李春雨,裴東興,瞿 竟
(1.中北大學 電子測試技術(shù)國防科技重點實驗室、太原 030051;2.中北大學 儀器科學與動態(tài)測試教育部重點實驗室, 太原 030051)
高g值加速度存儲測試系統(tǒng)在軍事武器精確打擊和航空航天系統(tǒng)的姿態(tài)控制中,尤其是加速度的精確獲取,對于引信觸發(fā)信號是至關(guān)重要的。MEMS加速度傳感器由于其固有頻率高,可測加速度量程大,可靠性高等優(yōu)勢,在武器的發(fā)射、制導、侵徹中得到廣泛應(yīng)用。同時,彈載測試系統(tǒng)對微型化、低功耗、高可靠性提出了更高的要求[1-2]。
高g值MEMS加速度計的內(nèi)部由于全橋傳感器各橋臂電阻制造不確定度的原因,阻值不會完全相同,在集成MEMS加速度計零位輸出較大時(電橋不平衡),應(yīng)該采用一定的補償措施,使得傳感器的靜態(tài)輸出接近于0.00 V。本文摒棄傳統(tǒng)的電位器調(diào)平方法,充分考慮抗沖擊性,采用高精度數(shù)字電橋,用BFGS方法,求解出需要并聯(lián)補償?shù)淖柚?,并精確控制數(shù)字電位器,自動調(diào)節(jié)電橋平衡。還能根據(jù)長時間加速度傳感器下的溫度漂移帶來的系統(tǒng)誤差,自動的調(diào)平電路,獲得更加精確的信號。有些復雜的算法和數(shù)據(jù)在彈載存儲測試系統(tǒng)中需要實時求解處理,本文就探索了一種應(yīng)用于DSP的非線性方程組的求解算法,最后在蘇試STI沖擊臺進行了測試,在高臺跌落、模擬彈體沖擊試驗中,驗證了系統(tǒng)的可行性和算法的可靠性。
如圖1所示,4個壓敏電阻組成全橋式應(yīng)變傳感器[3]。傳感器的核心采用單晶體結(jié)構(gòu)的高純度單質(zhì)硅,使用MEMS工藝在可以發(fā)生撓度形變的梁上集成4個電阻。當加速度存在時,4個應(yīng)變電阻阻值就會產(chǎn)生變化,并使得電橋產(chǎn)生微小輸出。在量程范圍內(nèi),輸出與加速度是線性關(guān)系[4]。輸出端電阻在2.5 kΩ左右,在3.3 V下,滿量程輸出35 mV。
圖1 MEMS加速度計內(nèi)部結(jié)構(gòu)示意圖
基于高g值MEMS加速度計的存儲測試系統(tǒng)[5]主要由高g值MEMS速度計及其他傳感器、信號調(diào)理、A/D轉(zhuǎn)換、數(shù)據(jù)存儲、控制電路等組成,如圖2所示。
圖2 高g值MEMS加速度存儲測試結(jié)構(gòu)框圖
信號調(diào)理模塊主要包括溫度補償電路、自動調(diào)平電路、信號放大與硬件濾波電路[6-8]。由于考慮彈載空間有限和系統(tǒng)低功耗特性,同時為了獲得更加純凈的有效信號,在此處沒有選擇BOOST升壓電路,而是選擇3.3 V低壓差降壓型MUX667電路供電[9],如圖3所示。
圖3 電源電路示意圖
MEMS加速度計的內(nèi)部原理如圖1所示,加速度計輸出信號后的放大電路如圖4所示,當微小的應(yīng)變信號輸出后,通過放大電路調(diào)理至合適的電壓范圍,給后級二階RC濾波器進行濾波處理。
圖4 加速度信號放大電路示意圖
加速度信號濾波器采用采用二階低通濾波,如圖5所示,截止頻率通過以下公式設(shè)定為
(1)
圖5 加速度信號濾波器示意圖
