• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Stable Carbon Isotopic Compositions of n-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    2021-03-05 14:13:30DANGTianxiangCAOYunyunandXINGLei
    Journal of Ocean University of China 2021年2期
    關(guān)鍵詞:順利進(jìn)行圖像識(shí)別電力設(shè)備

    DANG Tianxiang, CAO Yunyun, and XING Lei, *

    The Stable Carbon Isotopic Compositions of-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    DANG Tianxiang1), 2), CAO Yunyun1), 2), and XING Lei1), 2), *

    1) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China,Qingdao 266100, China 2) Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    Stable carbon isotopic compositions of-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain-alkanes in surface sediments are predominantly long-chainC27, C29, and C31types, with obvious odd carbon predominance. The δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰, respectively, within the range of-alkanes of C3terrestrial higher plants. This suggests that sedimentary-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain-alkanes indicates that C3terrestrial higher plants predominate (64%–79%), with angiosperms being the main contributors.The-alkane δ13C values indicate that mid-chain-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain-alkanes.

    biomarker; carbon isotopes;-alkanes; Bohai Sea; North Yellow Sea

    1 Introduction

    The Bohai Sea (BS) and Yellow Sea (YS) are typical semi-enclosed marginal shallow seas of China, with complex hydrodynamics and large inputs of land-based materials. The annual organic carbon flux from the Yellow River and other rivers to the YS and BS is (1210 ± 240) × 104ton (t) yr?1, accounting for 79% of all organic carbon entering these seas (Liu., 2015a), while atmospheric deposition contributes < 2% (Qiao., 2017). In addition, the Yellow Sea Warm Current (YSWC) transports about 106tyr?1of Yangtze River sediments to the North Yellow Sea (NYS) (Gao., 1996). The tracing of sedi- mentary organic matter (SOM) sources improves understanding of the organic matter cycle in aquatic environments (Hedges., 1997). SOM is a complex mixture of marine and terrestrial organic compounds, and it is difficult to quantitatively distinguish its sources at the edge of the continental shelf. Normal (-) alkanes are commonly applied as biomarkers given their widespread occurrence in marine and terrestrial environments, and can be preserved in marine sediments. Compositions and distributions of-alkanes from different biological sources are generally different. In addition, compared with fatty acids and alkanols, structure of-alkanes is relatively stable and has strong anti-degradation ability (Mead, 2005). Previous studies have shown that- alkanes may be effective in characterizing sources of SOM in coastal marine systems (Xing., 2011; Wang., 2013). Long-chain-alkanes derived from terrestrial higher plants are most abundant in C27, C29, and C31-alkanes (Bray and Evans, 1961). The freshwater and marine non-emergent macrophytes and sphagnum mosses are enriched in mid-chain-alkanes (Pancost, 2002; Mead, 2005; Mügler, 2008; Bush and Mc- Inerney, 2013). Short-chain-alkanes with odd carbon predominance such as C17-alkane are generally considered to be derived from aquatic algae and photosynthetic bacteria (Meyers and Ishiwatari, 1993; Silliman and Schelske, 2003; Liu, 2012). Additionally, petroleum-derived hydrocarbons also contribute short-chain-alkanes, with no obvious odd/even predominance (Hos- tettler, 1999). The long-chain (≥C24)-alkanes have clear odd carbon-number predominance in the NYS, indicating predominant input of terrestrial higher plant material (Lu., 2011). Analyses of-alkanes in sediments of the Yellow River Estuary indicate that SOM originates mainly from terrigenous inputs, while marine microorganisms contribute to short-chain (C12–C22)-al- kanes offshore (Wang., 2018). Compositional analysis of-alkanes in surface sediments of the central South Yellow Sea (SYS) indicates that SOM is derived mainly from terrestrial higher plant input from the modern and old Yellow rivers, with the contribution of herbaceous to woody plants is comparable (Zhang., 2014).

    Similar chemical-alkane compositions have been found in different types of organisms, which may confuse their interpretation (Ficken., 2000; Mead., 2005; Sikes., 2009). However, stable carbon isotopic com- positions of individual-alkanes from different sources in marine sediments are generally distinctive and may therefore constrain their sources (Hayes., 1990; Mead., 2005; Ankit., 2017), with-alkane com- positions and stable carbon isotopic characteristics together having been used to identify SOM sources (Eg- linton, 1969; Jeng and Huh, 2008; Hu., 2013). Previous studies have shown that stable carbon isotopic compositions of long-chain-alkanes in surface soils of eastern China can be used as an indicator of C3/C4plant proportions in overlying vegetation (Rao., 2008). The analysis of long-chain-alkanes and their stable carbon isotopic compositions in sediments of Qinghai Lake indicates that δ13C values of C31-alkanes are consistent with those of modern land plants around the lake, and can therefore be used as a reliable tracer of C3/C4compositions of terrestrial vegetation (Liu., 2015b). A recent study found that δ13C values of organic matter indicate that terrestrial organic carbon from the Yellow River accumulates mainly at the river mouth and in two muddy areas around it (Sun., 2018a).

    Until now, little has been known of the spatial distribution of-alkane stable carbon isotopes in sediments of the BS and NYS. The aim of this study was to elucidate the stable carbon isotopic composition of SOM-alkanes and the sources of-alkanes in surface sediments of the BS and NYS.

    2 Study Area and Methods

    2.1 Study Area

    The BS is a shallow, semi-enclosed epicontinental sea. About 90% of its sediment input is supplied by the surrounding rivers, especially the Yellow River. The YS is a shallow, semi-enclosed, continental margin West Pacific sea, with an area of 400,000 km2and an average water depth of 44 m, joining the BS in the north and the East China Sea in the south. The YS is divided into southern and northern parts by the Shandong and Korean peninsulas. The overall topography of the NYS seabed is inclined southward. Water depths in the BS and NYS are generally < 60m. In the study area, surface currents include coastal currents and the northwestward YSWC (Fig.1). The YSWC is a branch of the Tsushima Current with warm and saline water. There is no major direct local riverine input to the YS although, over time, fine-grained riverine sediment can be resuspended and transported from the BS to the YS by coastal currents. Analyses of sediment sources indicate that fine-grained sediments within the NYS originate mainly in the modern and old Yellow Rivers (Alexander., 1991; Lim., 2007). From 1976 to 2005, runoff and sediments from the Yellow River averaged 140.36×108m3yr?1and 3.31×108tyr?1, respectively (Cui and Li, 2011), with most sedimentary materials being deposited in front edge of the delta and estuary, and finer grained sediment transported to the coastal and shelf areas outside the Yellow River estuary. Muddy sediments along the north coast of Shandong Peninsula are considered to be directly and indirectly from the Yellow River (Yang and Liu, 2007). In addition to riverine input, coastal erosion from the old Yellow River Delta also contributes to sediments (Hu., 1998).

    Fig.1 Sampling sites and surface currents in the BS and NYS. BSCC, Bohai Sea Coastal Current; SDCC, Shandong Coastal Current; YSCC, Yellow Sea Coastal Current; YSWC, Yellow Sea Warm Current; LDCC, Liaodong Peninsula Coastal Current. Blocks represent the sites. Shading indicates the muddy areas.

    2.2 Samples

    Surface sediments (0–3cm depth) were collected from 23 sites in the BS and NYS using a box corer deployed fromduring a cruise sponsored by the National Natural Science Foundation of China (NSFC) in June 2011 (Fig.1). Sediment samples were wrapped in aluminum foil and stored at ?20℃ until analysis.

