tral margins, namely, the otolith shape of the large ROA group (Morphotype II) is smaller and slender than that of the small ROA group.

    Table 1 Collection records of Pacific saury (Cololabis saira) samples used in the analysis

    Notes: N, sample size; KnL, knob length.

    Fig.1 Cluster dendrograms of Pacific Saury collected in (A) 2016, (B) 2017, and (C) 2018.

    Fig.2 Frequency distribution histograms and Gauss fitting curves of ROA from samples collected in (A) 2016, (B) 2017, and (C) 2018.

    Fig.3 Recreated average contours of the two otolith morphotypes collected in (A) 2016, (B) 2017, and (C) 2018.

    The spatial and temporal distribution patterns of Pacific saury showed that the two groups were well mixed from July to November in the three years. In the similar longi- tude (150?E in 2016, Fig.4), the proportion of individuals from Morphotype Igradually increased with prolonged sam-pling time. Meanwhile, individuals from Morphotype I ac- counted for a large proportion in the west sampling loca- tions in September 2017 (Fig.4). With the passing of sam- pling time and the westward movement of the fleets, the proportion of Morphotype I generally increased, except in August 2016 (Fig.4).

    Random forest showed high classification success (ran- ging from 86% to 98%) in assigning individuals to their clustered group (Table 2).

    Fig.4 Distribution of two groups in sampling areas in (A) 2016, (B) 2017, and (C) 2018. The blue square represents Morphotype I, and the orange square represents Morphotype II. The beginning of the long black arrows in (C) indicates the actual positions of the sampling stations.

    Table 2 Classification results of random forest between the two identified otolith morphotypes

    4 Discussion

    In this study, otolith shape analysis identified two groups of one year old Pacific saury that were captured from the high-seas fishing ground. The high classification success of random forest further supports the existence of the two groups. Previous studies (Suyama, 2012b; Miyamo- to, 2019) reported that fishes with small ROAs (<0.54mm) and large otolith (Morphotype I) were from east of 170?E (eastern group), whereas individuals with large ROAs (>0.6mm) and small otolith (Morphotype II) ori- ginated from west of 160?E (western group). The fish sam- ples were collected with a small space coveragefrom an assemblage of fish during their migration; therefore, the result may merely provide a ‘snapshot’ of the temporal and spatial distribution of the two groups. However, the re- vealed distribution trend is consistent with the previous observation (Miyamoto., 2019). The western group accounted for the majority in July and August at about 160?E. With the passage of sampling times and westward movement of the fishing locations, the proportion of eastern group increased gradually except in August 2016 and finally reached more than 60% in November at about 150?E in these three years.

    Otolith shape is a species-specific mark that is deter- mined by the genetics of the stock; however, it can also change under the influences of ontogeny and environment (Vignon, 2012). Environmental factors such as tempera- ture (Chi, 2014; Keating, 2014), water depth (Lombarte and Castellón, 1991), salinity (Capoccioni, 2011), substrate type (Mérigot, 2007), diet (Gaglia- no and Mccormick, 2004), and hydrogeomorphic factors (Ding., 2019) affect otolith shape. The response of oto- lith shape to temperature and food availability is mediated by the effects of these variables on growth rate (Campana and Casselman, 1993; Hüssy, 2008). Pacific saury migratesbetween the Oyashio and Kuroshio waters and passes through the Kuroshio-Oyashio transition zone of complex oceanic structures (Watanabe, 1997; Liu, 2019). Moreover, migration is considered to be driven by water temperature and food resources (Huang, 2007; Tseng, 2014). Therefore, the variation in otolith shape might be attributed to the complex and changeable environmen- tal conditions during this long-distance migration. The ob- served otolith shape differences between the two groups might be ascribed to temperature, considering that hightemperature contributes to large sizes (Lombarte and Lleo- nart, 1993). Two dominant Pacific saury fishing grounds were recorded in the fishing season, and the temperature of eastern ground is higher than that of the western one (Tseng, 2011). The otolith shape differences might also ascribe to different water velocities, as Ding(2019) suggested that fast water flow coincides with long and slender otolith.Coincidently, westward velocities are highly correlated with the distribution and migration ofPacific saury (Miyamoto, 2019). Further understand- ing the origins of otolith shape variance and response to longitudinal environmental gradients will be the focus of future work.

