• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    橡膠木屑基活性炭—聚氨酯復(fù)合材料的制備及其微波吸收性能

    2015-01-01 08:20:12AzizahShaabanSianMengSeImranMohdIbrahimQumrulAhsan
    新型炭材料 2015年2期
    關(guān)鍵詞:木屑聚氨酯活性炭

    Azizah Shaaban,Sian-Meng Se,Imran Mohd Ibrahim,Qumrul Ahsan

    (1.Department of Engineering Materials,F(xiàn)aculty of Manufacturing Engineering,Universiti Teknikal Malaysia Melaka (UTeM),Hang Tuah Jaya 76100 Durian Tunggal,Melaka,Malaysia;2.Department of Telecommunication,F(xiàn)aculty of Electronics and Computer Engineering,Universiti Teknikal Malaysia Melaka (UTeM),Hang Tuah Jaya 76100 Durian Tunggal,Melaka,Malaysia)

    1 Introduction

    A wide range of fossil carbonaceous materials such as coal,peat and wood can be used as a carbon precursor for activated carbons.In addition,the agricultural and forestry wastes are inexpensive and renewable additional sources for activated carbons.These waste materials are believed to have little or no economic value,and their disposal often becomes a major issue.In Malaysia alone,several million tons of agricultural wastes are being disposed into landfills annually[1].Thus,the conversion of waste materials into activated carbons would be a value-added process.Also,it can reduce waste disposal burden,and more importantly,provides a potentially inexpensive alternative material to the existing commercial activated carbons[2].

    Activated carbons have a high porosity.They are large-surface-area materials with a large adsorption capacity produced by carbonization and activation of carbonaceous materials.They are widely used in filtration and purification applications,as catalyst supports and electrode materials of supercapacitors.Also,they can also be used in gas storage for natural gas vehicles[3].In addition to their large surface area and porosity,the presence of various functional groups allows a broad application of activated carbons such as pesticide adsorption to reduce pollutant and nutrient retention in soil[4].For instance,activated carbons derived from Jacaranda fruits and plum kernels are being used in water treatment[5].Due to a large number of applications,the preparation and characterisation of activated carbons have received a great deal of interests in both scientific and industrial fields.

    Generally,two types of activation processes are involved in the production of activated carbons,viz.(i)physical activation and (ii)chemical activation.Physical activation is carried out by a carbonization under an inert atmosphere above 400 ℃followed by an activation with gases such as steam or CO2.Chemical activation mixes uses chemical activating agents such as ZnCl2,H3PO4and alkaline hydroxides such as NaOH and KOH to activate the carboneous materials under an inert atmosphere[3,6].Chemical activation produces activated carbons with higher surface area and a higher yield[7]at a lower temperature than physical activation.Recent research studies showed that the phosphoric acid activation using microwave as a heating method yielded activated carbons with a better quality at a lower temperature than the normal heating method,which results a greatenergy saving[8,9].For a purpose of process optimization,the response surface methodology (RSM)was successfully applied to correlate the factors in the activation process with the microstructures and properties of the activated carbons[10].

    In general,ferrite,cobalt-nickel alloy and iron are suitable to enhance magnetic property,while carbon black,graphite,metal flake and activated carbon are used to modulate dielectric properties.These materials help to improve the microwave absorption owing to the contributions from their permeability and permittivity properties[11].These absorbers are usually in the form of pyramidal,honeycomb,walkway,wedge or hybrid shapes[12].However,they are synthetic,heavy,expensive and exhaustible materials.Rubber wood sawdust was chosen as the precursor for activated carbonsbecause of its availability as one of the main plants in Southern East Asia.In Malaysia,the estimated plantation area of rubber trees is 1.82 million hectares,which contributes to approximately 20% of the global plantation.Moreover,rubber wood sawdust has a high carbon and a low ash content[1,12].Furthermore,the activated carbons derived from rubber wood sawdust for microwave absorption has not yet been reported until now.Incorporating the high-surface-area wood-based activate carbon with polyurethane may produce composites with an enhanced dielectric properties for microwave absorption compared to pristine polyurethane.

    The current work focuses on the characterization of high-surface-area activated carbon synthesised from rubber wood sawdust through a three stage chemical activation as a microwave absorption material.This paper also addresses the fabrication of a flat-type absorber and the performance measurement of the absorbers such as dielectric constants,return loss and electromagnetic interference shielding efficiency(EMISE)in microwave absorption applications.

    2 Materials and methods

    2.1 Preparation of activated carbons

    The raw material of rubber wood sawdust was collected from a sawmill in Melaka,Malaysia.The sawdust was sieved to remove any lumps,dried at 105 ℃for 24 h and stored in a sealed container.Later,the dried rubber wood sawdust was ground using a lab-scale milling machine and sieved to 20 μm.Next,the C,H,N elements of the dried raw material was analysed by an elemental analyser (Thermo Scientific Flash,EA 1112).The relative percentages of the elements are provided in Table 1.It was found that the carbon content of the raw rubber wood sawdust was 43.27%,which is in good agreement with the results of other researchers[13,14].

