• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Stable Carbon Isotopic Compositions of n-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    2021-03-05 14:13:30DANGTianxiangCAOYunyunandXINGLei
    Journal of Ocean University of China 2021年2期
    關(guān)鍵詞:順利進(jìn)行圖像識(shí)別電力設(shè)備

    DANG Tianxiang, CAO Yunyun, and XING Lei, *

    The Stable Carbon Isotopic Compositions of-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    DANG Tianxiang1), 2), CAO Yunyun1), 2), and XING Lei1), 2), *

    1) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China,Qingdao 266100, China 2) Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    Stable carbon isotopic compositions of-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain-alkanes in surface sediments are predominantly long-chainC27, C29, and C31types, with obvious odd carbon predominance. The δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰, respectively, within the range of-alkanes of C3terrestrial higher plants. This suggests that sedimentary-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain-alkanes indicates that C3terrestrial higher plants predominate (64%–79%), with angiosperms being the main contributors.The-alkane δ13C values indicate that mid-chain-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain-alkanes.

    biomarker; carbon isotopes;-alkanes; Bohai Sea; North Yellow Sea

    1 Introduction

    The Bohai Sea (BS) and Yellow Sea (YS) are typical semi-enclosed marginal shallow seas of China, with complex hydrodynamics and large inputs of land-based materials. The annual organic carbon flux from the Yellow River and other rivers to the YS and BS is (1210 ± 240) × 104ton (t) yr?1, accounting for 79% of all organic carbon entering these seas (Liu., 2015a), while atmospheric deposition contributes < 2% (Qiao., 2017). In addition, the Yellow Sea Warm Current (YSWC) transports about 106tyr?1of Yangtze River sediments to the North Yellow Sea (NYS) (Gao., 1996). The tracing of sedi- mentary organic matter (SOM) sources improves understanding of the organic matter cycle in aquatic environments (Hedges., 1997). SOM is a complex mixture of marine and terrestrial organic compounds, and it is difficult to quantitatively distinguish its sources at the edge of the continental shelf. Normal (-) alkanes are commonly applied as biomarkers given their widespread occurrence in marine and terrestrial environments, and can be preserved in marine sediments. Compositions and distributions of-alkanes from different biological sources are generally different. In addition, compared with fatty acids and alkanols, structure of-alkanes is relatively stable and has strong anti-degradation ability (Mead, 2005). Previous studies have shown that- alkanes may be effective in characterizing sources of SOM in coastal marine systems (Xing., 2011; Wang., 2013). Long-chain-alkanes derived from terrestrial higher plants are most abundant in C27, C29, and C31-alkanes (Bray and Evans, 1961). The freshwater and marine non-emergent macrophytes and sphagnum mosses are enriched in mid-chain-alkanes (Pancost, 2002; Mead, 2005; Mügler, 2008; Bush and Mc- Inerney, 2013). Short-chain-alkanes with odd carbon predominance such as C17-alkane are generally considered to be derived from aquatic algae and photosynthetic bacteria (Meyers and Ishiwatari, 1993; Silliman and Schelske, 2003; Liu, 2012). Additionally, petroleum-derived hydrocarbons also contribute short-chain-alkanes, with no obvious odd/even predominance (Hos- tettler, 1999). The long-chain (≥C24)-alkanes have clear odd carbon-number predominance in the NYS, indicating predominant input of terrestrial higher plant material (Lu., 2011). Analyses of-alkanes in sediments of the Yellow River Estuary indicate that SOM originates mainly from terrigenous inputs, while marine microorganisms contribute to short-chain (C12–C22)-al- kanes offshore (Wang., 2018). Compositional analysis of-alkanes in surface sediments of the central South Yellow Sea (SYS) indicates that SOM is derived mainly from terrestrial higher plant input from the modern and old Yellow rivers, with the contribution of herbaceous to woody plants is comparable (Zhang., 2014).

    Similar chemical-alkane compositions have been found in different types of organisms, which may confuse their interpretation (Ficken., 2000; Mead., 2005; Sikes., 2009). However, stable carbon isotopic com- positions of individual-alkanes from different sources in marine sediments are generally distinctive and may therefore constrain their sources (Hayes., 1990; Mead., 2005; Ankit., 2017), with-alkane com- positions and stable carbon isotopic characteristics together having been used to identify SOM sources (Eg- linton, 1969; Jeng and Huh, 2008; Hu., 2013). Previous studies have shown that stable carbon isotopic compositions of long-chain-alkanes in surface soils of eastern China can be used as an indicator of C3/C4plant proportions in overlying vegetation (Rao., 2008). The analysis of long-chain-alkanes and their stable carbon isotopic compositions in sediments of Qinghai Lake indicates that δ13C values of C31-alkanes are consistent with those of modern land plants around the lake, and can therefore be used as a reliable tracer of C3/C4compositions of terrestrial vegetation (Liu., 2015b). A recent study found that δ13C values of organic matter indicate that terrestrial organic carbon from the Yellow River accumulates mainly at the river mouth and in two muddy areas around it (Sun., 2018a).

    Until now, little has been known of the spatial distribution of-alkane stable carbon isotopes in sediments of the BS and NYS. The aim of this study was to elucidate the stable carbon isotopic composition of SOM-alkanes and the sources of-alkanes in surface sediments of the BS and NYS.

    2 Study Area and Methods

    2.1 Study Area

    The BS is a shallow, semi-enclosed epicontinental sea. About 90% of its sediment input is supplied by the surrounding rivers, especially the Yellow River. The YS is a shallow, semi-enclosed, continental margin West Pacific sea, with an area of 400,000 km2and an average water depth of 44 m, joining the BS in the north and the East China Sea in the south. The YS is divided into southern and northern parts by the Shandong and Korean peninsulas. The overall topography of the NYS seabed is inclined southward. Water depths in the BS and NYS are generally < 60m. In the study area, surface currents include coastal currents and the northwestward YSWC (Fig.1). The YSWC is a branch of the Tsushima Current with warm and saline water. There is no major direct local riverine input to the YS although, over time, fine-grained riverine sediment can be resuspended and transported from the BS to the YS by coastal currents. Analyses of sediment sources indicate that fine-grained sediments within the NYS originate mainly in the modern and old Yellow Rivers (Alexander., 1991; Lim., 2007). From 1976 to 2005, runoff and sediments from the Yellow River averaged 140.36×108m3yr?1and 3.31×108tyr?1, respectively (Cui and Li, 2011), with most sedimentary materials being deposited in front edge of the delta and estuary, and finer grained sediment transported to the coastal and shelf areas outside the Yellow River estuary. Muddy sediments along the north coast of Shandong Peninsula are considered to be directly and indirectly from the Yellow River (Yang and Liu, 2007). In addition to riverine input, coastal erosion from the old Yellow River Delta also contributes to sediments (Hu., 1998).

    Fig.1 Sampling sites and surface currents in the BS and NYS. BSCC, Bohai Sea Coastal Current; SDCC, Shandong Coastal Current; YSCC, Yellow Sea Coastal Current; YSWC, Yellow Sea Warm Current; LDCC, Liaodong Peninsula Coastal Current. Blocks represent the sites. Shading indicates the muddy areas.

    2.2 Samples

    Surface sediments (0–3cm depth) were collected from 23 sites in the BS and NYS using a box corer deployed fromduring a cruise sponsored by the National Natural Science Foundation of China (NSFC) in June 2011 (Fig.1). Sediment samples were wrapped in aluminum foil and stored at ?20℃ until analysis.