    Using otolith shape analysis and ROA measurement, two groups of Pacific saury were identified in the high-seas fishing ground in this research. The one year old indivi- duals,which are winter cohort in the Kuroshio region, play a crucial role in the recruitment of this stock because of the stable high growth rates (Watanabe, 2003).Tian(2004) indicated that the decadal-scale varia-tion in Pacific saury abundance is strongly affected by ocea- nic region shifts in the Kuroshio region. However, the short- period fluctuation of saury abundance remains to be stud- ied, especially when inter-regional management is invol- ved. The result can provide information for stock assess- ment and for understanding the migration route of Pacific saury. As shown in this study, ROAs contribute to the most significant differences. Future studies will focus on early life information, such as retrospective analysis using oto- lith microstructure and microchemistry, which can build a baseline for separating the two groups and provide useful information on group origin and migration route.

    Acknowledgements

    We acknowledge the crew of Zhongtai Oceanic Fishery Co. for their great help in sample collection. We thank Dr. Caihong Fu from Pacific Biological Station, Fisheries and Oceans Canada for proof reading the article, and appreci- ate Prof. Yoshiro Watanabe from University of Tokyo for his valuable discussions and suggestions. This work was supported by the National Natural Science Foundation of China (No. 41930534) and the Fundamental Research Funds for the Central Universities to Ocean University of China (Nos. 201762015 and 201822027).

    Agüera, A., and Brophy, D., 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Medi- terranean stocks of Atlantic saury,(Walbaum)., 110 (3): 465-471, DOI: 10. 1016/j.fishres.2011.06.003.

    Bacha, M., Jemaa, S., Hamitouche, A., Rabhi, K., and Amara, R., 2014. Population structure of the European anchovy,, in the SW Mediterranean Sea, and the At- lantic Ocean: Evidence from otolith shape analysis., 71 (9): 2429-2435, DOI: 10.1093/icesj ms/fsu097.

    Begg, G. A., Friedland, K. D., and Pearce, J. B., 1999. Stock iden- tification and its role in stock assessment and fisheries man- agement: An overview., 43 (1-3): 1-8, DOI: 10.1016/S0165-7836(99)00062-4.

    Breiman, L., 2001. Random forests., 45 (1): 5-32, DOI: 10.1023/a:1010933404324.

    Campana, S. E., and Casselman, J. M., 1993. Stock discrimina- tion using otolith shape analysis., 50 (5): 1062-1083, DOI: 10.1139/ f93-123.

    Capoccioni, F., Costa, C., Aguzzi, J., Menesatti, P., Lombarte, A., and Ciccotti, E., 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel () local stocks., 397 (1): 1-7, DOI: 10.1016/j.jembe. 2012.11.011.

    Chi, Z., Ye, Z., Li, Z., Rong, W., Ren, Y., and Dou, S., 2016. Po- pulation structure of Japanese Spanish mackerelin the Bohai Sea, the Yellow Sea and the East China Sea: Evidence from random forests based on otolith fea-tures., 82 (2): 251-256, DOI: 10.1007/s12562- 016-0968-x.

    Chi, Z., Ye, Z., Rong, W., Ma, Q., and Li, Z., 2014. Investiga- ting the population structure of small yellow croaker () using internal and external features of oto- liths., 153: 41-47, DOI: 10.1016/j.fishres. 2013.12.012.

    Ding, L., Tao, J., Ding, C., Chen, L., Zhang, C., Xiang, Q., and Sun, J., 2019. Hydrogeomorphic factors drive differences in otolith morphology in fish from the Nu-Salween River., 28 (1): 132-140, DOI: 10.1111/eff. 12437.

    Gagliano, M., and Mccormick, M. I., 2004. Feeding history in- fluences otolith shape in tropical fish., 278 (43): 291-296, DOI: 10.3354/meps278291.