    Table 1 Elemental CHN analysis on raw rubber wood sawdust.

    The preparation of activated carbon from rubber wood sawdust involved three stages.First,the dried rubber wood sawdust was refluxed with a base solution of 1.0 mol/L NaOH at 100 ℃ for 30 min.Then,the leached rubber wood sawdust was impregnated and activated with ZnCl2at 500 ℃for 60 min with the ZnCl2/wood sawdust mass ratios of 1 ∶1,1.5∶1 and 2 ∶1.).Finally,the activated samples were refluxed with an acid solution of 3 mol/L HCl for 30 min[2],dried at 100 ℃for 24 h and ground to obtain the activated carbons.The simplified process flow is shown in Fig.1,and the samples are grouped and labelled as given in Table 2.

    Fig.1 Process flow for activated carbon synthesis.

    The particle sizes of the ground activated carbons were analyzed with a Mastersizer Scirocco.

    2.2 Characterization of the activated carbons

    Prior to the fabrication of a microwave absorber,the derived activated carbons were characterized to select the most suitable sample as a filler of a composite as the microwave absorber.The activated carbon samples were characterized by X-Ray Diffraction(XRD)using Kα as the radiation source with a scanning speed of 2.5°·min-1,nitrogen adsorption with a Micromeritics ASAP 2010 to estimate the Brunauer-Emmett-Teller (BET)surface areas,scanning electron microscopy (SEM-Zeiss Evo 50)at 20 kV with a magnification of 500 for surface morphology observation and elemental analysis.

    2.3 Preparation of microwave absorbers

    Activated carbon R1.5 was used as a filler in microwave absorbing composite materials,owing to its high BET surface area.Polyurethane (PU)foams incorporated with R1.5 activated carbon at different loading levels (1%,2%,3%,5% and 8%)were prepared by a chemical blowing method using polyol and isocyanates as precursors in disposable plastic containers[15].The dielectric constant was measured using a Dielectric Agilent Network Analyzer Basics(85070)in the frequency range of 1-5 GHz.The measured dielectric constant was used to determine the thickness of the R1.5-filled PU foams using Equation 1 and 2[16].

    Table 2 Nomenclature of samples.

    At a frequency of 1.8 GHz:

    Where λo=the wavelength in free space,C is the light velocity,3 ×108m·s-1,f=the frequency,1.8 ×109Hz

    Where λδis the wavelength for a dielectric material and εris the relative dielectric constant of the dielectric material.

    For λo=16.66 cm and εr=3.0

    Two samples were produced based on wavelengths of λδ/4 and λδ/2 as tabulated in Table 3 with thicknesses of 2.4 and 4.8 cm,respectively.The overall dimensions of the fabricated flat shape absorbers were 30 cm ×30 cm in length (L)and width (W)with the desired thickness as shown in Fig.2.

    Table 3 Thicknesses of the fabricated microwave absorbers.

    Fig.2 (a)Dimensions of absorber and(b)fabricated microwave absorber.

    2.4 Measurement of return loss

    Fig.3 shows the experimental set up for the measurement of return loss with the IEEE method.The measurement was carried out using an Agilent antenna and hone that were connected to an Agilent Vector Network Analyzer.The test was carried out at the microwave frequency range of 1 to 3 GHz.The distance between the hone antenna and the test specimens were set to 1 m with a 45° angle.A pure zinc plate was used to obtain a 100% reflection and the tests were carried out by attaching 2.4 cm or 4.8 cm thick absorber on the zinc surface with a zero air gap(Fig.3).The return loss was calculated based on the difference between the two recorded reflected spectra for zinc and the absorber displayed in the network analyser.

    Fig.3 Experimental set-up for return loss measurements.

    2.5 Measurement of electromagnetic interference shielding efficiency (EMISE)

    EMISE was measured using a vector network analyser set over a frequency range of 1-2.5 GHz.The value is expressed in dB,which was calculated from the ratio of the incident to the transmitted power of an electromagnetic wave in Equation 3:

    Where Pi(or Ei)and Pt(or Et)are the incident power (or incident electric field)and the transmitted power (or transmitted electric field),respectively[17].

    3 Results and discussion

    3.1 Phase analysis by XRD

    Fig.4 shows the XRD patterns of a commercial activated carbon and samples with activated at different ZnCl2/wood saw dust ratios.The carbon peaks were detected at 2θ angles of 25-26° and 45°.Similar patterns were reported by Liou et al[6],in which two broad peaks at 2θ of 25-26° and 45° due to the turbostratic structure in disordered carbon.The higher is the impregnation ratio,the narrower are the peaks,indicating a relatively larger crystalline structure at a higher impregnation ratio.

    Fig.4 X-ray diffractographs of all activated carbon samples.