    2.3 Analytical Methods

    2.3.1 Lipid extraction and purification of-alkanes

    Freeze-dried, powdered, and homogenized sediment samples were extracted four times with dichloromethane/ methanol (DCM/MeOH; 3:1, v/v) with ultrasonication (15min each time), after adding internal standards containingC24D50. Extracts of the samples were dried in a N2stream and hydrolyzed with 6% KOH in MeOH. Non- polar fractions containing-alkanes were separated using activated silica gel column chromatography with elution by-hexane, anddried in a N2stream.

    To accurately measure the δ13C values of individual-alkanes,-alkanes need to be further purified. Zeolite molecular sieve is a commonly used and high recovery method for-alkanes purification. The extracted-alkanes were transferred to a columnwith AgNO3-Silica gel and molecular sieve, and then eluted with-hexane to ensure the components of the inner wall of the AgNO3- Silica gel glass column were completely transferred into the molecular sieve. After elution of about 1.5mL, the upper AgNO3-Silica gel column was removed and the molecular sieve column was baked in an oven at 40℃ for >12h. Subsequently, the zeolite power was transferred to a 10mL Teflon bottle for digestion with HF to release-alkanes. A preheating Pasteur column (6mm, i.d.×2cm) filled with Na2SO4was used to remove residual HF before the-alkanes were extracted with-hexane (four times) and then was dried in a gentle N2stream pending instrumental analyses. The average recovery rate of long- chain (≥C26), mid-chain (C21–C25), short-chain(C15–C20)-alkanes in all samples was 63%, 53%, 57%, respectively.

    2.3.2-alkanes analysis

    The-alkane compositions were determined by an Agi- lent 6890N gas chromatography, with chromatographic separation on an HP-1 capillary column (50 m ×0.32mmi.d.× 0.17μmfilm thickness, J&W Scientific) using H2as a carrier gas (1.2mLmin?1). Samples were injected in splitless mode with an injector temperature of 300℃. Oven temperature was programmed from 80℃ to 200℃ at 25℃ min?1, 200℃ to 250℃ at 3℃min?1, 250℃ to 300℃ at 1.8℃min?1,300 to 310℃at 5℃min?1, and holding at 310℃ for 5min. Quantification of compounds was performed by peak area integration in FID GC (Agilent 6890N) relative to the internal standards. The average relative standard deviation in concentrations was <10%.

    The average chain length (ACL; Cranwell, 1987), the terrigenous/aquatic ratio (TAR; Bourbonniere and Meyers, 1996), the Pmar-aq(odd mid-chain alkanes/odd mid- and long-chain alkanes; Ficken, 2000; Mead, 2005) of-alkanes were calculated as follows:

    2.3.3 Stable carbon isotopic composition (δ13C) analysis

    Gas chromatography isotope ratio mass spectrometry (GC-IRMS; on an HP 6890 GC coupled with a Thermo Delta-V system.) was used to measure stable carbon isotopic compositions of-alkanes. Chromatographic separation was achieved using a DB-1MS capillary column (60m×0.32mmi.d.×0.25μm film thickness, J & W Scientific). The GC oven temperature was programmed from 60℃ to200℃ at 15℃min–1, 200℃ to 250℃ at 4℃min–1, 250℃ to 300℃ at 1.8℃min–1, 300 to310℃ at 5℃min–1, and holding at 310℃ for 5min. The authentic standard was analyzed under the same conditions after every seven samples. The standard deviation for duplicate analysis of the standard was 0.3‰. Isotopic ratios were expressed as δ13C values (per mil) relative to the Vienna Pee Dee Be- lemnite (VPDB).

    3 Results

    3.1 Composition of n-Alkanes and the Hydrocarbon Indices

    The GC-FID chromatograms of-alkanes showed that-alkaneswereeffectively purified after using the molecular sieve (Fig.2). Total-alkane contents (SC15–35) ranged from 456 to 3837ngg?1(average=1897ngg?1). The contents of long-chain-alkanes (SC25–35) ranged from 267 to 2826ngg?1(average=1300ngg?1). In addition, the average percentage of long-chain, mid-chain, short-chain-alkanes in samples was 58%, 27%, 14%, re- spectively. Furthermore, the total-alkane contents of samples from muddy areas (average = 2666ngg?1) were significantly higher than those from non-muddy areas (average=1683ngg–1). The ACL values varied between 26.1 and 28.9(Fig.4a). The values of TAR and Pmar-aqranged from 3.4 to 25.7,from 0.2 to 0.7 (Figs.4b, 4c), res- pectively.

    Fig.2 GC-FID chromatograms for n-alkanes of surface sediments (site B28): (a), Before purification; (b), After purification.

    3.2 δ13C Values of n-Alkanes in Surface Sediments

    Compound-specific average δ13C values of-alkanes in surface sediments were shown in Fig.3, with average individual values for C17–C31of ?30.1‰±0.5‰, ?28.7‰± 0.4‰, ?29.8‰±0.6‰, ?28.4‰±0.3‰, ?29.9‰±0.5‰, ?29.4‰ ±0.6‰, ?30.4‰±0.3‰, ?29.9‰±0.5‰, ?30.2‰±0.5‰, ?30.1‰±0.5‰, ?30.8‰±0.5‰, ?30.8‰±0.8‰, ?31.9‰±0.6‰, ?31.7‰±1.1‰, and ?32.1‰±1.0‰, respectively. In both the BS and NYS, δ13C values of mid-chain-alkanes (C21–C23) varied within a narrow range, while those of short- and long-chain-alkanes were more variable. Furthermore, for short- and mid-chain-alkanes, δ13C values of even-carbon-numbered cases were more positive than those of odd-carbon-numbered cases.

    Fig.3 Compound-specific average δ13C values for the individual n-alkanes (C17–C31) from 23 BS and NYS samples.

    4 Discussion

    4.1 Long-Chain n-Alkanes

    The contents of long-chain-alkanes were relatively high and exhibited a strong odd carbon predominance in C27, C29, and C31homologues (Fig.3), consistent with terrestrial higher plant sources. The ACL describes the average number of carbon atoms in odd carbon-alkanes in higher plants (Cranwell, 1987). The ACL values of BS and NYS surface sediments ranged from 26.1 to 28.9 (average = 27.5). ACL value of about 29 in sediments near the Yellow River estuary suggests an origin of terrestrial higher plants (Fig.4a). The relative contribution of terrestrial-alkanes to marine sediments can be assessed using the TAR index. TAR values of BS and NYS surface sediments ranged from 3.4 to 25.7, with an average value of 14.1 (Fig.4b). This indicates a predominance of terrigenous-alkanes input (Ankit., 2017). Furthermore, compositional analysis of-alkanes in surface sediments of the BS and NYS also indicates that long- chain-alkanes are derived mainly from terrestrial higher plant input (Cao,, 2018). Hence, Long-chain-al- kanes in the study areas were thus mainly derived from such plants.