    Huang, W. B., Lo, N. C. H., Chiu, T. S., and Chen, C. S., 2007. Geographical distribution and abundance of Pacific saury,(Brevoort) (Scomberesocidae), fishing stocks in the Northwestern Pacific in relation to sea temperatures., 46 (6): 705-716.

    Hubbs, C. L., and Wisner, R. L., 1980. Revision of the sauries (Pis- ces, Scomberesocidae) with descriptions of two new genera and one new species., 77: 521-566.

    Hüssy, K., 2008. Otolith shape in juvenile cod (): Ontogenetic and environmental effects., 364 (1): 35-41, DOI: 10.1016/ j.jembe.2008.06.026.

    Hutchinson, W. F., 2008. The dangers of ignoring stock com- plexity in fishery management: The case of the North Sea cod., 4 (6): 693, DOI: 10.1098/rsbl.2008.0443.

    Keating, J. P., Brophy, D., Officer, R. A., and Mullins, E., 2014. Otolith shape analysis of blue whiting suggests a complex stock structure at their spawning grounds in the Northeast At- lantic., 157: 1-6, DOI: 10.1016/j.fishres. 2014.03.009.

    Kurita, Y., Nemoto, Y., Oozeki, Y., Hayashizaki, K. I., and Ida, H., 2004. Variations in patterns of daily changes in otolith in- crement widths of 0+ pacific saury,, off japan by hatch date in relation to the northward feeding migration during spring and summer., 13 (Sup- pl. 1): 54-62, DOI: 10.1111/j.1365-2419.2004.00312.x.

    Libungan, L. A., and Pálsson, S., 2014. ShapeR: An R package tostudy otolith shape variation among fish populations.,10 (3): e0121102, DOI: 10.1371/journal.pone.0121102.

    Liu, S., Liu, Y., Fu, C., Yana, L., Xu, Y., Wan, R., Li, J., and Tian, Y., 2019. Using novel spawning ground indices to analyze the effects of climate change on Pacific saury abundance., 191: 13-23, DOI: 10.1016/j.jmarsys.2018. 12.007.

    Lombarte, A., and Castellón, A., 1991. Interspecific and intra- specific otolith variability in the genusas deter- mined by image analysis., 69 (9): 2442-2449, DOI: 10.1139/z91-343.

    Lombarte, A., and Lleonart, J., 1993. Otolith size changes re- lated with body growth, habitat depth and temperature., 373 (3): 297-306, DOI: 10.1007/ BF00004637.

    Mérigot, B., Letourneur, Y., and Lecomte-Finiger, R., 2007. Cha- racterization of local populations of the common sole(Pisces, Soleidae) in the NW Mediterranean through oto- lith morphometrics and shape analysis., 151 (3): 997-1008, DOI: 10.1007/s00227-006-0549-0.

    Miyamoto, H., Suyama, S., Vijai, D., Kidokoro, H., Naya, M., Fu- ji, T., and Sakai, M., 2019. Predicting the timing of Pacific saury () immigration to Japanese fishing grounds: A new approach based on natural tags in otolith annual rings., 209: 167-177, DOI: 10.1016/j.fishres.2018. 09.016.

    Stephenson, R. L., 1999. Stock complexity in fisheries manage- ment: A perspective of emerging issues related to population sub-units., 43 (1-3): 247-249, DOI: 10. 1016/S0165-7836(99)00076-4.

    Stransky, C., Murta, A. G., Schlickeisen, J., and Zimmermann, C., 2008. Otolith shape analysis as a tool for stock separation of horse Mackerel () in the Northeast At- lantic and Mediterranean., 89 (2): 159-166, DOI: 10.1016/j.fishres.2007.09.017.

    Suyama, S., Kurita, Y., and Ueno, Y., 2010. Age structure of Pa- cific saurybased on observations of the hya- line zones in the otolith and length frequency distributions., 72 (4): 742-749, DOI: 10.1111/j.1444-2906. 2006.01213.x.