    2.3 Analytical Methods

    2.3.1 Lipid extraction and purification of-alkanes

    Freeze-dried, powdered, and homogenized sediment samples were extracted four times with dichloromethane/ methanol (DCM/MeOH; 3:1, v/v) with ultrasonication (15min each time), after adding internal standards containingC24D50. Extracts of the samples were dried in a N2stream and hydrolyzed with 6% KOH in MeOH. Non- polar fractions containing-alkanes were separated using activated silica gel column chromatography with elution by-hexane, anddried in a N2stream.

    To accurately measure the δ13C values of individual-alkanes,-alkanes need to be further purified. Zeolite molecular sieve is a commonly used and high recovery method for-alkanes purification. The extracted-alkanes were transferred to a columnwith AgNO3-Silica gel and molecular sieve, and then eluted with-hexane to ensure the components of the inner wall of the AgNO3- Silica gel glass column were completely transferred into the molecular sieve. After elution of about 1.5mL, the upper AgNO3-Silica gel column was removed and the molecular sieve column was baked in an oven at 40℃ for >12h. Subsequently, the zeolite power was transferred to a 10mL Teflon bottle for digestion with HF to release-alkanes. A preheating Pasteur column (6mm, i.d.×2cm) filled with Na2SO4was used to remove residual HF before the-alkanes were extracted with-hexane (four times) and then was dried in a gentle N2stream pending instrumental analyses. The average recovery rate of long- chain (≥C26), mid-chain (C21–C25), short-chain(C15–C20)-alkanes in all samples was 63%, 53%, 57%, respectively.

    2.3.2-alkanes analysis

    The-alkane compositions were determined by an Agi- lent 6890N gas chromatography, with chromatographic separation on an HP-1 capillary column (50 m ×0.32mmi.d.× 0.17μmfilm thickness, J&W Scientific) using H2as a carrier gas (1.2mLmin?1). Samples were injected in splitless mode with an injector temperature of 300℃. Oven temperature was programmed from 80℃ to 200℃ at 25℃ min?1, 200℃ to 250℃ at 3℃min?1, 250℃ to 300℃ at 1.8℃min?1,300 to 310℃at 5℃min?1, and holding at 310℃ for 5min. Quantification of compounds was performed by peak area integration in FID GC (Agilent 6890N) relative to the internal standards. The average relative standard deviation in concentrations was <10%.

    The average chain length (ACL; Cranwell, 1987), the terrigenous/aquatic ratio (TAR; Bourbonniere and Meyers, 1996), the Pmar-aq(odd mid-chain alkanes/odd mid- and long-chain alkanes; Ficken, 2000; Mead, 2005) of-alkanes were calculated as follows:

    2.3.3 Stable carbon isotopic composition (δ13C) analysis

    Gas chromatography isotope ratio mass spectrometry (GC-IRMS; on an HP 6890 GC coupled with a Thermo Delta-V system.) was used to measure stable carbon isotopic compositions of-alkanes. Chromatographic separation was achieved using a DB-1MS capillary column (60m×0.32mmi.d.×0.25μm film thickness, J & W Scientific). The GC oven temperature was programmed from 60℃ to200℃ at 15℃min–1, 200℃ to 250℃ at 4℃min–1, 250℃ to 300℃ at 1.8℃min–1, 300 to310℃ at 5℃min–1, and holding at 310℃ for 5min. The authentic standard was analyzed under the same conditions after every seven samples. The standard deviation for duplicate analysis of the standard was 0.3‰. Isotopic ratios were expressed as δ13C values (per mil) relative to the Vienna Pee Dee Be- lemnite (VPDB).

    3 Results

    3.1 Composition of n-Alkanes and the Hydrocarbon Indices

    The GC-FID chromatograms of-alkanes showed that-alkaneswereeffectively purified after using the molecular sieve (Fig.2). Total-alkane contents (SC15–35) ranged from 456 to 3837ngg?1(average=1897ngg?1). The contents of long-chain-alkanes (SC25–35) ranged from 267 to 2826ngg?1(average=1300ngg?1). In addition, the average percentage of long-chain, mid-chain, short-chain-alkanes in samples was 58%, 27%, 14%, re- spectively. Furthermore, the total-alkane contents of samples from muddy areas (average = 2666ngg?1) were significantly higher than those from non-muddy areas (average=1683ngg–1). The ACL values varied between 26.1 and 28.9(Fig.4a). The values of TAR and Pmar-aqranged from 3.4 to 25.7,from 0.2 to 0.7 (Figs.4b, 4c), res- pectively.

    Fig.2 GC-FID chromatograms for n-alkanes of surface sediments (site B28): (a), Before purification; (b), After purification.

    3.2 δ13C Values of n-Alkanes in Surface Sediments

    Compound-specific average δ13C values of-alkanes in surface sediments were shown in Fig.3, with average individual values for C17–C31of ?30.1‰±0.5‰, ?28.7‰± 0.4‰, ?29.8‰±0.6‰, ?28.4‰±0.3‰, ?29.9‰±0.5‰, ?29.4‰ ±0.6‰, ?30.4‰±0.3‰, ?29.9‰±0.5‰, ?30.2‰±0.5‰, ?30.1‰±0.5‰, ?30.8‰±0.5‰, ?30.8‰±0.8‰, ?31.9‰±0.6‰, ?31.7‰±1.1‰, and ?32.1‰±1.0‰, respectively. In both the BS and NYS, δ13C values of mid-chain-alkanes (C21–C23) varied within a narrow range, while those of short- and long-chain-alkanes were more variable. Furthermore, for short- and mid-chain-alkanes, δ13C values of even-carbon-numbered cases were more positive than those of odd-carbon-numbered cases.

    Fig.3 Compound-specific average δ13C values for the individual n-alkanes (C17–C31) from 23 BS and NYS samples.

    4 Discussion

    4.1 Long-Chain n-Alkanes

    The contents of long-chain-alkanes were relatively high and exhibited a strong odd carbon predominance in C27, C29, and C31homologues (Fig.3), consistent with terrestrial higher plant sources. The ACL describes the average number of carbon atoms in odd carbon-alkanes in higher plants (Cranwell, 1987). The ACL values of BS and NYS surface sediments ranged from 26.1 to 28.9 (average = 27.5). ACL value of about 29 in sediments near the Yellow River estuary suggests an origin of terrestrial higher plants (Fig.4a). The relative contribution of terrestrial-alkanes to marine sediments can be assessed using the TAR index. TAR values of BS and NYS surface sediments ranged from 3.4 to 25.7, with an average value of 14.1 (Fig.4b). This indicates a predominance of terrigenous-alkanes input (Ankit., 2017). Furthermore, compositional analysis of-alkanes in surface sediments of the BS and NYS also indicates that long- chain-alkanes are derived mainly from terrestrial higher plant input (Cao,, 2018). Hence, Long-chain-al- kanes in the study areas were thus mainly derived from such plants.