    The δ13C values of long-chain-alkanes produced by C3and C4plants typically range from ?31.0‰ to ?39.0‰ and ?18.0‰ to ?25.0‰, respectively (Collister., 1994; Schefu?., 2003). Modern terrestrial higher plants from eastern China are characterized by-alkane δ13C values of ?21.9‰ to ?34.8‰, ?25.3‰ to ?36.1‰, and ?22.9‰ to ?36.7‰ for C27, C29, and C31components (Rao., 2008), consistent with our corresponding average δ13C values of ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰ (Fig.3), respectively, and indicating that long-chain-alkanes are mainly derived from terrigenous sources. Generally, odd-carbon-numbered long-chain- alkanes are somewhat13C-enriched than those of even- carbon-numbered long-chain-alkanes in terrestrial higher plants (Chikaraishi and Naraoka, 2003). However, our results showed δ13C values of even-carbon-numberedlong-chain-alkanes (C26–30) were more positive than those of odd-carbon-numbered long-chain-alkanes (C27–31) in the study area (Fig.3). This implies there may be different sources of even-carbon-numbered long-chain-alkanes. A previous study reported14C ages forC29+31alkanes (Δ14C = ?288‰ to ?612‰) of 2670 to 755014C yr, which differ markedly from those of strongly14C- depletedC26+28+30+32alkanes (Δ14C = ?700‰ to ?961‰) ages of 9600 to 2605014C yr for Yellow River suspended particulate matter, implying ancient organic carbon inputs (Tao., 2015). This may indicate that even-carbon- numbered long-chain-alkanes in the BS and NYS are derived from ancient organic carbon.

    Fig.4 Spatial distribution of n-alkane indices: (a), ACL; (b), TAR; (c), Pmar-aq and (d), C3plants contribution to n-alkanes and C3/C4 ratio in surface sediments, based on the end-member modeling of compound-specific δ13C values in the study area.

    Weighted mean average δ13C of long-chain-alkanes from sediment samples were determined to calculate the changes in biomass of C3and C4plants in historical periods (Kuang., 2013). A binaryend-member mixing model was used to estimate the relative contributions of long-chain-alkanes from C3and C4plants(Garcin., 2014), with δ13C values of ?36.0‰ and ?21.0‰ being used as end-members for these plants, respectively (Col- lister., 1994; Zhang., 2003). Calculations were performed as follows:

    = (δ13C27× C27+ δ13C29× C29+ δ13C31× C31)/( C27+ C29+ C31) = (?36.0‰) ×+ (?21.0‰) × (100% ?), (4)

    whereis the weighted mean average δ13C value of long-chain-alkanes, andis the C3contribution (%).

    End-member estimations for the BS and NYS indicated that terrestrial C3plants were dominant-alkane sources, with relative contributions of 64%–79% (Fig.4d).This is consistent with the predominance of C3plants in north China, with a previous study having shown that δ13C values of-alkanes in aerosols near the north China coast have terrestrial C3plant origins with the C4contribution being negligible (Guo., 2006).Moreover, soil organic matterδ13C values in a N–S section (34–52?N) through central and eastern Asia indicate that vegetation in the area comprises mainly C3plants (Feng., 2008). Records of δ13Cvalues in surface soils of northeast China indicate that the abundance of C4plants is relatively high in warm periods and almost exclusively C3plants exist in cold periods (Sun., 2018b). Previous studies have shown thatδ13C values of dominant C3plants in the Chinese Loess Plateau range from ?30.7‰ to ?22.6‰, with average value of 27.2‰ (Zheng and Shangguan, 2007) and ?27.1%±2.4‰ (=39; Liu., 2005). Both δ13C values of total organic carbon and long-chain-alkanesderived from terrestrial higher plants show minor variations among surface soil samples from northern China,indicating the major contributor is from local grasses with a uniform C3photosynthetic pathway (Rao., 2011). It is likely, therefore, that long-chain-alkanes in BS and NYS surface sediments are mainly derived from terrestrial higher plants, particularly C3plants.

    Furthermore, recent studies have also shown thatδ13C valuesof-alkanes in gymnosperms are heavier than those in angiosperms (Diefendorf., 2011; Lane, 2017; Zhao., 2018). And angiospermδ13C values generally decrease with increasing chain length of-alkanes, while gymnosperm values increase (Bush and McInerney, 2009).It is clear here that δ13C values of long-chain-alkanes decrease with increasing chain length (Fig.3). Average δ13Cvalues of C29and C31-alkanes are ?31.9%±0.6‰ and ?32.1%±1.0‰, respectively, similar to values for herbaceous plants in the modern Yellow River drainage basin (?31.1‰ to ?31.5‰ for C29-alkanes, and ?31.3‰ to ?32.6‰ for C31-alkanes in dust episode periods,Guo., 2006).This suggests that the contribution of C3angiosperms to the sedimentary long-chain-alkanes is greater. This is consistent with the predominance of angiosperms in the last glacial period and Holocene on the Chinese Loess Plateau (Li., 2016).

    4.2 Mid-Chain n-Alkanes

    C21, C23, and C25-alkanes are mainly contributed by aquatic plants. Previous studies have shown that theδ13C values of mid-chain-alkanes in aquatic emergent macro- phytes range from ?28.6‰to ?31.2‰ (Chikaraishi and Naraoka, 2003; Mead., 2005). Although non-emer- gent marine macrophytes can also produce mid-chain-alkanes, their δ13C values are relatively heavy, ranging from ?13.0‰ to ?22.0‰ (Ficken., 2000; Jaffé., 2001). In the NYS, there was little difference between stable carbon isotopic compositions of samples from muddy and non-muddy areas: average δ13C values of mid-chain-alkanes (C21, C23, and C25) in non-muddy areas were ?29.8‰, ?30.3‰, and ?30.2‰, respectively, and those in muddy areas were ?29.7‰, ?30.3‰, and ?30.2‰, respectively. This also applied to the BS, where average δ13C values were ?29.7‰, ?30.4‰, and ?30.2‰, respectively, indicating that stable carbon isotope compositions of mid-chain-alkanes in the BS and NYS were similar. The narrow range of these values may be due to there being a common source for BS and NYS sediments, namely the Yellow River (Bi., 2010). The δ13C values of C21, C23, and C25-alkanes fell within the range of values for the corresponding-alkanes in aquatic emergent macrophytes, with sediment mid-chain-alkanes in the study area thus being mainly derived from such plants. Furthermore, the Pmar-aq index provides a measure of the relative contributions of aquatic non-emergent/emergent plants and terrestrial vegetation, with values of <0.25 corresponding to terrigenous plants, 0.3–0.6 to aqua- tic emergent plants, and >0.6 to aquatic non-emergent macrophytes in coastal marine environments (Ficken, 2000; Mead, 2005). The Pmar-aq values ranged from 0.2 to 0.7 (average = 0.4) in the study area (Fig.4c). We concluded, therefore, that mid-chain-al- kanes were mainly derived from aquatic emergent macro- phytes in the BS and NYS.