    Suyama, S., Nakagami, M., Naya, M., and Ueno, Y., 2012a. Com- parison of the growth of age-1 Pacific sauryin the Western and the Central North Pacific., 78 (2): 277-285, DOI: 10.1007/s12562-011-0459-z.

    Suyama, S., Nakagami, M., Naya, M., and Ueno, Y., 2012b. Mi- gration route of Pacific sauryinferred from the otolith hyaline zone., 78 (6): 1179-1186, DOI: 10.1007/s12562-012-0546-9.

    Suyama, S., Oshima, K., Nakagami, M., and Ueno, Y., 2009. Sea- sonal change in the relationship between otolith radius and body length in age-zero Pacific saury., 75 (2): 325-333, DOI: 10.1007/s12562-008-0039- z.

    Suyama, S., Ozawa, H., Shibata, Y., Fuji, T., Nakagami, M., and Shimizu, A., 2019. Geographical variation in spawning histo- ries of age-1 Pacific sauryin the North Pa- cific Ocean during June and July., 85: 495- 507, DOI: 10.1007/s12562-019-01308-0.

    Tian, Y. J., Akamine, T., and Suda, M., 2003. Variations in the abundance of Pacific saury () from the north- western Pacific in relation to oceanic-climate changes., 60 (2-3): 439-454, DOI: 10.1016/S0165-7836 (02)00143-1.

    Tian, Y. J., Ueno, Y., Suda, M., and Akamine, T., 2004. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtro- pical Pacific during the last half century., 52 (1-4): 235-257, DOI: 10.1016/j.jmarsys.2004.04. 004.

    Tohoku National Fisheries Research Institute, Fisheries Research Agency TNFRI, 2017.. Tohoku National Fisheries Research Institute, Shiogama, 229 pp (in Japanese).

    Tseng, C. T., Sun, C. L., Belkin, I. M., Yeh, S. Z., Kuo, C. L., and Liu, D. C., 2014. Sea surface temperature fronts affect dis- tribution of Pacific saury () in the Northwes- tern Pacific Ocean., 107: 15-21, DOI: 10.1016/j.dsr2.2014.06.001.

    Tseng, C. T., Sun, C. L., Yeh, S. Z., Chen, S. C., Su, W. C., and Liu, D. C., 2011. Influence of climate-driven sea surface tem- perature increase on potential habitats of the Pacific saury ()., 68 (6): 1105-1113, DOI: 10.1093/icesjms/fsr070.

    Tseng, C. T., Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z., Liu, D. C., and Su, W. C., 2013. Spatial and temporal variability of the Pacific saury () distribution in the northwes- tern Pacific Ocean., 70 (5): 991-999, DOI: 10.1093/icesjms/fss205.

    Vignon, M., 2012. Ontogenetic trajectories of otolith shape du- ring shift in habitat use: Interaction between otolith growth and environment., 420-421: 26-32, DOI: 10.1016/j.jembe.2012.03.021.

    Watanabe, Y., Kurita, Y., Noto, M., Oozeki, Y., and Kitagawa, D., 2003. Growth and survival of Pacific sauryin the Kuroshio-Oyashio transitional waters., 59 (4): 403-414, DOI: 10.1023/a:1025532430674.

    Watanabe, Y., Oozeki, Y., and Kitagawa, D., 1997. Larval para- meters determining preschooling juvenile production of Pa- cific saury () in the northwestern Pacific., 54 (5): 1067-1076, DOI: 10.1139/cjfas-54-5-1067.

    March 24, 2020;

    June 1, 2020;

    October 9, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    #The two authors contributed equally to this work.