利用數(shù)字電位器,由于內(nèi)部的非易失性存儲器,出于電路安全性考慮,一般根據(jù)電路需求和系統(tǒng)輸出,合理配置數(shù)字電位器。數(shù)字電位器,沒有機械磨損和電刷,抗沖擊性好[10]。如圖6所示,通過DSP的I2C總線對數(shù)字電位器AD5235進行讀寫控制[11]。P2,P3端口等效替換圖1中并聯(lián)電阻R(2、1)或R(5、1))。
圖6 數(shù)字電位器電路示意圖
首先我們可以通過高精度萬用表測量電橋的外部管腳,獲得管腳間的阻值,并建立非線性方程組進行求解每個橋臂的阻值:
(2)
(3)
其中R=(R1,R2,R3,R4)T,f=(f1(R),f2(R),f3(R),f4(R)),c1是測出的R1和R2,R3,R4并聯(lián)的值,c2,c3,c4同理可測。因為在彈載存儲測試系統(tǒng)中不便于直接求解上述非線性方程組(2),于是提出了采用一種可以推廣的基于BFGS算法求解的方法,并能利用數(shù)字電位器進行調(diào)平。
BFGS算法是由C.G.Broyden、R.Fletcher、D.Goldfarb、D.F.Shanno 提出的,該擬牛頓法具有整體收斂性和較快的超線性收斂性,且由迭代產(chǎn)生的BFGS矩陣不易變?yōu)槠娈惥仃?,因而在本系統(tǒng)中所采用[12-14]。非線性方程的求解,尤其是對于彈載低功耗處理器而言是不易求解的[15]。若采用常見的牛頓迭代法來進行數(shù)值求解,當原函數(shù)的一階導數(shù)很小時,就會產(chǎn)生零除錯誤;如果求得的解過小時,就會產(chǎn)生大量迭代步驟,占用硬件資源;初始值選的不合適,算法的局部收斂性就會受影響,所以此處采用基于DSP彈載系統(tǒng)的BFGS算法求解系統(tǒng)產(chǎn)生的非線性方程組。流程如圖7所示。
圖7 BGFS算法流程框圖
2) 設(shè)定迭代初值r0,一般為了減少迭代次數(shù),提高迭代精度,我們初值的選定方法為四個橋臂阻值取平均,即
(4)
由于MEMS傳感器的橋臂電阻制造不確定度的影響,阻值略有不同,但都會在平均值附近,所以采用平均值后,可以減小與非線性方程組的解之間的初始誤差,減小迭代方向上的迭代次數(shù),加快迭代速度。對BFGS算法在DSP中移植解算的收斂性的影響表現(xiàn)為減少大量的迭代運算,節(jié)約DSP內(nèi)部資源,同時對瞬態(tài)系統(tǒng)所需的快速性有了更高保證。
3) 精度閾值一般為自動調(diào)零并聯(lián)數(shù)字電位器精度或者可用貼片電阻精度的十分之一。我們定義
gk=▽f(rk)
(5)
4) 利用近似Hessian矩陣的逆和在迭代k次處的梯度向量確定搜索方向,即擬牛頓方向
dk=-Dk·gk
(6)
5) 確定步長
(7)
sk=λkdk
(8)
(9)
6) 如果沒有大于設(shè)定閾值,就要重新確定搜索方向,進入循環(huán)
yk=gk+1-gk
(10)
(11)
基于DSP系統(tǒng)的BFGS算法的是求解非線性問題的最優(yōu)化方法之一,相比于牛頓法,BFGS算法利用DSP不需要求解復雜的Hessian矩陣的逆矩陣,而是利用正定矩陣來近似Hessian矩陣的逆,更不需要求解二階導數(shù),只需要知道目標函數(shù)的梯度即可,在運算復雜度上有了很大簡化。更高階的求解算法就要在DSP中設(shè)定更加復雜的運算步驟,不易實現(xiàn)且浪費大量硬件資源,所以在彈載測試系統(tǒng)中,根據(jù)需要求解目標的復雜度和解的預估特征,BFGS算法在筆者的應(yīng)用場景中,是最適合采用的方法。