    4.3 Short-Chain n-Alkanes

    Short-chain-alkanes are generally considered as being derived from microorganisms and marine algae. Those produced by marine planktonic algae are mainly C15, C17, and C19-alkanes with odd carbon predominance, while even-carbon-numbered short-chain-alka- nes (C16, C18,and C20) are derived from marine bacteria or petroleum hydrocarbons (Gogou., 2000; Wang and Fingas, 2006). Short-chain-alkanes in marine sediments are predominantly C17, indicating the major contribution of algae and photosynthetic bacteria (Han and Calvin, 1969), while even-carbon-numbered (C16–22)-alkanes in marine sediments are mainly attributable to non-photo- synthetic bacteria(Jeng and Huh, 2008). Most of sediments in the BS and NYS exhibited an even-carbon- number preference in the range of-C16to-C22(Fig.3), indicating that these short-chain-alkanes could be from non-photosynthetic bacterial sources. Thevalues of- C18/-C17can be used to compare the relative contributions of-alkanes from petroleum-derived-alkanes and natural-alkanes from algae and photosynthetic bacteria. Here, the calculated-C18/-C17values of surface sediments are higher than 1 at all stations, indicating that short-chain-alkanes are affected by petroleum pollution to some degree. Extremely depleted △14C values (?932‰ to ?979‰) for short-chain-alkanes (C16and C18) were found in BS and YS sediments, suggesting a predominant input from sedimentary rocks (organic carbon) or petroleum products(Tao., 2016). The average δ13C value of short-chain-alkanes, δ13C17, δ13C18, and δ13C19, is ?30.1%±0.5‰, ?28.7%±0.4‰, and ?29.8%±0.6‰, respectively (Fig.3). Previous studies show that the δ13CC17values of cyanobacteria vary from ?34.0‰ to ?36.0‰ (Kristen., 2010), while δ13C17and δ13C19values of petroleum hydrocarbons are about ?30.6‰ and ?31.0‰, respectively (Li., 2009). The average δ13C value of algae in Laizhou Bay is ?20.5‰ (Cai and Cai, 1993). Our results showed δ13C values of short-chain-alkanes were relatively lighter than those of algae, possibly due to biodegradation of bacteria and input of petroleum hydrocarbons or other sources.

    5 Conclusions

    The relative inputs of terrestrial and marine organic matter were assessed using-alkane. Terrigenous plants are the main source of-alkanes in BS and NYS sediments. Long-chain-alkanes in sediments were mostly derived from terrestrial sources with some contribution from biogenic and/or petroleum sources.The average δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8% ± 0.5‰, ?31.9% ± 0.6‰, and ?32.1% ± 1.0‰, respectively, within the range of-alkanes δ13C values of terrestrial C3plants. A hydrocarbon source distribution derived using a binary end-number mixing model based on δ13C values of long-chain-alkanes indicates that organic matter in BS and NYS sediments is mainly sourced from C3plants, particularly angiosperms. The relative contribution of C3plants decreases from estuary to ocean. δ13C values of mid-chain-alkanes in surface sediments indicate that mid-chain-alkanes are mainly of aquatic emergent macrophyte origin. δ13C17, δ13C18and δ13C19values,-C18/-C17ratios indicate that short-chain-alkanes in BS and NYS sediments have complex sources including petroleum pollution and bacterial action.

    Acknowledgements

    This work was financially supported by the Ministry of Science and Technology of People’s Republic of China (No. 2016YFA0600904), and the National Natural Science Foundation of China (No. 41476058).

    Alexander, C. R., DeMaster, D. J., and Nittrouer, C. A., 1991. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea., 98: 51-72, https:// doi.org/10.1016/0025-3227(91)90035-3.

    Ankit, Y., Mishra, P. K., Kumar, P., Jha, D. K., Kumar, V. V., Ambili, V., and Anoop, A., 2017. Molecular distribution and carbon isotope of-alkanes from Ashtamudi Estuary, South India: Assessment of organic matter sources and paleo- climatic implications.,196: 62-70, https:// doi.org/10.1016/j.marchem.2017.08.002.

    Bi, N., Yang, Z., Wang, H., Hu, B., and Ji, Y., 2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period., 86: 352-362, https://doi.org/10.1016/j.ecss.2009.06.005.

    Bourbonniere, R. A., and Meyers, P. A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie., 41: 352-359, https://doi.org/10.4319/lo.1996.41.2.03 52.

    Bray, E. E., and Evans, E. D., 1961. Distribution of-paraffins as a clue to recognition of source beds.,22: 2-15, https://doi.org/10.1016/0016-7037 (61)90069-2.

    Bush, R. T., and McInerney, F. A., 2013. Leaf wax-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy., 117: 161-179, https://doi.org/10.1016/j.gca. 2013.04.016.

    Bush, R. T., and McInerney, F. A., 2009. Re-evaluating the isotopic divide between angiosperms and gymnosperms using-alkane δ13C values.Washing- ton D. C., 1-9.

    Cai, D., and Cai, A., 1993. The organic carbon isotope geo- chemistry study of Yellow River Mouth.–, 23 (10): 1105-1113, https://doi.org/10.1360/zb1993-23-10-1105.

    Cao, Y., Xing, L., Wang, X., and Zhao, M., 2018. Study on the indication of-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea., 48: 104-113, https://doi.org/10.16441/j.cnki. hdxb.20160341 (in Chinese with English abstract).

    Chikaraishi, Y., and Naraoka, H., 2003. Compound-specific δD- δ13C analyses of-alkanes extracted from terrestrial and aquatic plants., 63: 361-371, https://doi.org/ 10.1016/S0031-9422(02)00749-5.

    Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms., 21: 619-627, https://doi.org/10.1016/0146-63 80(94)90008-6.

    Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sedi- ments-II., 11: 513-527, https://doi. org/10.1016/0146-6380(87)90007-6.

    Cui, B. L., and Li, X. Y., 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005)., 127: 32-40, https://doi.org/10. 1016/j.geomorph.2010.12.001.

    Eglinton, G., 1969. Organicgeochemistry the organic chemist’s approach. In:.Eglinton, G., Murphy, M. T. J. eds., Springer, Berlin, Heidelberg, 20-73, https://doi. org/ 10.1007/978-3-642-87734-6_2.

    Feng, Z. D., Wang, L. X., Ji, Y. H., Guo, L. L., Lee, X. Q., and Dworkin, S. I., 2008. Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34?N to 52?N in central-east Asia., 257: 335-343, https://doi.org/10. 1016/j.palaeo.2007.10.026.

    Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G., 2000. An-alkane proxy for the sedimentary input of submerged/ floating freshwater aquatic macrophytes., 31: 745-749, https://doi.org/10.1016/S0146-6380(00)00 081-4.

    Gao, S., Park, Y. A., Zhao, Y. Y., and Qin, Y. S., 1996. Trans- port and resuspension of fine-grained sediments over the southeastern Yellow Sea.. Seoul National Uni- versity Seoul, Korea, 83-98.

    Garcin, Y., Schefu?, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J. M., Achoun- dong, G., and Sachse, D., 2014. Reconstructing C3and C4vegetation cover using-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa., 142: 482-500, https://doi.org/10.1016/j.gca.2014.07.004.

    Gogou, A., Bouloubassi, I., and Stephanou, E. G., 2000. Marine organic geochemistry of the eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments., 68: 265-282, https:// doi.org/10.1016/S0304-4203(99)00082-1

    Guo, Z., Li, J., Feng, J., Fang, M., and Yang, Z., 2006. Com- pound-specific carbon isotope compositions of individual long-chain-alkanes in severe Asian dust episodes in the North China coast in 2002., 51: 2133-2140, https://doi.org/10.1007/s11434-006-2071-7.

    Han, J., and Calvin, M., 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments., 64 (2): 436- 443, https://doi.org/10.1073/pnas.64.2.436.