    The δ13C values of long-chain-alkanes produced by C3and C4plants typically range from ?31.0‰ to ?39.0‰ and ?18.0‰ to ?25.0‰, respectively (Collister., 1994; Schefu?., 2003). Modern terrestrial higher plants from eastern China are characterized by-alkane δ13C values of ?21.9‰ to ?34.8‰, ?25.3‰ to ?36.1‰, and ?22.9‰ to ?36.7‰ for C27, C29, and C31components (Rao., 2008), consistent with our corresponding average δ13C values of ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰ (Fig.3), respectively, and indicating that long-chain-alkanes are mainly derived from terrigenous sources. Generally, odd-carbon-numbered long-chain- alkanes are somewhat13C-enriched than those of even- carbon-numbered long-chain-alkanes in terrestrial higher plants (Chikaraishi and Naraoka, 2003). However, our results showed δ13C values of even-carbon-numberedlong-chain-alkanes (C26–30) were more positive than those of odd-carbon-numbered long-chain-alkanes (C27–31) in the study area (Fig.3). This implies there may be different sources of even-carbon-numbered long-chain-alkanes. A previous study reported14C ages forC29+31alkanes (Δ14C = ?288‰ to ?612‰) of 2670 to 755014C yr, which differ markedly from those of strongly14C- depletedC26+28+30+32alkanes (Δ14C = ?700‰ to ?961‰) ages of 9600 to 2605014C yr for Yellow River suspended particulate matter, implying ancient organic carbon inputs (Tao., 2015). This may indicate that even-carbon- numbered long-chain-alkanes in the BS and NYS are derived from ancient organic carbon.

    Fig.4 Spatial distribution of n-alkane indices: (a), ACL; (b), TAR; (c), Pmar-aq and (d), C3plants contribution to n-alkanes and C3/C4 ratio in surface sediments, based on the end-member modeling of compound-specific δ13C values in the study area.

    Weighted mean average δ13C of long-chain-alkanes from sediment samples were determined to calculate the changes in biomass of C3and C4plants in historical periods (Kuang., 2013). A binaryend-member mixing model was used to estimate the relative contributions of long-chain-alkanes from C3and C4plants(Garcin., 2014), with δ13C values of ?36.0‰ and ?21.0‰ being used as end-members for these plants, respectively (Col- lister., 1994; Zhang., 2003). Calculations were performed as follows:

    = (δ13C27× C27+ δ13C29× C29+ δ13C31× C31)/( C27+ C29+ C31) = (?36.0‰) ×+ (?21.0‰) × (100% ?), (4)

    whereis the weighted mean average δ13C value of long-chain-alkanes, andis the C3contribution (%).

    End-member estimations for the BS and NYS indicated that terrestrial C3plants were dominant-alkane sources, with relative contributions of 64%–79% (Fig.4d).This is consistent with the predominance of C3plants in north China, with a previous study having shown that δ13C values of-alkanes in aerosols near the north China coast have terrestrial C3plant origins with the C4contribution being negligible (Guo., 2006).Moreover, soil organic matterδ13C values in a N–S section (34–52?N) through central and eastern Asia indicate that vegetation in the area comprises mainly C3plants (Feng., 2008). Records of δ13Cvalues in surface soils of northeast China indicate that the abundance of C4plants is relatively high in warm periods and almost exclusively C3plants exist in cold periods (Sun., 2018b). Previous studies have shown thatδ13C values of dominant C3plants in the Chinese Loess Plateau range from ?30.7‰ to ?22.6‰, with average value of 27.2‰ (Zheng and Shangguan, 2007) and ?27.1%±2.4‰ (=39; Liu., 2005). Both δ13C values of total organic carbon and long-chain-alkanesderived from terrestrial higher plants show minor variations among surface soil samples from northern China,indicating the major contributor is from local grasses with a uniform C3photosynthetic pathway (Rao., 2011). It is likely, therefore, that long-chain-alkanes in BS and NYS surface sediments are mainly derived from terrestrial higher plants, particularly C3plants.

    Furthermore, recent studies have also shown thatδ13C valuesof-alkanes in gymnosperms are heavier than those in angiosperms (Diefendorf., 2011; Lane, 2017; Zhao., 2018). And angiospermδ13C values generally decrease with increasing chain length of-alkanes, while gymnosperm values increase (Bush and McInerney, 2009).It is clear here that δ13C values of long-chain-alkanes decrease with increasing chain length (Fig.3). Average δ13Cvalues of C29and C31-alkanes are ?31.9%±0.6‰ and ?32.1%±1.0‰, respectively, similar to values for herbaceous plants in the modern Yellow River drainage basin (?31.1‰ to ?31.5‰ for C29-alkanes, and ?31.3‰ to ?32.6‰ for C31-alkanes in dust episode periods,Guo., 2006).This suggests that the contribution of C3angiosperms to the sedimentary long-chain-alkanes is greater. This is consistent with the predominance of angiosperms in the last glacial period and Holocene on the Chinese Loess Plateau (Li., 2016).

    4.2 Mid-Chain n-Alkanes

    C21, C23, and C25-alkanes are mainly contributed by aquatic plants. Previous studies have shown that theδ13C values of mid-chain-alkanes in aquatic emergent macro- phytes range from ?28.6‰to ?31.2‰ (Chikaraishi and Naraoka, 2003; Mead., 2005). Although non-emer- gent marine macrophytes can also produce mid-chain-alkanes, their δ13C values are relatively heavy, ranging from ?13.0‰ to ?22.0‰ (Ficken., 2000; Jaffé., 2001). In the NYS, there was little difference between stable carbon isotopic compositions of samples from muddy and non-muddy areas: average δ13C values of mid-chain-alkanes (C21, C23, and C25) in non-muddy areas were ?29.8‰, ?30.3‰, and ?30.2‰, respectively, and those in muddy areas were ?29.7‰, ?30.3‰, and ?30.2‰, respectively. This also applied to the BS, where average δ13C values were ?29.7‰, ?30.4‰, and ?30.2‰, respectively, indicating that stable carbon isotope compositions of mid-chain-alkanes in the BS and NYS were similar. The narrow range of these values may be due to there being a common source for BS and NYS sediments, namely the Yellow River (Bi., 2010). The δ13C values of C21, C23, and C25-alkanes fell within the range of values for the corresponding-alkanes in aquatic emergent macrophytes, with sediment mid-chain-alkanes in the study area thus being mainly derived from such plants. Furthermore, the Pmar-aq index provides a measure of the relative contributions of aquatic non-emergent/emergent plants and terrestrial vegetation, with values of <0.25 corresponding to terrigenous plants, 0.3–0.6 to aqua- tic emergent plants, and >0.6 to aquatic non-emergent macrophytes in coastal marine environments (Ficken, 2000; Mead, 2005). The Pmar-aq values ranged from 0.2 to 0.7 (average = 0.4) in the study area (Fig.4c). We concluded, therefore, that mid-chain-al- kanes were mainly derived from aquatic emergent macro- phytes in the BS and NYS.