    3.2 BET surface area analysis

    Table 4 lists the particle size for all samples.It was found that,the percentage of particles less than 120 μm is 90.75% for the sample R1.5 and those for the samples R1 and R2 are 69.50% and 85.74%,respectively.Usually,a small particle size is associated with a high BET surface area.This observation is supported by the BET surface areas of all samples shown in Fig.5 and Table 5.The activated carbon R1.5 demonstrated the highest surface area of 1 301 m2/g while the R1 and R2 displayed surface areas of 920 m2/g and 606 m2/g,respectively.

    Table 4 Percentage of rubber wood sawdust activated carbon with particle size less than 120 μm.

    Fig.5 BET surface area and micropore volume of all samples.

    The surface area of AC was 672 m2/g,which is lower than that of the samples R1 and R1.5.A large surface area of an activated carbon provides a high absorption capacity and an improved dielectric property[19].The BET surface area of R1 was lower than that of R1.5,which may be ascribed to a partial acti vation occurring only at the exterior of rubber wood sawdust.As a result,the pores were not fully developed due to an insufficient ZnCl2usage.An increase in the amount of activating agent promotes the contact area between the rubber wood sawdust and the activating agent and,therefore,increases the surface area of the resulting activated carbon.When the impregnation ratio exceeded 1.5,the surface area of the activated carbon decreased,which may be caused by blocking of the surface of the developed micropores by ZnCl2that may not be completely removed by the washing[6].Therefore,R1 and R2 showed lower surface areas than R1.5.Similarly,the micropore volume for the sample R1.5 showed the highest value of 0.54 cm3/g.Hence,R1.5 was selected as the filler for microwave absorber owing to its highest surface area,highest micropore volume and the smallest pore diameter.Similar trends have also been reported by other researchers for agro-based products[3].

    Table 5 BET surface area and micropore volume analysis of all activated carbon samples.

    3.3 Surface morphology and SEM-EDX analysis

    Fig.6 reveals that the black spots on the polyurethane (PU)wall of open-celled network structure of a composite containing 8% activated carbon are particles of activated carbon.

    Fig.6 Impregnation of activated carbon in polyurathane network for sample containing 8% activated carbon.

    Surface morphologies of all activated carbon samples were analyzed with SEM and are shown in Figs.7a-d.Fig.7a shows the micrograph for raw rubber wood sawdust,while Fig.7b-d show the micrographs of the samples R1,R1.5 and R2.It was observed that the surface of the sample R2 has ridges,resembling a series of parallel lines as compared to the samples R1 and R1.5.Activated carbons have tiny pores on their surface,and these pores are important for absorbing microwave energy.Based on the outward appearances,it is concluded that the pores are not interconnected.Table 6 denotes the percentage of carbon content in all samples examined by EDX.It was found that the sample R1 has the lowest percentage of carbon content.

    3.4 Measurement of dielectric constant

    The synthesized activated carbons were incorporated in the PU foam with various percentages (0-8%).The dielectric constant,ε’and dielectric loss ε”,of polyurethane-activated carbon composites of different activated carbon contents were obtained at a frequency range of 1-5 GHz at room temperature.As seen from Fig 8a the values of dielectric constant,ε’increase with the increasing content of activated carbon,indicating a strong dependence on activated carbon but the values of dielectric constant change very little regardless of a frequency increase for any weight percentage of active carbon.

    Fig.7 SEM micrographs of samples:(a)raw rubber wood sawdust,(b)R1,(c)R1.5 and (d)R2.

    Table 6 Percentage of localised carbon content by SEM-EDX analysis.

    Fig.8 (a)Material dielectric constant and (b)imaginary dielectric loss (ε”)of several percentages (0-8%)of activated carbon content in PU foam at a frequency range of 1-5 GHz.

    The dielectric constant is directly proportional to the activated carbon content in the composite as shown in Fig.9.These results indicate that increasing activated carbon content is an efficient way to increase energy storage.The storage capability of electrical energy is the highest for the composite containing 8%activated carbon (Fig.8a).It was also found in the present study that a further increase of carbon content beyond 8% led to a poor bonding between activated carbon and polyurethane resin,causing a rupture of PU foam.The composite containing 8% activated carbon has the highest dielectric constant (ε’)value of 3.0 at 1.8 GHz.The values of ε’for the composites containing less than up 3% activated carbon remain almost same with the content of activated carbon in the frequency range of 1-5 GHz.For the composite with 5% activated carbon,the decrease in the dielectric constant is relatively small at a high frequency side within 1-5 GHz .At the low frequency range,ε’declines from 3.2 to 3.0 with an increasing frequency from 1 to 2 GHz for the sample containing 8% activated carbon however,it remains the same in the high frequency region (2-5 GHz).This phenomenon is a result of the increase in the polarity of the electrical dipoles in the composite polymer,which contributes to the absorption of microwave energy[20].Moreover,with increasing frequency,the polarization of the dielectric dipoles has the the same phase as the oscillation of the electric field vector[21].The tendencies of the changes in dielectric loss with frequency and filler are almost analogous to those observed in the case of dielectric constant.Fig.8a indicates the real and the Fig.8b shows the imaginary dielectric constants of all samples in the frequency range of 1-5 GHz.The spectra for the imaginary part,ε”(Fig.8b)is always lower than that of the real part of the dielectric constant,ε’(Fig.8a).Fig.8b indicates that the dielectric loss,ε”has the similar trend with ε’,where the sample with 8% activated carbon has the highest value of ε”.The same pattern of spectra was reported by other researchers[22],which should be caused by the fact that the maximum dielectric loss occurs when the filler content exceeds the percolation threshold.