    圖像識(shí)別是一個(gè)至關(guān)重要的環(huán)節(jié),在這個(gè)環(huán)節(jié)中包含著多個(gè)不同的步驟,每一個(gè)步驟對(duì)于識(shí)別的結(jié)果都有重要的影響,決定著電力設(shè)備檢測(cè)工作能否順利進(jìn)行下去。

    Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H., 1990. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes., 16: 1115-1128, https://doi.org/10.1016/0146- 6380(90)90147-R.

    Hedges, J. I., Keil, R. G., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean?, 27: 195-212, https://doi.org/10.1016/S0146-6380 (97)00066-1.

    Hostettler, F. D., Pereira, W. E., Kvenvolden, K. A., Van Geen, A., Luoma, S. N., Fuller, C. C., and Anima, R., 1999. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores., 64: 115-127, https://doi.org/10.1016/S03 04-4203(98)00088-7.

    Hu, L., Shi, X., Guo, Z., Wang, H., and Yang, Z., 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodyna- mic forcing., 335: 52-63, https://doi.org/10. 1016/j.margeo.2012.10.008.

    Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., and DiGuida, O. A., 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: A comparative, biomarker-based study., 32: 507-526, https://doi.org/10.1016/S0146-6380(00)00192-3.

    Jeng, W. L., and Huh, C. A., 2008. A comparison of sedimen- tary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough., 28: 582-592, https://doi.org/10.1016/j.csr.2007.11. 009.

    Kristen, I., Wilkes, H., Vieth, A., Zink, K. G., Plessen, B., Thorpe, J., Partridge, T. C., and Oberh?nsli, H., 2010. Bio- marker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: Evidence for deglacial wetness and early Holocene drought from South Africa., 44: 143-160, https://doi.org/10. 1007/s10933-009-9393-9.

    Kuang, H., Zhou, H., Hu, J., Yang, X., Peng, P., and Yang, H., 2013. Variations of-alkanes and compound specific carbon isotopes in sedments from Huguanyan Maar lake during the last glacial maximum and holoceneoptimum: Implications for paleovegetation., 33 (6): 1222-1233, https://doi.org/10.3969/j.issn.1001-7410.2013.06.18.

    Lane, C. S., 2017. Modern-alkane abundances and isotopic composition of vegetation in a gymnosperm-dominated ecosystem of the southeastern U.S. coastal plain.,105: 33-36, https://doi.org/10.1016/j.orggeo chem.2016.12.003.

    Li, Y., Xiong, Y., Yang, W., Xie, Y., Li, S., and Sun, Y., 2009. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills., 58: 114-117, https://doi.org/ 10.1016/j.marpolbul.2008.08.012.

    Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., and Jiang, W., 2016. Leaf wax-alkane distributions in Chinese loess since the Last Glacial Maximum and implications for paleo- climate., 399: 190-197, https://doi. org/10.1016/j.quaint.2015.04.029.

    Lim, D. I., Choi, J. Y., Jung, H. S., Rho, K. C., and Ahn, K. S., 2007. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas., 73: 145-159, https://doi.org/10.1016/j.pocean. 2007.02.004.

    Liu, J., Yu, Z., Zang, J., Sun, T., Zhao, C., and Ran, X., 2015a. Distribution and budget of organic carbon in the Bohai and Yellow Seas., 30: 564-578, https:// doi.org/10.11867/j.issn.1001-8166.2015.05.0564 (in Chinese with English abstract).

    Liu, L. Y., Wang, J. Z., Guan, Y. F., and Zeng, E. Y., 2012. Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments off China., 64: 1940-1946, https://doi.org/10.1016/j.marpolbul. 2012. 04.023.

    Liu, W., Ning, Y., An, Z., Wu, Z., Lu, H., and Cao, Y., 2005. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau., 48 (1): 93-99, https://doi.org/10.1360/02yd 0148.

    Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., and Leng, Q., 2015b. Carbon isotope composition of long chain leaf wax- alkanes in lake sediments: A dual indicator of paleoenviron- ment in the Qinghai-Tibet Plateau., 83-84: 190-201, https://doi.org/10.1016/j.orggeochem.2015. 03.017.

    Lu, X., Chen, Y., Huang, G., Liu, D., Tang, J., Li, J., and Zhang, G., 2011. Distribution and sources of lipid biomakers in surface sediments of the Yellow Sea and Bohai Sea., 20: 1117-1122, https://doi.org/ 10.16258/j.cnki.1674-5906.2011.z1.013.

    Mead, R., Xu, Y., Chong, J., and Jaffé, R., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of-alkanes.,36: 363-370. https://doi. org/10.1016/j.orggeochem.2004.10.003

    Meyers, P. A., and Ishiwatari, R., 1993. The early diagenesis of organic matter in lacustrine sediments,, Springer, 185-209. https://doi.org/10.1007/978-1-4615-2890- 6_8.

    Mügler, I., Sachse, D., Werner, M., Xu, B., Wu, G., Yao, T., and Gleixner, G., 2008. Effect of lake evaporation on δD va- lues of lacustrine n-alkanes: A comparison of Nam Co (Tibe- tan Plateau) and Holzmaar (Germany)., 39: 711-729, https://doi.org/10.1016/j.orggeochem. 2008.02.008.

    Pancost, R. D., Baas, M., Van Geel, B., and Sinninghe Damsté, J. S., 2002. Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog., 33: 675-690, https://doi.org/10.1016/S0146- 6380(02)00048-7.

    Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., Yang, G., Liu, Y., Yao, Z., and Liu, S., 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea., 390: 270-281, https://doi.org/10.1016/j. margeo.2017.06.004.

    Rao, Z., Jia, G., Zhu, Z., Wu, Y., and Zhang, J., 2008. Compara- tive study and significance on carbon isotopes of total organic matter and long-chain-alkanes in topsoil of eastern China., 53: 2077-2084.

    Rao, Z., Zhu, Z., Jia, G., Zhang, X., and Wang, S., 2011. Compound-specific hydrogen isotopes of long-chain-alka- nes extracted from topsoil under a grassland ecosystem in northern China., 54: 1902-1911, https://doi.org/10.1007/s11430-011-4252-8.

    Schefu?, E., Ratmeyer, V., Stuut, J. B. W., Jansen, J. H. F., and Sinninghe Damsté, J. S., 2003. Carbon isotope analyses of-alkanes in dust from the lower atmosphere over the central eastern Atlantic., 67: 1757-1767, https://doi.org/10.1016/S0016-7037(02)01414-X.

    Sikes, E. L., Uhle, M. E., Nodder, S. D., and Howard, M. E., 2009. Sources of organic matter in a coastal marine environ- ment: Evidence from-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand., 113: 149- 163, https://doi.org/10.1016/j.marchem.2008.12.003.

    Silliman, J. E., and Schelske, C. L., 2003. Saturated hydro- carbons in the sediments of Lake Apopka, Florida., 34: 253-260, https://doi.org/10.1016/S0146- 6380(02)00169-9.

    Sun, D., Tang, J., He, Y., Liao, W., and Sun, Y., 2018a. Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River Mouth, Northeast China.,118: 89-102, https:// doi.org/10.1016/j.orggeochem.2017.12.009.