    4.3 Short-Chain n-Alkanes

    Short-chain-alkanes are generally considered as being derived from microorganisms and marine algae. Those produced by marine planktonic algae are mainly C15, C17, and C19-alkanes with odd carbon predominance, while even-carbon-numbered short-chain-alka- nes (C16, C18,and C20) are derived from marine bacteria or petroleum hydrocarbons (Gogou., 2000; Wang and Fingas, 2006). Short-chain-alkanes in marine sediments are predominantly C17, indicating the major contribution of algae and photosynthetic bacteria (Han and Calvin, 1969), while even-carbon-numbered (C16–22)-alkanes in marine sediments are mainly attributable to non-photo- synthetic bacteria(Jeng and Huh, 2008). Most of sediments in the BS and NYS exhibited an even-carbon- number preference in the range of-C16to-C22(Fig.3), indicating that these short-chain-alkanes could be from non-photosynthetic bacterial sources. Thevalues of- C18/-C17can be used to compare the relative contributions of-alkanes from petroleum-derived-alkanes and natural-alkanes from algae and photosynthetic bacteria. Here, the calculated-C18/-C17values of surface sediments are higher than 1 at all stations, indicating that short-chain-alkanes are affected by petroleum pollution to some degree. Extremely depleted △14C values (?932‰ to ?979‰) for short-chain-alkanes (C16and C18) were found in BS and YS sediments, suggesting a predominant input from sedimentary rocks (organic carbon) or petroleum products(Tao., 2016). The average δ13C value of short-chain-alkanes, δ13C17, δ13C18, and δ13C19, is ?30.1%±0.5‰, ?28.7%±0.4‰, and ?29.8%±0.6‰, respectively (Fig.3). Previous studies show that the δ13CC17values of cyanobacteria vary from ?34.0‰ to ?36.0‰ (Kristen., 2010), while δ13C17and δ13C19values of petroleum hydrocarbons are about ?30.6‰ and ?31.0‰, respectively (Li., 2009). The average δ13C value of algae in Laizhou Bay is ?20.5‰ (Cai and Cai, 1993). Our results showed δ13C values of short-chain-alkanes were relatively lighter than those of algae, possibly due to biodegradation of bacteria and input of petroleum hydrocarbons or other sources.

    5 Conclusions

    The relative inputs of terrestrial and marine organic matter were assessed using-alkane. Terrigenous plants are the main source of-alkanes in BS and NYS sediments. Long-chain-alkanes in sediments were mostly derived from terrestrial sources with some contribution from biogenic and/or petroleum sources.The average δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8% ± 0.5‰, ?31.9% ± 0.6‰, and ?32.1% ± 1.0‰, respectively, within the range of-alkanes δ13C values of terrestrial C3plants. A hydrocarbon source distribution derived using a binary end-number mixing model based on δ13C values of long-chain-alkanes indicates that organic matter in BS and NYS sediments is mainly sourced from C3plants, particularly angiosperms. The relative contribution of C3plants decreases from estuary to ocean. δ13C values of mid-chain-alkanes in surface sediments indicate that mid-chain-alkanes are mainly of aquatic emergent macrophyte origin. δ13C17, δ13C18and δ13C19values,-C18/-C17ratios indicate that short-chain-alkanes in BS and NYS sediments have complex sources including petroleum pollution and bacterial action.

    Acknowledgements

    This work was financially supported by the Ministry of Science and Technology of People’s Republic of China (No. 2016YFA0600904), and the National Natural Science Foundation of China (No. 41476058).

    Alexander, C. R., DeMaster, D. J., and Nittrouer, C. A., 1991. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea., 98: 51-72, https:// doi.org/10.1016/0025-3227(91)90035-3.

    Ankit, Y., Mishra, P. K., Kumar, P., Jha, D. K., Kumar, V. V., Ambili, V., and Anoop, A., 2017. Molecular distribution and carbon isotope of-alkanes from Ashtamudi Estuary, South India: Assessment of organic matter sources and paleo- climatic implications.,196: 62-70, https:// doi.org/10.1016/j.marchem.2017.08.002.

    Bi, N., Yang, Z., Wang, H., Hu, B., and Ji, Y., 2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period., 86: 352-362, https://doi.org/10.1016/j.ecss.2009.06.005.

    Bourbonniere, R. A., and Meyers, P. A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie., 41: 352-359, https://doi.org/10.4319/lo.1996.41.2.03 52.

    Bray, E. E., and Evans, E. D., 1961. Distribution of-paraffins as a clue to recognition of source beds.,22: 2-15, https://doi.org/10.1016/0016-7037 (61)90069-2.

    Bush, R. T., and McInerney, F. A., 2013. Leaf wax-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy., 117: 161-179, https://doi.org/10.1016/j.gca. 2013.04.016.

    Bush, R. T., and McInerney, F. A., 2009. Re-evaluating the isotopic divide between angiosperms and gymnosperms using-alkane δ13C values.Washing- ton D. C., 1-9.

    Cai, D., and Cai, A., 1993. The organic carbon isotope geo- chemistry study of Yellow River Mouth.–, 23 (10): 1105-1113, https://doi.org/10.1360/zb1993-23-10-1105.

    Cao, Y., Xing, L., Wang, X., and Zhao, M., 2018. Study on the indication of-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea., 48: 104-113, https://doi.org/10.16441/j.cnki. hdxb.20160341 (in Chinese with English abstract).

    Chikaraishi, Y., and Naraoka, H., 2003. Compound-specific δD- δ13C analyses of-alkanes extracted from terrestrial and aquatic plants., 63: 361-371, https://doi.org/ 10.1016/S0031-9422(02)00749-5.

    Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms., 21: 619-627, https://doi.org/10.1016/0146-63 80(94)90008-6.

    Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sedi- ments-II., 11: 513-527, https://doi. org/10.1016/0146-6380(87)90007-6.

    Cui, B. L., and Li, X. Y., 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005)., 127: 32-40, https://doi.org/10. 1016/j.geomorph.2010.12.001.

    Eglinton, G., 1969. Organicgeochemistry the organic chemist’s approach. In:.Eglinton, G., Murphy, M. T. J. eds., Springer, Berlin, Heidelberg, 20-73, https://doi. org/ 10.1007/978-3-642-87734-6_2.

    Feng, Z. D., Wang, L. X., Ji, Y. H., Guo, L. L., Lee, X. Q., and Dworkin, S. I., 2008. Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34?N to 52?N in central-east Asia., 257: 335-343, https://doi.org/10. 1016/j.palaeo.2007.10.026.

    Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G., 2000. An-alkane proxy for the sedimentary input of submerged/ floating freshwater aquatic macrophytes., 31: 745-749, https://doi.org/10.1016/S0146-6380(00)00 081-4.

    Gao, S., Park, Y. A., Zhao, Y. Y., and Qin, Y. S., 1996. Trans- port and resuspension of fine-grained sediments over the southeastern Yellow Sea.. Seoul National Uni- versity Seoul, Korea, 83-98.

    Garcin, Y., Schefu?, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J. M., Achoun- dong, G., and Sachse, D., 2014. Reconstructing C3and C4vegetation cover using-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa., 142: 482-500, https://doi.org/10.1016/j.gca.2014.07.004.

    Gogou, A., Bouloubassi, I., and Stephanou, E. G., 2000. Marine organic geochemistry of the eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments., 68: 265-282, https:// doi.org/10.1016/S0304-4203(99)00082-1

    Guo, Z., Li, J., Feng, J., Fang, M., and Yang, Z., 2006. Com- pound-specific carbon isotope compositions of individual long-chain-alkanes in severe Asian dust episodes in the North China coast in 2002., 51: 2133-2140, https://doi.org/10.1007/s11434-006-2071-7.

    Han, J., and Calvin, M., 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments., 64 (2): 436- 443, https://doi.org/10.1073/pnas.64.2.436.