    Fig.9 Material dielectric constant (ε’)of PU foam at several percentages (0-8%)of activated carbon at a frequency of 1.8 GHz.

    3.5 Microwave absorption properties

    The microwave absorbers fabricated with 8% activated carbon (R1.5)of two different thicknesses were tested for measuring the return loss of the microwave.These samples were chosen as they have high dielectric constant,which contributes to the permittivity of the microwave absorber.In addition,the pristine polyurethane sample without the addition of activated carbon was tested to observe the minimum return loss.The effect of thickness on the microwave absorption properties is shown in Fig.10 and the absorption loss values are given in Table 7.Fig.10 shows that the absorption coefficient increases with the thickness of the sample.The microwave absorption properties are improved with the addition of 8%activated carbon,and it is worth noting that the absorption bandwidths (RL better than -10 dB)are enhanced and the peak reflection loss is higher than the pristine sample.It is also found that the attenuation peaks shift to a lower frequency and the peak reflections are enhanced with the increasing sample thickness.As shown in Fig.10,in the 1.8-1.9 GHz frequency range,the return loss is -8.8 and-10.4 dB for the 2.4 cm and 4.8 cm thick samples,respectively.In addition,the maximum return loss peaks for the 4.8 cm thick sample below -10 dB shift to higher frequency ranges (1.36-1.54 and 1.70 -1.95 dB)than that for the 2.4 cm thick sample.These results suggest that at a sample thickness above λ/2,microwave absorbing materials have low reflectivities over a wide range of frequencies[23]and also indicate that the fabricated microwave absorber is one of the candidate materials for the applications in a Global System for a mobile frequency of 1.8 GHz,which can decrease the strengths of the electromagnetic energy transmitted from the telecommunication towers.In comparison with the previous work carried out by Normikman et al.,where a composite consisting of 90% rice husk and 10% urea formaldehyde resin is used,the average return loss in a pyramidal shape is approximately -16 dB in a frequency range of 1-2 GHz[22].

    Fig.10 Return loss spectra of different thicknesses of 8% R1.5 loaded PU foam at the frequency range of 1 to 3 GHz.

    3.6 Electromagnetic interference shielding efficiency (EMISE)

    Fig.11 shows the variation of EMISE under microwave for the 2.4 and 4.8 cm thick polyurethaneactivated carbon composites with frequency from 1 to 2.5 GHz.The higher the EMISE value in decibels,the greater is the energy absorbed by the sample.It is also evident from Fig.11 that the maximum EMISE occurs at 1.2 GHz for the frequency range (1-2.5 GHz)tested.The shielding efficiency increases with the thickness of the samples with the EMISE of 1.2 and 3 dB for the thickness of 2.4 and 4.8,respectively.With a thick sample,the energy passing through the absorber is low,thus indicating that more energy is absorbed by the thick sample.The energy absorption in terms of EMISE is also above 2 dB at 1.6-1.8 GHz and 2.0-2.1 GHz ranges for the 4.8 cm thick sample.It can thus be inferred that the thick sample is an ideal material for electromagnetic interference shielding at a frequency range of 1-2.5 GHz.This trend has also been confirmed by other researchers using the polyurethane-polyaniline composites as the microwave absorbing material[24].

    Table 7 Detailed data of return loss for a frequency of 1.8 GHz.

    Fig.11 EMI shielding efficiency spectra of different thicknesses of 8% R1.5-loaded PU foam at the frequency range of 1 to 2.5 GHz.

    4 Conclusions

    Locally available rubber wood sawdust was used as a low-cost alternative precursor for chemically activated carbons with ZnCl2as an activating agent.The activated carbon obtaine at a ZnCl2/wood sawdust mass ratios of 1.5 has a BET surface area of 1 301 m2/g and is used as filler of the polyurethane matrix composites that serve as an alternative for existing synthetic microwave absorbing materials.Compared to other composite material using agricultural waste as raw additive,activated carbon has improved the dielectric properties of the composite materials and activated carbons loaded in the polyurethane is rather low[22].The reflection loss of the activated carbon filled polyurethane composite absorber is -10.0 dB at 1.8 GHz,and its EMI shielding efficiency is above 2 dB in a frequency range of 1-2.5 GHz for the sample with a thickness of 4.8 cm.These results indicate that the high specific surface area activated carbon derived from rubber wood sawdust has great potential to serve as filler of dielectric and microwave absorbing materials.