    Sun, W., Zhang, E., Liu, E., Chang, J., Chen, R., and Shen, J., 2018b. Glacial-interglacial vegetation changes in Northeast China inferred from isotopic composition of pyrogenic carbon from Lake Xingkai sediments.,121: 80-88, https://doi.org/10.1016/j.orggeochem.2018.03.004.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2016. Diverse origins and pre-depositional histo- ries of organic matter in contemporary Chinese marginal sea sediments., 191: 70-88, https://doi.org/10.1016/j.gca.2016.07.019.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2015. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance.,414: 77-86, https://doi.org/10.1016/j.epsl.2015. 01.004.

    Wang, S., Liu, G., Yuan, Z., and Da, C., 2018.-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record., 150: 199-206, https://doi.org/10.1016/j. ecoenv.2017.12.016.

    Wang, Y., Liu, D., Richard, P., and Li, X., 2013. A geochemical record of environmental changes in sediments from Sishili Bay, northern Yellow Sea, China: Anthropogenic influence on organic matter sources and composition over the last 100 years.,77: 227-236, https://doi.org/ 10.1016/j.marpolbul.2013.10.001.

    Wang, Z., and Fingas, M., 2006. Oil and petroleum product fingerprinting analysis by gas chromatographic techniques., 93: 1027.

    Xing, L., Zhang, H., Yuan, Z., Sun, Y., and Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf., 31: 1106-1115, https://doi.org/10.1016/j.csr.2011.04.003.

    Yang, Z. S., and Liu, J. P., 2007. A unique Yellow River-deri- ved distal subaqueous delta in the Yellow Sea., 240: 169-176, https://doi.org/10.1016/j.margeo.2007.02. 008.

    Zhang, S., Li, S., Dong, H., Zhao, Q., Lu, X., and Shi, J., 2014. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements and-alkanes., 88: 389-397, https://doi.org/10.1016/j.marpolbul.2014.07.064.

    Zhang, Z., Zhao, M., Lu, H., and Faiia, A. M., 2003. Lower temperature as the main cause of C4plant declines during the glacial periods on the Chinese Loess Plateau., 214: 467-481, https://doi.org/10. 1016/S0012-821X(03)00387-X.

    Zhao, B., Zhang, Y., Huang, X., Qiu, R., Zhang, Z., and Meyers, P. A., 2018. Comparison of-alkane molecular, carbon and hydrogen isotope compositions of different types of plants in the Dajiuhu peatland, central China., 124: 1-11, https://doi.org/10.1016/j.orggeochem.2018.07.008.

    Zheng, S. X., and Shangguan, Z. P., 2007. Foliar δ13C values of nine dominant species in the Loess Plateau of China., 45 (1): 110-119, https://doi.org/10.1007/s11099- 007-0017-1.

    June 16, 2020;

    September 23, 2020;

    November 3, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . E-mail: xinglei@ouc.edu.cn

    (Edited by Ji Dechun)