    圖像識(shí)別是一個(gè)至關(guān)重要的環(huán)節(jié),在這個(gè)環(huán)節(jié)中包含著多個(gè)不同的步驟,每一個(gè)步驟對(duì)于識(shí)別的結(jié)果都有重要的影響,決定著電力設(shè)備檢測(cè)工作能否順利進(jìn)行下去。

    Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H., 1990. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes., 16: 1115-1128, https://doi.org/10.1016/0146- 6380(90)90147-R.

    Hedges, J. I., Keil, R. G., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean?, 27: 195-212, https://doi.org/10.1016/S0146-6380 (97)00066-1.

    Hostettler, F. D., Pereira, W. E., Kvenvolden, K. A., Van Geen, A., Luoma, S. N., Fuller, C. C., and Anima, R., 1999. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores., 64: 115-127, https://doi.org/10.1016/S03 04-4203(98)00088-7.

    Hu, L., Shi, X., Guo, Z., Wang, H., and Yang, Z., 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodyna- mic forcing., 335: 52-63, https://doi.org/10. 1016/j.margeo.2012.10.008.

    Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., and DiGuida, O. A., 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: A comparative, biomarker-based study., 32: 507-526, https://doi.org/10.1016/S0146-6380(00)00192-3.

    Jeng, W. L., and Huh, C. A., 2008. A comparison of sedimen- tary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough., 28: 582-592, https://doi.org/10.1016/j.csr.2007.11. 009.

    Kristen, I., Wilkes, H., Vieth, A., Zink, K. G., Plessen, B., Thorpe, J., Partridge, T. C., and Oberh?nsli, H., 2010. Bio- marker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: Evidence for deglacial wetness and early Holocene drought from South Africa., 44: 143-160, https://doi.org/10. 1007/s10933-009-9393-9.

    Kuang, H., Zhou, H., Hu, J., Yang, X., Peng, P., and Yang, H., 2013. Variations of-alkanes and compound specific carbon isotopes in sedments from Huguanyan Maar lake during the last glacial maximum and holoceneoptimum: Implications for paleovegetation., 33 (6): 1222-1233, https://doi.org/10.3969/j.issn.1001-7410.2013.06.18.

    Lane, C. S., 2017. Modern-alkane abundances and isotopic composition of vegetation in a gymnosperm-dominated ecosystem of the southeastern U.S. coastal plain.,105: 33-36, https://doi.org/10.1016/j.orggeo chem.2016.12.003.

    Li, Y., Xiong, Y., Yang, W., Xie, Y., Li, S., and Sun, Y., 2009. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills., 58: 114-117, https://doi.org/ 10.1016/j.marpolbul.2008.08.012.

    Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., and Jiang, W., 2016. Leaf wax-alkane distributions in Chinese loess since the Last Glacial Maximum and implications for paleo- climate., 399: 190-197, https://doi. org/10.1016/j.quaint.2015.04.029.

    Lim, D. I., Choi, J. Y., Jung, H. S., Rho, K. C., and Ahn, K. S., 2007. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas., 73: 145-159, https://doi.org/10.1016/j.pocean. 2007.02.004.

    Liu, J., Yu, Z., Zang, J., Sun, T., Zhao, C., and Ran, X., 2015a. Distribution and budget of organic carbon in the Bohai and Yellow Seas., 30: 564-578, https:// doi.org/10.11867/j.issn.1001-8166.2015.05.0564 (in Chinese with English abstract).

    Liu, L. Y., Wang, J. Z., Guan, Y. F., and Zeng, E. Y., 2012. Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments off China., 64: 1940-1946, https://doi.org/10.1016/j.marpolbul. 2012. 04.023.

    Liu, W., Ning, Y., An, Z., Wu, Z., Lu, H., and Cao, Y., 2005. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau., 48 (1): 93-99, https://doi.org/10.1360/02yd 0148.

    Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., and Leng, Q., 2015b. Carbon isotope composition of long chain leaf wax- alkanes in lake sediments: A dual indicator of paleoenviron- ment in the Qinghai-Tibet Plateau., 83-84: 190-201, https://doi.org/10.1016/j.orggeochem.2015. 03.017.

    Lu, X., Chen, Y., Huang, G., Liu, D., Tang, J., Li, J., and Zhang, G., 2011. Distribution and sources of lipid biomakers in surface sediments of the Yellow Sea and Bohai Sea., 20: 1117-1122, https://doi.org/ 10.16258/j.cnki.1674-5906.2011.z1.013.

    Mead, R., Xu, Y., Chong, J., and Jaffé, R., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of-alkanes.,36: 363-370. https://doi. org/10.1016/j.orggeochem.2004.10.003

    Meyers, P. A., and Ishiwatari, R., 1993. The early diagenesis of organic matter in lacustrine sediments,, Springer, 185-209. https://doi.org/10.1007/978-1-4615-2890- 6_8.

    Mügler, I., Sachse, D., Werner, M., Xu, B., Wu, G., Yao, T., and Gleixner, G., 2008. Effect of lake evaporation on δD va- lues of lacustrine n-alkanes: A comparison of Nam Co (Tibe- tan Plateau) and Holzmaar (Germany)., 39: 711-729, https://doi.org/10.1016/j.orggeochem. 2008.02.008.

    Pancost, R. D., Baas, M., Van Geel, B., and Sinninghe Damsté, J. S., 2002. Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog., 33: 675-690, https://doi.org/10.1016/S0146- 6380(02)00048-7.

    Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., Yang, G., Liu, Y., Yao, Z., and Liu, S., 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea., 390: 270-281, https://doi.org/10.1016/j. margeo.2017.06.004.

    Rao, Z., Jia, G., Zhu, Z., Wu, Y., and Zhang, J., 2008. Compara- tive study and significance on carbon isotopes of total organic matter and long-chain-alkanes in topsoil of eastern China., 53: 2077-2084.

    Rao, Z., Zhu, Z., Jia, G., Zhang, X., and Wang, S., 2011. Compound-specific hydrogen isotopes of long-chain-alka- nes extracted from topsoil under a grassland ecosystem in northern China., 54: 1902-1911, https://doi.org/10.1007/s11430-011-4252-8.

    Schefu?, E., Ratmeyer, V., Stuut, J. B. W., Jansen, J. H. F., and Sinninghe Damsté, J. S., 2003. Carbon isotope analyses of-alkanes in dust from the lower atmosphere over the central eastern Atlantic., 67: 1757-1767, https://doi.org/10.1016/S0016-7037(02)01414-X.

    Sikes, E. L., Uhle, M. E., Nodder, S. D., and Howard, M. E., 2009. Sources of organic matter in a coastal marine environ- ment: Evidence from-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand., 113: 149- 163, https://doi.org/10.1016/j.marchem.2008.12.003.

    Silliman, J. E., and Schelske, C. L., 2003. Saturated hydro- carbons in the sediments of Lake Apopka, Florida., 34: 253-260, https://doi.org/10.1016/S0146- 6380(02)00169-9.

    Sun, D., Tang, J., He, Y., Liao, W., and Sun, Y., 2018a. Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River Mouth, Northeast China.,118: 89-102, https:// doi.org/10.1016/j.orggeochem.2017.12.009.

    Sun, W., Zhang, E., Liu, E., Chang, J., Chen, R., and Shen, J., 2018b. Glacial-interglacial vegetation changes in Northeast China inferred from isotopic composition of pyrogenic carbon from Lake Xingkai sediments.,121: 80-88, https://doi.org/10.1016/j.orggeochem.2018.03.004.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2016. Diverse origins and pre-depositional histo- ries of organic matter in contemporary Chinese marginal sea sediments., 191: 70-88, https://doi.org/10.1016/j.gca.2016.07.019.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2015. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance.,414: 77-86, https://doi.org/10.1016/j.epsl.2015. 01.004.