    Acknowledgements

    The authors are very thankful to the Faculty of Manufacturing,Electronics and Computer and Mechanical Engineering,UniversitiTeknikal Malaysia Melaka (UTeM)for providing the facilities and constant encouragement.The authors would also like to acknowledge funding from a short-term grant under PJP/2010/FKP(2A)S660 and PJP/2010/FKEKK(18A)S718.

    [1]Hameed B H,Ahmad A L,Latiff K N A.Adsorption of basic dye (methyl blue)onto activated carbon prepared form rattan sawdust[J].Dye Pigment,2007,75:143-149.

    [2]Tsai W T,Lee M K,Chang Y M.Fast pyrolysis of rice husk:Product yields and compositions[J].Bioresour Technol,2007,98 (1):22-28.

    [3]Liou T H.Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J].Chem Eng,2009,158:129-142.

    [4]Rajkovich S,Ender A,Hanley K,et al.Corn growth and nitrogen nutrition after additions of biochars with vary properties to a temperate soil[J].Biol Fertil Soils,2012,48:271-284.

    [5]Trevi?o-Cordero H,Juárez-Aguilar L G,Mendoza-Castillo D I,et al.Synthesis and adsorption properties of activated carbons from biomass of prunes domestic and jacaranda mimosifolia for the removal of heavy metals and dyes from water[J].Ind Crops Prod,2013,42:315-323.

    [6]Liou T H,Wu S J.Characteristics of microporous/mesoporous carbons prepared from rice husk under base and acid treated conditions[J].Hazard Mater,2009,171:693-703.

    [7]Demirbas A.Agricultural based activated carbon for the removal of dyes from aqueous solutions:A review[J].Hazard Mater,2009,167:1-9.

    [8]Zhong Z Y,Yang Q,Li X M,et al.Preparation of peanut hullbased activated carbon by microwave-induced phosphoric acid activation and its application in remazol brilliant blue R adsorption[J].Ind Crops Prod,2012,37:178-185.

    [9]Liu Q S,Zheng T,Wang P,et al.Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation[J].Ind Crops Prod,2010,31:233-238.

    [10]Cesar N D,Jose R R M.Production of activated carbon from organic by-products from the alcoholic beverage industry:Surface area and hardness optimization by using the response surface methodology[J].Ind Crops Prod,2011,34:1528-1537.

    [11]Andrew S.Microwave Absorber:Reducing cavity resonant compliance engineering[M].2010.

    [12]Ibrahim I M,Yaakob N M,Husian M N,et al.The effects of carbon to the S11 measurement on the pyramidal microwave absorber[R].Wirel Technol Appl IEEE Smyp,2011,141-145.

    [13]Srinisvasakanan C,Bakar M Z A.Production of activated carbon from rubber wood sawdust[J].Biomass Bioenerg,2004,27:89-96.

    [14]Chaisarn P,Satapanajaru T,Mahujchariyawong J.Adsorption of VOCs by activated charcoal produced from saw dust in pararubber wood furniture manufacturing[J].Thammasat Int J Sci Technol,2008,13:8-17.

    [15]Lee S T,Ramesh N S.Polymeric foam:mechanisms and materials.Polymeric foams:Mechanisms and materials thermoplastic foam processing:Principles and applications[R].CRC Press,New York,2004.

    [16]Nornikman H,Malek F,Soh P J,et al.Effect on source signal condition for pyramidal microwave absorber performance[R].Int Conf Comput Commun Eng,Kuala Lumpur,11-13 May 2010,Malaysia.

    [17]Arindam D,Harun T H,Manish K T,et al.Super hydropho-bic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding[J].Colloid Interface Sci,2011,353:311-315.

    [18]Pecharsky V K,Zavalij P Y.Fundamental of powder diffraction and structural characterization of materials[M].Springer,USA,2009.

    [19]Kalderis D,Bethanis S,Paraskeva P,et al.Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times[J].Bioresour Technol,2008,99(15):6809-6816.

    [20]Trejo G,Network Analyzer Basics[M].Agil Technol California,2006.

    [21]Ahmad AY,Ali W K W,Rahman T A,et al.Microwave and reflection properties of palm shell carbon-polyester conductive composite absorber[J].Technol,2005,42(A):59-74.

    [22]Nornikman H,Malek F.Parametric studies of the pyramidal microwave absorber using rice husk[J].Prog Electromagn Res,PIER,2010,104:145-166.

    [23]Liu Y,Zhang Z,Xiao S,et al.Preparation and properties of cobalt oxides coated carbon fibres as microwave-absorbing materials[J].Appl Surf Sci,2011,257:7678-7683.