    猜你喜歡
    順利進(jìn)行圖像識(shí)別電力設(shè)備
    加強(qiáng)電力設(shè)備運(yùn)維云平臺(tái)安全性管理
    基于Resnet-50的貓狗圖像識(shí)別
    電子制作(2019年16期)2019-09-27 09:34:50
    高速公路圖像識(shí)別技術(shù)應(yīng)用探討
    科學(xué)課,合理的材料利于課的進(jìn)行
    科學(xué)課,合理的材料利于課的進(jìn)行
    圖像識(shí)別在物聯(lián)網(wǎng)上的應(yīng)用
    電子制作(2018年19期)2018-11-14 02:37:04
    圖像識(shí)別在水質(zhì)檢測(cè)中的應(yīng)用
    電子制作(2018年14期)2018-08-21 01:38:16
    電力設(shè)備運(yùn)維管理及安全運(yùn)行探析
    基于壓縮感知的電力設(shè)備視頻圖像去噪方法研究
    基于改進(jìn)Canny算子的電力設(shè)備圖像檢測(cè)研究
    2022亚洲国产成人精品| 欧美高清成人免费视频www| 国产成年人精品一区二区| 亚洲激情五月婷婷啪啪| 夜夜看夜夜爽夜夜摸| av.在线天堂| 欧美一区二区精品小视频在线| 丝袜喷水一区| 看黄色毛片网站| 国产一级毛片在线| 久久久久久久亚洲中文字幕| 精品久久久久久久久久久久久| 久久婷婷人人爽人人干人人爱| 观看免费一级毛片| 久久久亚洲精品成人影院| 99久久精品一区二区三区| 亚洲18禁久久av| 国内精品美女久久久久久| 美女被艹到高潮喷水动态| 精品人妻熟女av久视频| 欧美一区二区亚洲| 欧美bdsm另类| 少妇高潮的动态图| 精品人妻熟女av久视频| 午夜爱爱视频在线播放| 日日干狠狠操夜夜爽| 日韩成人av中文字幕在线观看| 亚洲欧美日韩卡通动漫| videossex国产| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| 亚洲欧美一区二区三区国产| 99热全是精品| 亚洲国产成人一精品久久久| 国产色婷婷99| 亚洲av中文字字幕乱码综合| 超碰97精品在线观看| 欧美成人精品欧美一级黄| 九九爱精品视频在线观看| 久久久a久久爽久久v久久| 日韩一区二区视频免费看| 欧美高清成人免费视频www| 久久鲁丝午夜福利片| 黄色日韩在线| 亚洲电影在线观看av| av在线蜜桃| 日日啪夜夜撸| 免费看a级黄色片| eeuss影院久久| 久久99热这里只有精品18| 国产黄a三级三级三级人| 日韩强制内射视频| 久久99热这里只频精品6学生 | 国产精品,欧美在线| 国产成年人精品一区二区| 观看美女的网站| 亚洲国产精品成人综合色| 亚洲va在线va天堂va国产| 看十八女毛片水多多多| 欧美成人免费av一区二区三区| 女人被狂操c到高潮| 91精品国产九色| 久久久久久久国产电影| 国产v大片淫在线免费观看| 建设人人有责人人尽责人人享有的 | 午夜精品一区二区三区免费看| 亚洲国产精品久久男人天堂| 国产精品蜜桃在线观看| 国产一级毛片在线| 欧美另类亚洲清纯唯美| 亚洲精品456在线播放app| 少妇人妻精品综合一区二区| 亚洲欧美一区二区三区国产| 亚洲最大成人手机在线| 在现免费观看毛片| 嫩草影院入口| 男女视频在线观看网站免费| 国产亚洲午夜精品一区二区久久 | 99热这里只有是精品在线观看| 一二三四中文在线观看免费高清| 亚洲欧洲日产国产| 久久久成人免费电影| 午夜a级毛片| 身体一侧抽搐| 欧美激情国产日韩精品一区| 亚洲,欧美,日韩| 99热精品在线国产| 高清毛片免费看| 国产精品美女特级片免费视频播放器| 久久久久久国产a免费观看| 欧美bdsm另类| 男女下面进入的视频免费午夜| 国产精品国产三级专区第一集| 亚洲精品久久久久久婷婷小说 | av免费在线看不卡| 2021天堂中文幕一二区在线观| 国产三级中文精品| av在线观看视频网站免费| 久久精品人妻少妇| 午夜福利高清视频| 国产乱人视频| 亚洲国产精品sss在线观看| 亚洲成人精品中文字幕电影| 永久免费av网站大全| av福利片在线观看| 久久亚洲国产成人精品v| 亚洲精品乱码久久久v下载方式| 女的被弄到高潮叫床怎么办| 亚洲四区av| 亚洲国产色片| 99久久精品国产国产毛片| 一本一本综合久久| 国产精品久久视频播放| 岛国在线免费视频观看| 视频中文字幕在线观看| 99久久无色码亚洲精品果冻| 免费观看人在逋| 午夜免费激情av| 一边摸一边抽搐一进一小说| 久久综合国产亚洲精品| 免费电影在线观看免费观看| 高清日韩中文字幕在线| 高清av免费在线| 国产黄a三级三级三级人| 一级毛片久久久久久久久女| 嫩草影院入口| 能在线免费观看的黄片| 最近的中文字幕免费完整| 欧美3d第一页| 成人亚洲精品av一区二区| 亚洲人成网站在线播| 欧美成人免费av一区二区三区| 99热这里只有是精品在线观看| 国产精品永久免费网站| 中文字幕制服av| 国产精品久久久久久久久免| 麻豆av噜噜一区二区三区| 中文字幕亚洲精品专区| 国产单亲对白刺激| 亚洲国产成人一精品久久久| 久久久久久久国产电影| 高清毛片免费看| 级片在线观看| 国产成人一区二区在线| 夫妻性生交免费视频一级片| 又粗又爽又猛毛片免费看| 看非洲黑人一级黄片| АⅤ资源中文在线天堂| 午夜亚洲福利在线播放| 能在线免费看毛片的网站| 人妻少妇偷人精品九色| 亚洲久久久久久中文字幕| 欧美日本视频| 三级男女做爰猛烈吃奶摸视频| 男人舔奶头视频| 在线免费观看的www视频| 青青草视频在线视频观看| 免费观看的影片在线观看| 国产成人aa在线观看| 日本三级黄在线观看| 欧美人与善性xxx| 亚洲经典国产精华液单| 亚洲精品乱码久久久久久按摩| 欧美bdsm另类| 欧美一区二区亚洲| 中文乱码字字幕精品一区二区三区 | 亚洲中文字幕一区二区三区有码在线看| 国产午夜精品久久久久久一区二区三区| 最近最新中文字幕免费大全7| 超碰av人人做人人爽久久| 久久久久九九精品影院| 成年免费大片在线观看| 久久精品国产鲁丝片午夜精品| 国产成人一区二区在线| 国产午夜福利久久久久久| 免费观看a级毛片全部| 亚洲18禁久久av| 一夜夜www| 三级毛片av免费| 丝袜喷水一区| 亚洲国产精品合色在线| 成年女人看的毛片在线观看| 99久久精品热视频| 狠狠狠狠99中文字幕| 国产精品美女特级片免费视频播放器| 成人亚洲精品av一区二区| 99热6这里只有精品| 免费看日本二区| 亚洲一区高清亚洲精品| 又黄又爽又刺激的免费视频.| 中文资源天堂在线| 中文天堂在线官网| 99热网站在线观看| 国产精品爽爽va在线观看网站| 男插女下体视频免费在线播放| 欧美另类亚洲清纯唯美| av在线亚洲专区| 91久久精品电影网| 搡女人真爽免费视频火全软件| 天美传媒精品一区二区| 在线免费观看不下载黄p国产| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 床上黄色一级片| 亚洲欧美一区二区三区国产| 中文资源天堂在线| 国产精品国产三级专区第一集| 午夜亚洲福利在线播放| 久久精品久久久久久久性| 亚洲欧美成人精品一区二区| 国产极品天堂在线| 免费看美女性在线毛片视频| 国产麻豆成人av免费视频| 麻豆一二三区av精品| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 能在线免费观看的黄片| 日韩在线高清观看一区二区三区| 日韩av不卡免费在线播放| 亚洲国产欧美在线一区| 美女cb高潮喷水在线观看| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| eeuss影院久久| 99久久无色码亚洲精品果冻| 干丝袜人妻中文字幕| 色5月婷婷丁香| 免费观看a级毛片全部| 69人妻影院| 亚洲久久久久久中文字幕| 九九在线视频观看精品| 五月玫瑰六月丁香| 久久久国产成人免费| 又爽又黄a免费视频| 国产精品.久久久| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 精品久久久久久久久久久久久| 波野结衣二区三区在线| 亚州av有码| 免费观看的影片在线观看| 青春草视频在线免费观看| 永久免费av网站大全| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 青春草视频在线免费观看| 男人舔奶头视频| 亚洲欧洲日产国产| 日韩亚洲欧美综合| 中文在线观看免费www的网站| 国产黄片美女视频| 搡女人真爽免费视频火全软件| 一个人免费在线观看电影| 超碰97精品在线观看| 国产成人freesex在线| av国产免费在线观看| 精品久久久久久久末码| av黄色大香蕉| 亚洲欧美精品自产自拍| 日韩制服骚丝袜av| 美女内射精品一级片tv| 99久久人妻综合| 亚洲色图av天堂| 免费电影在线观看免费观看| 午夜精品在线福利| 特大巨黑吊av在线直播| 国产精品乱码一区二三区的特点| 日韩一本色道免费dvd| 国产成人福利小说| 一级毛片我不卡| 国产大屁股一区二区在线视频| 在线观看66精品国产| 国产亚洲91精品色在线| av女优亚洲男人天堂| 99热精品在线国产| 亚洲无线观看免费| 欧美不卡视频在线免费观看| 国产乱人视频| 免费大片18禁| 午夜精品国产一区二区电影 | 亚洲av免费在线观看| 春色校园在线视频观看| 久久人妻av系列| 麻豆久久精品国产亚洲av| 国产欧美另类精品又又久久亚洲欧美| 午夜福利视频1000在线观看| 日本一本二区三区精品| av福利片在线观看| 亚洲国产精品专区欧美| 春色校园在线视频观看| 老师上课跳d突然被开到最大视频| 国产av码专区亚洲av| 精品一区二区免费观看| 国语对白做爰xxxⅹ性视频网站| 国产又黄又爽又无遮挡在线| 精品熟女少妇av免费看| 国产一区二区在线av高清观看| 国产人妻一区二区三区在| 亚洲三级黄色毛片| 国产一级毛片七仙女欲春2| 床上黄色一级片| 亚洲欧美日韩高清专用| 中文字幕久久专区| 亚洲精品aⅴ在线观看| 亚洲av免费在线观看| 人妻少妇偷人精品九色| av在线亚洲专区| 国产不卡一卡二| 国产在视频线精品| 日本一本二区三区精品| 