    Wang, S., Liu, G., Yuan, Z., and Da, C., 2018.-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record., 150: 199-206, https://doi.org/10.1016/j. ecoenv.2017.12.016.

    Wang, Y., Liu, D., Richard, P., and Li, X., 2013. A geochemical record of environmental changes in sediments from Sishili Bay, northern Yellow Sea, China: Anthropogenic influence on organic matter sources and composition over the last 100 years.,77: 227-236, https://doi.org/ 10.1016/j.marpolbul.2013.10.001.

    Wang, Z., and Fingas, M., 2006. Oil and petroleum product fingerprinting analysis by gas chromatographic techniques., 93: 1027.

    Xing, L., Zhang, H., Yuan, Z., Sun, Y., and Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf., 31: 1106-1115, https://doi.org/10.1016/j.csr.2011.04.003.

    Yang, Z. S., and Liu, J. P., 2007. A unique Yellow River-deri- ved distal subaqueous delta in the Yellow Sea., 240: 169-176, https://doi.org/10.1016/j.margeo.2007.02. 008.

    Zhang, S., Li, S., Dong, H., Zhao, Q., Lu, X., and Shi, J., 2014. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements and-alkanes., 88: 389-397, https://doi.org/10.1016/j.marpolbul.2014.07.064.

    Zhang, Z., Zhao, M., Lu, H., and Faiia, A. M., 2003. Lower temperature as the main cause of C4plant declines during the glacial periods on the Chinese Loess Plateau., 214: 467-481, https://doi.org/10. 1016/S0012-821X(03)00387-X.

    Zhao, B., Zhang, Y., Huang, X., Qiu, R., Zhang, Z., and Meyers, P. A., 2018. Comparison of-alkane molecular, carbon and hydrogen isotope compositions of different types of plants in the Dajiuhu peatland, central China., 124: 1-11, https://doi.org/10.1016/j.orggeochem.2018.07.008.

    Zheng, S. X., and Shangguan, Z. P., 2007. Foliar δ13C values of nine dominant species in the Loess Plateau of China., 45 (1): 110-119, https://doi.org/10.1007/s11099- 007-0017-1.

    June 16, 2020;

    September 23, 2020;

    November 3, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . E-mail: xinglei@ouc.edu.cn

    (Edited by Ji Dechun)