    [24]Lakshmi K,John H,Mathew K T,et al.Microwave absorption,reflection and EMI shielding of PU-PANI composite[J].Acta Mater,2008,57:371-375.

    猜你喜歡
    木屑聚氨酯活性炭
    木屑和鐵屑的分離實驗
    改性木屑對尿液廢水中氨氮的吸附性能研究
    玩轉(zhuǎn)活性炭
    童話世界(2020年32期)2020-12-25 02:59:18
    聚氨酯合成革的服裝產(chǎn)品及其應(yīng)用
    玻纖增強(qiáng)聚氨酯保溫耐火窗解決方案
    上海建材(2019年4期)2019-05-21 03:13:04
    神奇的活性炭
    油頁巖與木屑混合熱解特性研究
    復(fù)合軟段耐熱聚氨酯泡沫塑料的制備及表征
    中國塑料(2015年8期)2015-10-14 01:10:46
    新型鞋用水性聚氨酯膠研發(fā)成功
    改性活性炭吸附除砷的研究
    亚洲精品美女久久久久99蜜臀| 亚洲精品久久午夜乱码| 成年人黄色毛片网站| 亚洲精品美女久久久久99蜜臀| 久久婷婷成人综合色麻豆| 国产在线精品亚洲第一网站| 一级作爱视频免费观看| 午夜福利在线免费观看网站| 亚洲国产精品sss在线观看 | 99久久精品国产亚洲精品| 久久久国产欧美日韩av| 亚洲专区字幕在线| 黄片播放在线免费| 午夜免费激情av| 另类亚洲欧美激情| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 男女床上黄色一级片免费看| 夫妻午夜视频| 免费观看人在逋| 国产三级在线视频| 久久 成人 亚洲| www.www免费av| 搡老岳熟女国产| 欧美 亚洲 国产 日韩一| 级片在线观看| 十分钟在线观看高清视频www| 久久久水蜜桃国产精品网| 国产xxxxx性猛交| 日韩欧美国产一区二区入口| 久久香蕉精品热| 久久久久国产精品人妻aⅴ院| 成人18禁在线播放| 国产97色在线日韩免费| 成年人黄色毛片网站| 国产成人精品无人区| 国产黄a三级三级三级人| 亚洲国产看品久久| 少妇粗大呻吟视频| 国产精品亚洲一级av第二区| 无限看片的www在线观看| 黑人欧美特级aaaaaa片| 热99re8久久精品国产| 中国美女看黄片| 国产三级黄色录像| 国产在线观看jvid| 精品国产超薄肉色丝袜足j| 91老司机精品| 亚洲欧美激情综合另类| 亚洲aⅴ乱码一区二区在线播放 | 欧美激情久久久久久爽电影 | 操出白浆在线播放| 国产欧美日韩精品亚洲av| 欧美+亚洲+日韩+国产| 国产精品99久久99久久久不卡| 免费在线观看黄色视频的| 高清黄色对白视频在线免费看| 激情视频va一区二区三区| 亚洲中文日韩欧美视频| 法律面前人人平等表现在哪些方面| 性色av乱码一区二区三区2| 岛国视频午夜一区免费看| 女人高潮潮喷娇喘18禁视频| 久久国产精品影院| 91九色精品人成在线观看| 中文字幕最新亚洲高清| 桃色一区二区三区在线观看| 高清毛片免费观看视频网站 | 狠狠狠狠99中文字幕| 亚洲熟妇中文字幕五十中出 | 很黄的视频免费| 男人的好看免费观看在线视频 | 久久人妻av系列| 欧美日韩福利视频一区二区| 亚洲av第一区精品v没综合| 99国产精品免费福利视频| 国产精品久久久av美女十八| 一边摸一边做爽爽视频免费| 精品久久久精品久久久| 伦理电影免费视频| 99久久国产精品久久久| 精品福利永久在线观看| 亚洲九九香蕉| 欧美老熟妇乱子伦牲交| 亚洲国产毛片av蜜桃av| 少妇粗大呻吟视频| 国产精品国产高清国产av| 久久热在线av| 性少妇av在线| 久久人妻福利社区极品人妻图片| www.