實驗采用的蘇試加速度沖擊試驗臺,主要用于考核航空航天、兵器等軍工領(lǐng)域的科研產(chǎn)品的抗沖擊能力,沖擊能量高,加速度峰值、脈沖持續(xù)時間等關(guān)鍵參數(shù)可調(diào),圖8是實驗現(xiàn)場圖。
圖8 跌落沖擊實驗現(xiàn)場圖
把MEMS高g值加速度傳感器灌封好,置于沖擊臺上緊固,通過屏蔽線束接入已經(jīng)寫入BGFS算法的DSP彈載測試系統(tǒng)進行自動調(diào)零和采集,經(jīng)過數(shù)據(jù)采集,頻譜分析,軟件濾波,定標,得到了如圖9所示的加速度曲線。
圖9 基于BFGS算法的自動調(diào)零加速度曲線
同時,用標準傳感器得到的加速度曲線如圖10所示。通過比較可以得出,經(jīng)過BFGS算法自動調(diào)零的彈載測試系統(tǒng)能獲取與標準傳感器基本一致的時域特性(沖擊脈寬和加速度峰值)。
本系統(tǒng)還利用跌落實驗(其現(xiàn)場如圖11)來模擬實彈,進入實驗現(xiàn)場后,確定好實驗安全的距離,重錘通過導軌起落架上的電磁鐵吸合吊起,吊起至一定高度進行自由落體,沖擊較為硬質(zhì)殼體。
圖10 標準傳感器加速度曲線
圖11 模擬實驗現(xiàn)場圖
圖12 沖擊加速度曲線
跌落彈在自由落體中,撞擊地面的加速度隨時間變化可近似如圖12所示的曲線。忽略一定能量損失,曲線與時間軸包圍面積等于跌落彈落地前的速度,即
(12)
長時間持續(xù)做了多組實驗,記錄了不同跌落高度的幅值,如表1所示。通過高速相機,記錄跌落過程,計算2 m、3 m、4 m、5 m、6 m跌落接觸平均時間為700 μs、770 μs、812 μs、850 μs、878 μs,基本滿足式(12),系統(tǒng)的長時間穩(wěn)定性和數(shù)據(jù)的準確性得到證明。
表1 通過該算法調(diào)平傳感器測量的馬歇特錘加速度值
g
最后為了驗證跌落數(shù)據(jù)的一致性和系統(tǒng)的重復性,通過表1數(shù)據(jù),做了不同高度跌落一致性曲線(如圖13所示)和每次實驗的重復性曲線(如圖14所示),我們可以看出,模擬彈在相同高度跌落時,系統(tǒng)測得的沖擊加速度具有較好的一致性,且每次跌落的重復性較好。基于BFGS算法的高g值MEMS存儲測試系統(tǒng)中,DSP利用數(shù)字電位器自動調(diào)零獲得了較好的驗證。
圖13 不同高度跌落一致性曲線
圖14 每次實驗的重復性曲線
本文提出了一種基于BFGS算法的高g值MEMS存儲測試系統(tǒng)DSP利用數(shù)字電位器自動調(diào)零的方法,可以避開牛頓迭代法Hessian矩陣非正定的缺陷,保證較快的收斂速度,便于快速求解和精確調(diào)零,從硬件前端減少壓阻式傳感器溫漂誤差。
經(jīng)過數(shù)值分析,沖擊臺和實彈模擬實驗,驗證了系統(tǒng)的可靠性和實驗結(jié)果的一致性,為后期提供大規(guī)模電路的MEMS壓阻式高g值傳感器調(diào)零和惠斯通電橋配平衡提供了較為便捷的方法。