    . E-mail: yjtian@ouc.edu.cn

    (Edited by Qiu Yantao)

    99精品久久久久人妻精品| 视频区图区小说| 亚洲精品自拍成人| 日韩中文字幕视频在线看片| 成人三级做爰电影| 中文字幕色久视频| 欧美日韩亚洲国产一区二区在线观看 | 伦理电影大哥的女人| 大香蕉久久成人网| 色综合欧美亚洲国产小说| 91精品国产国语对白视频| 丰满饥渴人妻一区二区三| 亚洲国产看品久久| 国产成人精品久久二区二区91 | 精品国产超薄肉色丝袜足j| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜制服| 一本色道久久久久久精品综合| 国产成人a∨麻豆精品| 一边摸一边抽搐一进一出视频| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 国产精品嫩草影院av在线观看| 人人妻,人人澡人人爽秒播 | 国产精品 国内视频| 国产精品亚洲av一区麻豆 | 亚洲精品aⅴ在线观看| 国产熟女午夜一区二区三区| 亚洲综合色网址| 咕卡用的链子| 精品亚洲乱码少妇综合久久| 免费观看人在逋| 亚洲国产av影院在线观看| 黄色怎么调成土黄色| 夜夜骑夜夜射夜夜干| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 亚洲国产成人一精品久久久| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 午夜福利在线免费观看网站| 亚洲伊人久久精品综合| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区精品视频观看| 黄色视频在线播放观看不卡| 国产精品99久久99久久久不卡 | 国产高清国产精品国产三级| 婷婷成人精品国产| 久久久久久久久久久免费av| 亚洲成国产人片在线观看| 咕卡用的链子| 久久婷婷青草| 91国产中文字幕| 久久久久人妻精品一区果冻| 亚洲三区欧美一区| 久久精品国产亚洲av涩爱| 久久精品亚洲av国产电影网| 丁香六月欧美| 国产亚洲av片在线观看秒播厂| 欧美最新免费一区二区三区| 亚洲国产欧美在线一区| 欧美日韩精品网址| 久久天堂一区二区三区四区| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 激情视频va一区二区三区| a级片在线免费高清观看视频| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的| 久久久久久久国产电影| 丝袜喷水一区| 久久鲁丝午夜福利片| 一级片免费观看大全| 日韩制服骚丝袜av| 在线观看国产h片| 高清不卡的av网站| 欧美国产精品va在线观看不卡| 中文字幕亚洲精品专区| 国产av精品麻豆| 少妇人妻 视频| 日日摸夜夜添夜夜爱| 亚洲专区中文字幕在线 | 日日爽夜夜爽网站| 免费黄网站久久成人精品| 国产伦理片在线播放av一区| 高清黄色对白视频在线免费看| 高清av免费在线| 久久久久精品性色| 久久亚洲国产成人精品v| 大香蕉久久成人网| 亚洲 欧美一区二区三区| 在线亚洲精品国产二区图片欧美| 欧美激情高清一区二区三区 | 免费看不卡的av| 18在线观看网站| 中国国产av一级| 亚洲精品在线美女| 国产精品一区二区在线观看99| 日韩一卡2卡3卡4卡2021年| 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| a级毛片在线看网站| 伦理电影免费视频| 超碰97精品在线观看| 亚洲国产日韩一区二区| 性少妇av在线| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲欧美精品综合一区二区三区| 日韩,欧美,国产一区二区三区| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 熟女少妇亚洲综合色aaa.| 最近2019中文字幕mv第一页| 熟女av电影| 欧美人与性动交α欧美精品济南到| 国精品久久久久久国模美| 亚洲精品一区蜜桃| 男女下面插进去视频免费观看| 黑人猛操日本美女一级片| 日韩中文字幕欧美一区二区 | 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 亚洲av成人不卡在线观看播放网 | 我的亚洲天堂| 欧美日韩精品网址| 免费少妇av软件| 欧美日韩一区二区视频在线观看视频在线| 夫妻午夜视频| 黄色 视频免费看| 国产成人精品在线电影| 亚洲成国产人片在线观看| 午夜激情av网站| 久久精品aⅴ一区二区三区四区| 性高湖久久久久久久久免费观看| 麻豆av在线久日| 爱豆传媒免费全集在线观看| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 十分钟在线观看高清视频www| 99久国产av精品国产电影| 欧美97在线视频| 1024视频免费在线观看| 亚洲国产欧美网| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 