自偷自拍.com| 精品福利观看| 一本大道久久a久久精品| 亚洲欧美日韩高清在线视频| svipshipincom国产片| 国产精品亚洲av一区麻豆| 欧美日韩视频精品一区| 这个男人来自地球电影免费观看| 国产精品一区二区三区四区久久 | 亚洲伊人色综图| 色婷婷久久久亚洲欧美| 黄片播放在线免费| 操美女的视频在线观看| 国产精品偷伦视频观看了| 淫秽高清视频在线观看| 一区福利在线观看| 老熟妇仑乱视频hdxx| 欧美日韩瑟瑟在线播放| 高潮久久久久久久久久久不卡| 麻豆av在线久日| 国产91精品成人一区二区三区| 亚洲精品在线美女| 亚洲一区二区三区不卡视频| 正在播放国产对白刺激| 三级毛片av免费| 日韩一卡2卡3卡4卡2021年| bbb黄色大片| 99香蕉大伊视频| 亚洲色图 男人天堂 中文字幕| 免费搜索国产男女视频| 69av精品久久久久久| 国产成人精品无人区| 国产伦人伦偷精品视频| 狠狠狠狠99中文字幕| 日韩av在线大香蕉| 中国美女看黄片| 欧美精品一区二区免费开放| 波多野结衣一区麻豆| 69精品国产乱码久久久| 热99re8久久精品国产| 一级作爱视频免费观看| 欧美日韩福利视频一区二区| 老司机午夜十八禁免费视频| 成人国语在线视频| 欧洲精品卡2卡3卡4卡5卡区| 伦理电影免费视频| 国产在线精品亚洲第一网站| 99国产精品99久久久久| 午夜福利影视在线免费观看| 777久久人妻少妇嫩草av网站| 在线十欧美十亚洲十日本专区| 欧美国产精品va在线观看不卡| 不卡av一区二区三区| 老司机在亚洲福利影院| 麻豆成人av在线观看| 自线自在国产av| 日本 av在线| 久久久精品欧美日韩精品| av网站免费在线观看视频| 桃红色精品国产亚洲av| 在线观看日韩欧美| 中出人妻视频一区二区| 久久伊人香网站| 成人影院久久| 精品第一国产精品| 日日夜夜操网爽| 麻豆一二三区av精品| 好看av亚洲va欧美ⅴa在| 欧美性长视频在线观看| 高清欧美精品videossex| 淫妇啪啪啪对白视频| 成人三级做爰电影| 中文字幕色久视频| 亚洲欧美激情综合另类| 亚洲一区高清亚洲精品| 熟女少妇亚洲综合色aaa.| 正在播放国产对白刺激| 一级毛片女人18水好多| 怎么达到女性高潮| 国内久久婷婷六月综合欲色啪| 一级,二级,三级黄色视频| 成年人免费黄色播放视频| 国产一区二区三区综合在线观看| 97碰自拍视频| 亚洲欧美日韩另类电影网站| 美女福利国产在线| 在线播放国产精品三级| bbb黄色大片| 久久精品国产亚洲av香蕉五月| 日本五十路高清| 日韩免费av在线播放| 欧美精品亚洲一区二区| 亚洲精品av麻豆狂野| 曰老女人黄片| 亚洲av片天天在线观看| 国产成+人综合+亚洲专区| 91老司机精品| 美女扒开内裤让男人捅视频| 成年女人毛片免费观看观看9| 中文欧美无线码| 免费人成视频x8x8入口观看| 久久中文字幕一级| 12—13女人毛片做爰片一| 国产精品1区2区在线观看.| 欧美 亚洲 国产 日韩一| 一级毛片高清免费大全| 久久影院123| 美女福利国产在线| 国产99久久九九免费精品| 久久国产精品人妻蜜桃| svipshipincom国产片| 久久伊人香网站| 怎么达到女性高潮| 亚洲情色 制服丝袜| 正在播放国产对白刺激| 色尼玛亚洲综合影院| 91麻豆av在线| 国产极品粉嫩免费观看在线| 欧美中文日本在线观看视频| 免费不卡黄色视频| 亚洲成a人片在线一区二区| 无人区码免费观看不卡| av福利片在线| 麻豆国产av国片精品| 精品一区二区三区四区五区乱码| 母亲3免费完整高清在线观看| 欧美激情极品国产一区二区三区| 亚洲国产看品久久| 亚洲三区欧美一区| 欧美不卡视频在线免费观看 | 国产亚洲精品第一综合不卡| 女同久久另类99精品国产91| 欧美国产精品va在线观看不卡| 国产精品一区二区在线不卡| 桃色一区二区三区在线观看| 两性夫妻黄色片| 69av精品久久久久久| 天天添夜夜摸| 亚洲熟妇熟女久久| 国产高清激情床上av| 韩国精品一区二区三区| 精品国产亚洲在线| 韩国av一区二区三区四区| 高潮久久久久久久久久久不卡| 黑人猛操日本美女一级片| 人人妻人人添人人爽欧美一区卜| 国产成+人综合+亚洲专区| 中文字幕精品免费在线观看视频| 亚洲 欧美一区二区三区| 亚洲精品久久午夜乱码| 丁香六月欧美| 黑人操中国人逼视频| 岛国在线观看网站| 免费日韩欧美在线观看| 亚洲av片天天在线观看| 久久精品亚洲熟妇少妇任你| 国产精品一区二区精品视频观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产伦人伦偷精品视频| 真人一进一出gif抽搐免费| 一区在线观看完整版| 久久九九热精品免费| 国产成人欧美在线观看| 欧美另类亚洲清纯唯美| 高清av免费在线| www.