    猜你喜歡
    順利進(jìn)行圖像識(shí)別電力設(shè)備
    加強(qiáng)電力設(shè)備運(yùn)維云平臺(tái)安全性管理
    基于Resnet-50的貓狗圖像識(shí)別
    電子制作(2019年16期)2019-09-27 09:34:50
    高速公路圖像識(shí)別技術(shù)應(yīng)用探討
    科學(xué)課,合理的材料利于課的進(jìn)行
    科學(xué)課,合理的材料利于課的進(jìn)行
    圖像識(shí)別在物聯(lián)網(wǎng)上的應(yīng)用
    電子制作(2018年19期)2018-11-14 02:37:04
    圖像識(shí)別在水質(zhì)檢測(cè)中的應(yīng)用
    電子制作(2018年14期)2018-08-21 01:38:16
    電力設(shè)備運(yùn)維管理及安全運(yùn)行探析
    基于壓縮感知的電力設(shè)備視頻圖像去噪方法研究
    基于改進(jìn)Canny算子的電力設(shè)備圖像檢測(cè)研究
    人妻制服诱惑在线中文字幕| 美女高潮的动态| 亚洲性夜色夜夜综合| 高清日韩中文字幕在线| 能在线免费观看的黄片| 国产极品精品免费视频能看的| 国产成人freesex在线 | 91久久精品国产一区二区三区| 日韩av在线大香蕉| 老司机福利观看| 午夜免费男女啪啪视频观看 | 国产中年淑女户外野战色| 午夜久久久久精精品| 欧美日本视频| 人人妻,人人澡人人爽秒播| 久久久久久久久大av| 日本a在线网址| 麻豆乱淫一区二区| 午夜日韩欧美国产| 人人妻,人人澡人人爽秒播| 国产亚洲91精品色在线| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 欧美最新免费一区二区三区| 少妇被粗大猛烈的视频| 亚洲五月天丁香| 人妻久久中文字幕网| 国产成人一区二区在线| 亚洲自拍偷在线| av在线天堂中文字幕| 在线免费观看不下载黄p国产| 中文字幕久久专区| 国产高清视频在线播放一区| 久久久精品94久久精品| 最新在线观看一区二区三区| 国产精品乱码一区二三区的特点| 一区福利在线观看| 99riav亚洲国产免费| 亚洲国产精品国产精品| 久久精品91蜜桃| 久久久久久久久大av| 中国美女看黄片| 欧美高清性xxxxhd video| 国产毛片a区久久久久| 97人妻精品一区二区三区麻豆| 一级毛片久久久久久久久女| 亚洲av不卡在线观看| 伦精品一区二区三区| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 51国产日韩欧美| 国产精品电影一区二区三区| 日日啪夜夜撸| 嫩草影院新地址| 国产精品伦人一区二区| 久久鲁丝午夜福利片| 成人三级黄色视频| 欧美激情在线99| 晚上一个人看的免费电影| 日韩国内少妇激情av| 国产精品无大码| 国产精品女同一区二区软件| 午夜精品国产一区二区电影 | 麻豆久久精品国产亚洲av| 五月玫瑰六月丁香| 国产欧美日韩一区二区精品| 欧美高清成人免费视频www| 国产精品久久久久久亚洲av鲁大| 一个人免费在线观看电影| 成人鲁丝片一二三区免费| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 一级毛片久久久久久久久女| 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 国产av不卡久久| 亚洲最大成人手机在线| 国产在线男女| 美女免费视频网站| 亚洲高清免费不卡视频| 日韩大尺度精品在线看网址| 男人舔奶头视频| a级毛片a级免费在线| 久久久久性生活片| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 性插视频无遮挡在线免费观看| 日本三级黄在线观看| 黄色日韩在线| 变态另类丝袜制服| 久久99热6这里只有精品| 久久久久久久久久成人| 男人舔女人下体高潮全视频| 国产亚洲精品久久久com| 亚洲在线自拍视频| 日本免费一区二区三区高清不卡| 中国国产av一级| 最新在线观看一区二区三区| .国产精品久久| 男女做爰动态图高潮gif福利片| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 国产乱人视频| 亚洲av熟女| 亚洲图色成人| ponron亚洲| 狂野欧美激情性xxxx在线观看| 97超级碰碰碰精品色视频在线观看| 欧美激情国产日韩精品一区| 香蕉av资源在线| 99久久精品国产国产毛片| 免费黄网站久久成人精品| 成人精品一区二区免费| 夜夜爽天天搞| 网址你懂的国产日韩在线| 久久久久久久久久成人| 插逼视频在线观看| 国产一区二区三区av在线 | 我的女老师完整版在线观看| 日韩欧美免费精品| 亚洲国产色片| 日本三级黄在线观看| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 亚洲av.av天堂| 亚洲av熟女| 女人被狂操c到高潮| 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| 日韩三级伦理在线观看| 一进一出抽搐动态| 国产精品国产高清国产av| 日韩欧美一区二区三区在线观看| 精品人妻熟女av久视频| 又黄又爽又免费观看的视频| 亚洲av美国av| 女人被狂操c到高潮| 婷婷精品国产亚洲av| 久久久久久伊人网av| 久久午夜亚洲精品久久| 国产免费男女视频| 国产一区亚洲一区在线观看| 精品无人区乱码1区二区| 日韩国内少妇激情av| www.色视频.com| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清激情床上av| 久久国内精品自在自线图片| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 亚洲av五月六月丁香网| 亚洲精品粉嫩美女一区| 成年av动漫网址| 亚洲电影在线观看av| 色综合站精品国产| 特大巨黑吊av在线直播| 成人av一区二区三区在线看| 免费人成视频x8x8入口观看| 中文字幕av在线有码专区| 成人三级黄色视频| 禁无遮挡网站| 精品少妇黑人巨大在线播放 | eeuss影院久久| 亚洲va在线va天堂va国产| 成人欧美大片| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 久久久久国产网址| 久久人人爽人人爽人人片va| 成年免费大片在线观看| 永久网站在线| 女人十人毛片免费观看3o分钟| 校园春色视频在线观看| 亚洲精品日韩在线中文字幕 | 蜜桃久久精品国产亚洲av| 欧美日韩一区二区视频在线观看视频在线 | 人人妻人人看人人澡| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 日日摸夜夜添夜夜添av毛片| 我的女老师完整版在线观看| 如何舔出高潮| 中文字幕av成人在线电影| 两个人视频免费观看高清| 久久人妻av系列| 此物有八面人人有两片| 插阴视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 尤物成人国产欧美一区二区三区| 三级男女做爰猛烈吃奶摸视频| 黄色欧美视频在线观看| 亚洲高清免费不卡视频| 干丝袜人妻中文字幕| 国产探花在线观看一区二区| 国产午夜福利久久久久久| 国产精品人妻久久久影院| 日日干狠狠操夜夜爽| 久久久久久九九精品二区国产| 一a级毛片在线观看| 高清日韩中文字幕在线| 免费大片18禁| 尾随美女入室| 国产老妇女一区| 插逼视频在线观看| 成人特级av手机在线观看| 久久久国产成人精品二区| 亚洲欧美日韩高清在线视频| 国产精品亚洲一级av第二区| 亚洲综合色惰| 天天躁日日操中文字幕| 午夜福利成人在线免费观看| 欧美绝顶高潮抽搐喷水| 亚洲精品一区av在线观看| 久久久成人免费电影| 狠狠狠狠99中文字幕| 日本撒尿小便嘘嘘汇集6| 中文字幕熟女人妻在线| 国产精品美女特级片免费视频播放器| 成人美女网站在线观看视频| 日本黄大片高清| 国产国拍精品亚洲av在线观看| 给我免费播放毛片高清在线观看| 久久久a久久爽久久v久久| 你懂的网址亚洲精品在线观看 | 免费人成在线观看视频色| 国产爱豆传媒在线观看| 丰满乱子伦码专区| 51国产日韩欧美| 97超碰精品成人国产| 色在线成人网| 亚洲av熟女| 国产综合懂色| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 欧美高清性xxxxhd video| 免费无遮挡裸体视频| 精品99又大又爽又粗少妇毛片| 99久国产av精品| 天堂影院成人在线观看| 熟女电影av网| 精品午夜福利在线看| 国产精品嫩草影院av在线观看| 啦啦啦韩国在线观看视频| 成人毛片a级毛片在线播放| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 天堂av国产一区二区熟女人妻| 日韩一本色道免费dvd| 噜噜噜噜噜久久久久久91| 国产69精品久久久久777片| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 免费电影在线观看免费观看| 久久九九热精品免费| 久久久久国产网址| 超碰av人人做人人爽久久| 大又大粗又爽又黄少妇毛片口| avwww免费| 国产中年淑女户外野战色| 亚洲国产高清在线一区二区三| 日本a在线网址| 成人精品一区二区免费| 少妇的逼好多水| 又爽又黄a免费视频| 91av网一区二区| 乱系列少妇在线播放| 三级男女做爰猛烈吃奶摸视频| 超碰av人人做人人爽久久| 精品国内亚洲2022精品成人| 黑人高潮一二区| 色av中文字幕| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 亚洲专区国产一区二区| 毛片一级片免费看久久久久| 日韩,欧美,国产一区二区三区 | 国产男靠女视频免费网站| 午夜精品在线福利| 成年女人看的毛片在线观看| av卡一久久| 