亚洲成人免费av在线播放| 满18在线观看网站| 9色porny在线观看| 一个人免费看片子| 又大又爽又粗| 丰满少妇做爰视频| 少妇被粗大的猛进出69影院| 国产麻豆69| 国产99久久九九免费精品| 丰满饥渴人妻一区二区三| 欧美在线黄色| 中文欧美无线码| 黄色怎么调成土黄色| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 日韩av免费高清视频| 久久久久精品性色| 青春草视频在线免费观看| 黄频高清免费视频| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 亚洲精品久久成人aⅴ小说| 国产精品无大码| 精品国产国语对白av| 久久婷婷青草| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 亚洲精品美女久久久久99蜜臀 | 久久青草综合色| 少妇精品久久久久久久| 如日韩欧美国产精品一区二区三区| 观看美女的网站| 久久久久久免费高清国产稀缺| 精品视频人人做人人爽| 满18在线观看网站| 亚洲av福利一区| 中文乱码字字幕精品一区二区三区| 国产成人午夜福利电影在线观看| 国产97色在线日韩免费| 在线免费观看不下载黄p国产| 五月开心婷婷网| 观看av在线不卡| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 成年女人毛片免费观看观看9 | 亚洲自偷自拍图片 自拍| 亚洲国产看品久久| 日韩一卡2卡3卡4卡2021年| 黄色视频在线播放观看不卡| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 卡戴珊不雅视频在线播放| 午夜免费观看性视频| 国产欧美日韩综合在线一区二区| 亚洲精品成人av观看孕妇| 午夜福利在线免费观看网站| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 久久久久久久国产电影| 国产精品成人在线| a 毛片基地| 成人免费观看视频高清| 国产不卡av网站在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇 在线观看| 成人亚洲欧美一区二区av| av天堂久久9| 国产日韩欧美亚洲二区| 国产精品成人在线| 亚洲欧美精品综合一区二区三区| 欧美最新免费一区二区三区| 免费观看性生交大片5| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 久久久久久久大尺度免费视频| 亚洲一码二码三码区别大吗| 9191精品国产免费久久| 精品人妻熟女毛片av久久网站| 各种免费的搞黄视频| 亚洲精品国产区一区二| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区久久| 亚洲中文av在线| 日韩av免费高清视频| 国产精品99久久99久久久不卡 | 人人澡人人妻人| 人人妻,人人澡人人爽秒播 | 色吧在线观看| 午夜精品国产一区二区电影| 久久99精品国语久久久| 国产精品免费视频内射| 在线看a的网站| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 中文字幕色久视频| 高清在线视频一区二区三区| 日本色播在线视频| 国产精品嫩草影院av在线观看| 亚洲国产精品999| 观看av在线不卡| 一二三四中文在线观看免费高清| 97碰自拍视频| 国产精品久久视频播放| 午夜成年电影在线免费观看| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 两个人免费观看高清视频| 欧美成狂野欧美在线观看| 国产精品国产高清国产av| 欧美老熟妇乱子伦牲交| 亚洲第一电影网av| 波多野结衣高清无吗| 黄片大片在线免费观看| 亚洲国产精品成人综合色| 亚洲精品国产色婷婷电影| 欧美成人午夜精品| 午夜福利欧美成人| 国产伦人伦偷精品视频| 多毛熟女@视频| 老司机靠b影院| 久久亚洲真实| 可以在线观看毛片的网站| 波多野结衣av一区二区av| 99香蕉大伊视频| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 久久影院123| 中文字幕人成人乱码亚洲影| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 1024香蕉在线观看| 国产欧美日韩综合在线一区二区| 久久精品亚洲熟妇少妇任你| 97人妻精品一区二区三区麻豆 | 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 亚洲欧洲精品一区二区精品久久久| www.