中文天堂在线官网| 国产一区二区亚洲精品在线观看| 水蜜桃什么品种好| 色5月婷婷丁香| 中文欧美无线码| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| av在线天堂中文字幕| 亚洲久久久久久中文字幕| 九九在线视频观看精品| 99久久中文字幕三级久久日本| 久久久久网色| 一级av片app| 18+在线观看网站| 久久精品人妻少妇| av在线天堂中文字幕| 最近手机中文字幕大全| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 1000部很黄的大片| 国产一区二区在线av高清观看| 老司机影院成人| 在线播放无遮挡| 久久久久精品久久久久真实原创| 国产精品久久视频播放| 黄色欧美视频在线观看| 久久欧美精品欧美久久欧美| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 午夜福利网站1000一区二区三区| 国产精品爽爽va在线观看网站| 成人鲁丝片一二三区免费| 伦理电影大哥的女人| 高清日韩中文字幕在线| 成人av在线播放网站| 91精品一卡2卡3卡4卡| 国内揄拍国产精品人妻在线| 久久久久网色| 国产成人午夜福利电影在线观看| 国产精品无大码| 国产亚洲av嫩草精品影院| 国产精品电影一区二区三区| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 国产精品电影一区二区三区| av播播在线观看一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲三级黄色毛片| 日本与韩国留学比较| 免费观看的影片在线观看| 亚洲最大成人手机在线| 国产精品永久免费网站| 久久久久久久久久久免费av| eeuss影院久久| 精品欧美国产一区二区三| 亚洲国产日韩欧美精品在线观看| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 午夜激情福利司机影院| 国产精品99久久久久久久久| 国产 一区精品| 成人无遮挡网站| 免费人成在线观看视频色| 欧美日韩在线观看h| 少妇猛男粗大的猛烈进出视频 | 国产真实伦视频高清在线观看| 亚洲最大成人av| 久久精品国产99精品国产亚洲性色| 国产精品99久久久久久久久| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 亚洲自偷自拍三级| 麻豆av噜噜一区二区三区| 看十八女毛片水多多多| 亚洲国产欧洲综合997久久,| 人妻系列 视频| 国产精品久久久久久久电影| 久久久久久久久大av| 1024手机看黄色片| 国产探花极品一区二区| 亚洲熟妇中文字幕五十中出| 老司机福利观看| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 成人美女网站在线观看视频| av播播在线观看一区| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| 国产欧美另类精品又又久久亚洲欧美| 干丝袜人妻中文字幕| 国产极品精品免费视频能看的| 听说在线观看完整版免费高清| 国产在线一区二区三区精 | 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 亚洲av中文av极速乱| 一二三四中文在线观看免费高清| 亚洲av成人精品一区久久| 亚洲欧美精品专区久久| 男人的好看免费观看在线视频| 亚洲欧美成人精品一区二区| 中文字幕av成人在线电影| 亚洲欧美日韩卡通动漫| 国产激情偷乱视频一区二区| eeuss影院久久| 三级毛片av免费| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 老女人水多毛片| 五月伊人婷婷丁香| 中文字幕精品亚洲无线码一区| 欧美日韩在线观看h| 一夜夜www| 欧美潮喷喷水| 美女国产视频在线观看| 建设人人有责人人尽责人人享有的 | 色哟哟·www| 极品教师在线视频| 91午夜精品亚洲一区二区三区| 午夜老司机福利剧场| 免费看光身美女| 久久久久久国产a免费观看| av线在线观看网站| 亚洲激情五月婷婷啪啪| 色播亚洲综合网| 少妇的逼水好多| 爱豆传媒免费全集在线观看| 精品久久久久久成人av| 国产三级在线视频| 亚洲欧美日韩高清专用| 老司机影院毛片| av在线天堂中文字幕| 天堂网av新在线| 午夜a级毛片| 最近的中文字幕免费完整| 伊人久久精品亚洲午夜| 国国产精品蜜臀av免费| 尤物成人国产欧美一区二区三区| 久久久午夜欧美精品| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 一区二区三区高清视频在线| 日本一本二区三区精品| 成年女人看的毛片在线观看| 国产成人精品婷婷| 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| 高清日韩中文字幕在线| 晚上一个人看的免费电影| 亚洲精品亚洲一区二区| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 中文字幕久久专区| 久久亚洲精品不卡| 啦啦啦啦在线视频资源| 大话2 男鬼变身卡| 性插视频无遮挡在线免费观看| 亚洲人成网站在线观看播放| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 内射极品少妇av片p| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 中文资源天堂在线| 亚州av有码| 嘟嘟电影网在线观看| 你懂的网址亚洲精品在线观看 | 91精品一卡2卡3卡4卡| av又黄又爽大尺度在线免费看 | 夫妻性生交免费视频一级片| 久久久精品欧美日韩精品| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区视频9| 99久久精品国产国产毛片| 一个人看视频在线观看www免费| 国产成人福利小说| 九九爱精品视频在线观看| 亚洲欧美日韩无卡精品| 国产美女午夜福利| 大话2 男鬼变身卡| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 黄色欧美视频在线观看| 国产精品国产三级国产av玫瑰| 中文字幕亚洲精品专区| 亚洲精品日韩在线中文字幕| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区| 欧美激情在线99| 中文资源天堂在线| 舔av片在线| 亚洲成av人片在线播放无| 日本猛色少妇xxxxx猛交久久| 国产 一区 欧美 日韩| 五月伊人婷婷丁香| 男人狂女人下面高潮的视频| 久久99精品国语久久久| 少妇熟女欧美另类| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 国产一级毛片七仙女欲春2| 亚洲婷婷狠狠爱综合网| 免费无遮挡裸体视频| 免费观看人在逋| 97超碰精品成人国产| 变态另类丝袜制服| 国产亚洲av片在线观看秒播厂 | 久久精品国产亚洲av涩爱| 国产精品精品国产色婷婷| 国产又色又爽无遮挡免| 精品久久久久久久久av| 亚洲av成人精品一区久久| 美女国产视频在线观看| 级片在线观看| 在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 亚洲精品乱码久久久久久按摩| 日韩亚洲欧美综合| 亚洲av日韩在线播放| 国产老妇伦熟女老妇高清| 1000部很黄的大片| 亚洲av免费高清在线观看| av.在线天堂| 亚洲最大成人手机在线| 亚洲中文字幕一区二区三区有码在线看| 久久国内精品自在自线图片| 国产精品.久久久| 午夜日本视频在线| 欧美色视频一区免费| 亚洲精品aⅴ在线观看| 三级毛片av免费| 2021天堂中文幕一二区在线观| 99热这里只有是精品在线观看| av播播在线观看一区| 晚上一个人看的免费电影| 少妇被粗大猛烈的视频| 欧美高清性xxxxhd video| 菩萨蛮人人尽说江南好唐韦庄 | 伦理电影大哥的女人| 超碰av人人做人人爽久久| 人妻制服诱惑在线中文字幕| 国产精品久久久久久av不卡| 老司机影院毛片| 性色avwww在线观看| 日本黄色视频三级网站网址| 国内精品宾馆在线| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 中文天堂在线官网| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 国产单亲对白刺激| 精品国产三级普通话版| 精品久久久久久久久久久久久| 亚洲精品乱久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产成人91sexporn| 中文字幕免费在线视频6| 日本wwww免费看| 国产在视频线在精品| 亚洲国产欧洲综合997久久,| 99久久精品一区二区三区| 久久精品综合一区二区三区| 国产又色又爽无遮挡免| 精品久久国产蜜桃| 少妇的逼水好多| 校园人妻丝袜中文字幕| 九草在线视频观看| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 乱系列少妇在线播放| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| 只有这里有精品99| 老司机福利观看| av免费在线看不卡| 99热这里只有是精品50| 亚洲欧洲日产国产| 国产亚洲精品av在线| 18禁在线播放成人免费| 欧美人与善性xxx| 午夜福利在线观看吧| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看 | 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 久久久久精品久久久久真实原创| av在线老鸭窝| 久久精品综合一区二区三区| 在线播放无遮挡| av在线播放精品| 最近中文字幕2019免费版| 成人性生交大片免费视频hd| 欧美日本亚洲视频在线播放| 老司机福利观看| 菩萨蛮人人尽说江南好唐韦庄 |