熟妇人妻久久中文字幕3abv| 黄色视频,在线免费观看| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 国产高清三级在线| 国产精品国产三级国产av玫瑰| 成人亚洲精品av一区二区| 亚洲精品一区av在线观看| 人妻少妇偷人精品九色| 成人av一区二区三区在线看| 好男人在线观看高清免费视频| 婷婷精品国产亚洲av| 男女之事视频高清在线观看| 国产成人一区二区在线| 成人漫画全彩无遮挡| 欧美最黄视频在线播放免费| 久久精品影院6| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 国产91av在线免费观看| 一a级毛片在线观看| 麻豆av噜噜一区二区三区| 国产乱人视频| 热99re8久久精品国产| 国内精品美女久久久久久| 久久久久国内视频| 插逼视频在线观看| 高清毛片免费观看视频网站| 高清午夜精品一区二区三区 | 国产在视频线在精品| 国产一区二区在线观看日韩| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩| 女的被弄到高潮叫床怎么办| 日产精品乱码卡一卡2卡三| 熟女人妻精品中文字幕| 日本免费一区二区三区高清不卡| 日韩 亚洲 欧美在线| 寂寞人妻少妇视频99o| 亚洲精品久久国产高清桃花| 女同久久另类99精品国产91| 一级毛片我不卡| 三级经典国产精品| 国产精品久久视频播放| 在线观看66精品国产| 女人十人毛片免费观看3o分钟| 亚洲,欧美,日韩| 国产一区二区三区在线臀色熟女| 亚洲国产日韩欧美精品在线观看| 欧美性感艳星| 国产免费男女视频| 一区二区三区四区激情视频 | 精品久久久久久久久亚洲| a级毛色黄片| 久久欧美精品欧美久久欧美| 国产日本99.免费观看| 91久久精品电影网| 能在线免费观看的黄片| 嫩草影视91久久| 午夜爱爱视频在线播放| 又粗又爽又猛毛片免费看| 能在线免费观看的黄片| 日韩精品青青久久久久久| 国产精品一区www在线观看| 色哟哟哟哟哟哟| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| av在线蜜桃| 日本欧美国产在线视频| 一区二区三区高清视频在线| 简卡轻食公司| 中文字幕av成人在线电影| 精品人妻熟女av久视频| 中文字幕av成人在线电影| 国产成人aa在线观看| 亚洲人成网站在线播放欧美日韩| 美女xxoo啪啪120秒动态图| 99热这里只有是精品50| avwww免费| 久久精品国产99精品国产亚洲性色| 在线天堂最新版资源| 日日干狠狠操夜夜爽| 国产亚洲精品综合一区在线观看| 亚洲综合色惰| 97超级碰碰碰精品色视频在线观看| 成人亚洲欧美一区二区av| 日韩强制内射视频| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 久久久久九九精品影院| 国产探花极品一区二区| 长腿黑丝高跟| 精品99又大又爽又粗少妇毛片| 欧美又色又爽又黄视频| 禁无遮挡网站| 又黄又爽又免费观看的视频| 国产精品日韩av在线免费观看| 国产乱人偷精品视频| 2021天堂中文幕一二区在线观| 老司机影院成人| 又黄又爽又免费观看的视频| 激情 狠狠 欧美| 国产探花在线观看一区二区| 淫秽高清视频在线观看| 成人永久免费在线观看视频| 久久久久久大精品| 中文在线观看免费www的网站| 午夜久久久久精精品| 白带黄色成豆腐渣| 亚洲真实伦在线观看| 两个人视频免费观看高清| 日本在线视频免费播放| 在线观看免费视频日本深夜| 99九九线精品视频在线观看视频| 久久人妻av系列| 少妇丰满av| 在线免费观看不下载黄p国产| 高清午夜精品一区二区三区 | 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 亚洲自拍偷在线| 可以在线观看的亚洲视频| 国产老妇女一区| 岛国在线免费视频观看| 中文字幕av在线有码专区| 99热只有精品国产| 亚洲av不卡在线观看| 神马国产精品三级电影在线观看| 亚洲最大成人手机在线| 看免费成人av毛片| 国产成人91sexporn| 亚洲乱码一区二区免费版| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 婷婷六月久久综合丁香| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点| 日本欧美国产在线视频| 国内精品一区二区在线观看| 91久久精品国产一区二区三区| 亚洲av成人精品一区久久| 婷婷六月久久综合丁香| 极品教师在线视频| 国产三级中文精品| 麻豆国产av国片精品| 女同久久另类99精品国产91| 成人午夜高清在线视频| 色5月婷婷丁香| 国产一区二区亚洲精品在线观看| 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 亚洲av中文av极速乱| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 热99re8久久精品国产| 亚洲乱码一区二区免费版| 亚洲av电影不卡..在线观看| 免费不卡的大黄色大毛片视频在线观看 | 插逼视频在线观看| 可以在线观看的亚洲视频| 自拍偷自拍亚洲精品老妇| 午夜福利成人在线免费观看| 亚州av有码| 看黄色毛片网站| 亚洲av一区综合| 黄色配什么色好看| 男人的好看免费观看在线视频| 国产高清视频在线播放一区| 久久精品国产99精品国产亚洲性色| 搡女人真爽免费视频火全软件 | 欧美日韩精品成人综合77777| 久久精品国产鲁丝片午夜精品| 国产男人的电影天堂91| 亚洲欧美成人精品一区二区| 69av精品久久久久久| 你懂的网址亚洲精品在线观看 | 国内精品宾馆在线| 欧美+亚洲+日韩+国产| 中出人妻视频一区二区| 丰满人妻一区二区三区视频av| 99久久精品一区二区三区| 观看美女的网站| 亚洲专区国产一区二区| 熟女人妻精品中文字幕| eeuss影院久久| 国产高清三级在线| 听说在线观看完整版免费高清| 成人高潮视频无遮挡免费网站| 欧美成人一区二区免费高清观看| 亚洲一区二区三区色噜噜| 国产日本99.免费观看| 日本 av在线| 国产色婷婷99| 国产黄色小视频在线观看| 女同久久另类99精品国产91| 美女 人体艺术 gogo| 色噜噜av男人的天堂激情| 国产成人a区在线观看| a级毛片a级免费在线| 亚洲,欧美,日韩| 97热精品久久久久久| 午夜福利高清视频| 极品教师在线视频| 五月玫瑰六月丁香| 国产精品99久久久久久久久| 高清毛片免费观看视频网站| av天堂在线播放| 日本在线视频免费播放| 一级毛片电影观看 | 日本在线视频免费播放| 成年女人永久免费观看视频| 人妻制服诱惑在线中文字幕| 国产精品嫩草影院av在线观看| 午夜影院日韩av| av黄色大香蕉| 国产精品爽爽va在线观看网站| 大香蕉久久网| 国产淫片久久久久久久久| 精品人妻视频免费看| 久久久久精品国产欧美久久久| 97在线视频观看| 又黄又爽又免费观看的视频| 亚洲国产精品成人久久小说 | 亚洲欧美日韩卡通动漫| 两个人的视频大全免费| 人妻久久中文字幕网| 免费高清视频大片| 成人高潮视频无遮挡免费网站| 久久午夜亚洲精品久久| 搡老岳熟女国产| 午夜精品一区二区三区免费看| 在线观看美女被高潮喷水网站| 亚洲成人av在线免费| 国产黄色视频一区二区在线观看 | 少妇人妻一区二区三区视频| 老女人水多毛片| av在线天堂中文字幕| 国产视频一区二区在线看| 99热6这里只有精品| 久久久成人免费电影| 看片在线看免费视频| 国产成人a∨麻豆精品| 在线观看av片永久免费下载| 日本三级黄在线观看| 一级毛片电影观看 | av在线老鸭窝| 日本免费a在线| 成人特级黄色片久久久久久久| 欧美色欧美亚洲另类二区| 亚洲av.av天堂| 久久久久免费精品人妻一区二区| 搡老妇女老女人老熟妇| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 美女cb高潮喷水在线观看| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿在线中文| 少妇熟女aⅴ在线视频| 中国美女看黄片| 国产爱豆传媒在线观看| 99热全是精品| 又粗又爽又猛毛片免费看| 亚洲国产色片| 三级国产精品欧美在线观看| 美女 人体艺术 gogo| 22中文网久久字幕| 久久久色成人| 亚洲欧美精品自产自拍| 日韩欧美精品免费久久| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 搞女人的毛片| 国产精品女同一区二区软件| 在线播放无遮挡| 激情 狠狠 欧美| 国产精品不卡视频一区二区| 综合色av麻豆| 中文字幕av在线有码专区| 成年女人永久免费观看视频| 成人欧美大片| 麻豆国产97在线/欧美| 99热精品在线国产| 亚洲熟妇熟女久久| 免费人成在线观看视频色| 国产亚洲91精品色在线| 免费av观看视频| 九九热线精品视视频播放| 中文字幕av在线有码专区| 久久久久久大精品| 在线国产一区二区在线| 露出奶头的视频| 亚洲成av人片在线播放无| 久久久久久大精品| 欧美高清成人免费视频www| 狂野欧美激情性xxxx在线观看| av专区在线播放| 色综合站精品国产| 欧美高清成人免费视频www| 激情 狠狠 欧美| av在线亚洲专区| 午夜亚洲福利在线播放| 日韩国内少妇激情av| av视频在线观看入口| 99久久九九国产精品国产免费| 男女视频在线观看网站免费| 在线观看66精品国产| 亚洲精品国产av成人精品 | 国产欧美日韩精品亚洲av| 欧美最黄视频在线播放免费| 精品久久国产蜜桃| 久久久欧美国产精品| 美女xxoo啪啪120秒动态图| 国产探花极品一区二区| 丝袜美腿在线中文| 变态另类成人亚洲欧美熟女| 最近手机中文字幕大全| 三级国产精品欧美在线观看| 熟女人妻精品中文字幕| 一本久久中文字幕| av.在线天堂| 成人av在线播放网站| 亚洲美女黄片视频| 内地一区二区视频在线| 国产欧美日韩精品亚洲av| 国产精品不卡视频一区二区| 两个人视频免费观看高清|