自偷自拍.com| 十八禁人妻一区二区| 99国产精品99久久久久| avwww免费| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 757午夜福利合集在线观看| 日韩 欧美 亚洲 中文字幕| 国产色视频综合| 中文字幕精品免费在线观看视频| 免费av毛片视频| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 琪琪午夜伦伦电影理论片6080| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | 中亚洲国语对白在线视频| 国产片内射在线| 亚洲成人免费电影在线观看| 日本a在线网址| 亚洲av电影不卡..在线观看| ponron亚洲| 免费女性裸体啪啪无遮挡网站| 成人欧美大片| 精品人妻在线不人妻| 国产精品亚洲av一区麻豆| 又黄又粗又硬又大视频| 天堂√8在线中文| 国产亚洲欧美精品永久| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 999久久久国产精品视频| 电影成人av| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美三级三区| 中文字幕色久视频| 身体一侧抽搐| 免费人成视频x8x8入口观看| 人人澡人人妻人| 91麻豆精品激情在线观看国产| 三级毛片av免费| 国产精品1区2区在线观看.| 丝袜美腿诱惑在线| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区蜜桃| 国产熟女午夜一区二区三区| 久久国产精品影院| 一区二区三区精品91| 久热爱精品视频在线9| 露出奶头的视频| 国产精品电影一区二区三区| 国产精品,欧美在线| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 久久香蕉国产精品| www.精华液| 波多野结衣av一区二区av| 成人手机av| 久热爱精品视频在线9| or卡值多少钱| 欧美丝袜亚洲另类 | 日韩成人在线观看一区二区三区| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 成人手机av| 国产午夜福利久久久久久| 99riav亚洲国产免费| 色婷婷久久久亚洲欧美| 少妇裸体淫交视频免费看高清 | 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 此物有八面人人有两片| 99久久国产精品久久久| 亚洲精品中文字幕在线视频| 高清毛片免费观看视频网站| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 女人精品久久久久毛片| 亚洲全国av大片| 久久精品91无色码中文字幕| 99国产精品一区二区三区| 亚洲激情在线av| 别揉我奶头~嗯~啊~动态视频| 国产午夜福利久久久久久| 国产高清有码在线观看视频 | 亚洲国产欧美一区二区综合| 久久久久久久久中文| av天堂久久9| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 妹子高潮喷水视频| 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱 | 日韩 欧美 亚洲 中文字幕| tocl精华| 18禁观看日本| 99精品久久久久人妻精品| 国产欧美日韩一区二区三区在线| 真人一进一出gif抽搐免费| 国产高清视频在线播放一区| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美日韩在线播放| 大香蕉久久成人网| 亚洲欧美精品综合一区二区三区| 午夜福利视频1000在线观看 | 久久久久久久久久久久大奶| 99国产精品一区二区三区| 人成视频在线观看免费观看| 中文字幕av电影在线播放| 久久香蕉国产精品| 99精品在免费线老司机午夜| 天天添夜夜摸| 男男h啪啪无遮挡| 亚洲男人天堂网一区| 中文字幕久久专区| 99国产精品免费福利视频| 欧美最黄视频在线播放免费| 国产精品二区激情视频| 国产成人精品久久二区二区免费| 99国产精品免费福利视频| 一级毛片精品| 日韩三级视频一区二区三区| 成人欧美大片| 国产av精品麻豆| 一区二区三区国产精品乱码| 女生性感内裤真人,穿戴方法视频| 色av中文字幕| 亚洲欧美日韩无卡精品| 给我免费播放毛片高清在线观看| 欧美日韩精品网址| 国产三级黄色录像| 制服人妻中文乱码| 欧美日本中文国产一区发布| 老司机午夜福利在线观看视频| 侵犯人妻中文字幕一二三四区| 搡老妇女老女人老熟妇| 人妻丰满熟妇av一区二区三区| 日本欧美视频一区| 搡老妇女老女人老熟妇| 精品国产乱子伦一区二区三区| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| 午夜亚洲福利在线播放| 一边摸一边抽搐一进一出视频| 免费观看人在逋| 曰老女人黄片| 精品免费久久久久久久清纯| 又紧又爽又黄一区二区| 中文字幕人妻熟女乱码| 日本免费一区二区三区高清不卡 | 亚洲精品国产区一区二| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费 | 香蕉久久夜色| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 两个人看的免费小视频| 国产一区二区在线av高清观看| 人人澡人人妻人| 亚洲第一青青草原| 国产成人免费无遮挡视频| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 免费观看人在逋| 搞女人的毛片| 国产精品久久视频播放| 欧美成人午夜精品| x7x7x7水蜜桃| 国产精品香港三级国产av潘金莲| 黄色a级毛片大全视频| 天天添夜夜摸| 国产乱人伦免费视频| 制服诱惑二区| 男女午夜视频在线观看| 国产激情久久老熟女| 美女大奶头视频| 女人精品久久久久毛片| 丁香欧美五月| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 一级片免费观看大全| 久久久久久免费高清国产稀缺| 18禁黄网站禁片午夜丰满| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 老汉色av国产亚洲站长工具| 国产亚洲精品综合一区在线观看 | 亚洲精品一区av在线观看| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 亚洲欧美激情综合另类| 久久精品国产亚洲av香蕉五月| 日韩大尺度精品在线看网址 | 亚洲va日本ⅴa欧美va伊人久久| 午夜福利一区二区在线看| 高清在线国产一区| 国产一区二区在线av高清观看| 91精品国产国语对白视频| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 高清毛片免费观看视频网站| 亚洲中文字幕一区二区三区有码在线看 | 久久热在线av| 国产精品,欧美在线| 国产日韩一区二区三区精品不卡| 国产三级在线视频| 制服诱惑二区| 精品福利观看| 国产精品av久久久久免费| 午夜免费鲁丝| 国产91精品成人一区二区三区| 看片在线看免费视频| 成人亚洲精品一区在线观看| 亚洲最大成人中文| 中亚洲国语对白在线视频| 大型黄色视频在线免费观看| 性少妇av在线| 午夜免费观看网址| 在线国产一区二区在线| 久久中文字幕人妻熟女| 久久香蕉精品热| 久久久国产成人免费| 欧美+亚洲+日韩+国产| 成熟少妇高潮喷水视频| 一进一出好大好爽视频| 91在线观看av| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| 中出人妻视频一区二区| 国产免费av片在线观看野外av| 国产亚洲欧美精品永久| 亚洲,欧美精品.| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 国产精品永久免费网站| 国产真人三级小视频在线观看| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 欧美性长视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产免费男女视频| 女性生殖器流出的白浆| 看免费av毛片| 亚洲一码二码三码区别大吗| 国产精品亚洲一级av第二区| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| 国产av一区在线观看免费| 国产成人精品在线电影| 一本大道久久a久久精品| 亚洲成av人片免费观看| 国产欧美日韩一区二区三区在线| av片东京热男人的天堂| 日本免费一区二区三区高清不卡 | 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 成年版毛片免费区| 51午夜福利影视在线观看| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 日韩 欧美 亚洲 中文字幕| 黄色毛片三级朝国网站| 久久中文字幕人妻熟女| 亚洲精品国产区一区二| 成熟少妇高潮喷水视频| 88av欧美| 女性被躁到高潮视频| 中国美女看黄片| 涩涩av久久男人的天堂| 国产精品亚洲av一区麻豆| 亚洲精品美女久久久久99蜜臀| 精品卡一卡二卡四卡免费| 这个男人来自地球电影免费观看| 午夜两性在线视频| 精品熟女少妇八av免费久了| 国产三级在线视频| 色综合欧美亚洲国产小说| 国产91精品成人一区二区三区| 欧美中文综合在线视频| 亚洲男人天堂网一区| 午夜久久久在线观看| 日本黄色视频三级网站网址| 国产色视频综合| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久香蕉精品热| 久9热在线精品视频| 欧美黑人精品巨大| 好看av亚洲va欧美ⅴa在| 国产精品 国内视频| 午夜影院日韩av| svipshipincom国产片| 欧美激情 高清一区二区三区| 我的亚洲天堂| 精品国产乱码久久久久久男人| 手机成人av网站| av超薄肉色丝袜交足视频| 麻豆成人av在线观看| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 精品欧美一区二区三区在线| 亚洲av日韩精品久久久久久密| 欧美 亚洲 国产 日韩一| 人人妻人人澡人人看| 国产一区在线观看成人免费| 亚洲国产欧美网|