精华液| 男女高潮啪啪啪动态图| 天堂影院成人在线观看| 久久国产精品人妻蜜桃| 欧美日韩国产mv在线观看视频| 热re99久久国产66热| netflix在线观看网站| 最近最新中文字幕大全电影3 | 国产亚洲精品久久久久5区| 欧美日韩中文字幕国产精品一区二区三区 | 国产高清激情床上av| 男女下面进入的视频免费午夜 | 在线观看www视频免费| 久久天堂一区二区三区四区| 美女大奶头视频| 久久精品aⅴ一区二区三区四区| 男女午夜视频在线观看| 嫩草影视91久久| av在线播放免费不卡| 久久精品国产亚洲av香蕉五月| 日本欧美视频一区| 天天影视国产精品| 精品人妻在线不人妻| 亚洲,欧美精品.| 美女高潮喷水抽搐中文字幕| 欧美在线黄色| 欧美激情 高清一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲全国av大片| 久久天堂一区二区三区四区| 88av欧美| 91成年电影在线观看| 亚洲人成77777在线视频| 天天添夜夜摸| 长腿黑丝高跟| 亚洲精品国产精品久久久不卡| 久久天堂一区二区三区四区| 国产一卡二卡三卡精品| 女性生殖器流出的白浆| 国产伦人伦偷精品视频| 久久天躁狠狠躁夜夜2o2o| 久久午夜亚洲精品久久| 18禁黄网站禁片午夜丰满| 国产精品亚洲av一区麻豆| 99久久国产精品久久久| 在线观看免费午夜福利视频| 国产熟女午夜一区二区三区| 最新在线观看一区二区三区| 极品人妻少妇av视频| 一进一出抽搐动态| 成人手机av| 大香蕉久久成人网| 波多野结衣一区麻豆| 中文字幕人妻熟女乱码| 无人区码免费观看不卡| 极品人妻少妇av视频| 91大片在线观看| 十分钟在线观看高清视频www| 免费在线观看日本一区| 一本综合久久免费| 亚洲专区国产一区二区| 久久久久久人人人人人| 天天躁狠狠躁夜夜躁狠狠躁| 黄色女人牲交| 一二三四社区在线视频社区8| а√天堂www在线а√下载| 麻豆av在线久日| 国产成人av教育| 免费久久久久久久精品成人欧美视频| www.精华液| 怎么达到女性高潮| av电影中文网址| 日韩欧美国产一区二区入口| 国产真人三级小视频在线观看| 日本欧美视频一区| 中文字幕人妻丝袜一区二区| 久久精品国产亚洲av高清一级| 老鸭窝网址在线观看| 男人的好看免费观看在线视频 | 日韩精品青青久久久久久| 欧美激情极品国产一区二区三区| av有码第一页| а√天堂www在线а√下载| 国产极品粉嫩免费观看在线| 久久精品国产99精品国产亚洲性色 | 午夜成年电影在线免费观看| 中文字幕高清在线视频| 亚洲三区欧美一区| 少妇被粗大的猛进出69影院| 国产一区二区三区综合在线观看| 日韩av在线大香蕉| 在线av久久热| 免费在线观看日本一区| 亚洲精品国产区一区二| 波多野结衣av一区二区av| 久久精品国产清高在天天线| 香蕉丝袜av| 亚洲五月婷婷丁香| 精品无人区乱码1区二区| 91精品国产国语对白视频| 国产精品98久久久久久宅男小说| 免费看a级黄色片| 亚洲久久久国产精品| 青草久久国产| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜理论影院| 亚洲少妇的诱惑av| 欧美午夜高清在线| 啦啦啦 在线观看视频| 99香蕉大伊视频| 亚洲精品国产一区二区精华液| 高清在线国产一区| 美国免费a级毛片| 黄网站色视频无遮挡免费观看| 国产三级在线视频| 男女床上黄色一级片免费看| 男女之事视频高清在线观看| 日韩国内少妇激情av| 黄网站色视频无遮挡免费观看| 悠悠久久av| 午夜福利欧美成人| 亚洲黑人精品在线| 99热国产这里只有精品6| x7x7x7水蜜桃| 欧美久久黑人一区二区| 国产免费男女视频| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 久久久久久久久久久久大奶| 99热国产这里只有精品6| 亚洲在线自拍视频| 脱女人内裤的视频| 国产乱人伦免费视频| 国产av在哪里看| 男女做爰动态图高潮gif福利片 | 国产一卡二卡三卡精品| 欧美日本中文国产一区发布| 国产伦人伦偷精品视频| 男人操女人黄网站| 精品午夜福利视频在线观看一区| 多毛熟女@视频| 亚洲精品av麻豆狂野| 精品久久久精品久久久| 一级a爱视频在线免费观看| 纯流量卡能插随身wifi吗| 一进一出好大好爽视频| 女警被强在线播放| 亚洲精品久久午夜乱码| 亚洲一区二区三区色噜噜 | 精品第一国产精品| 大型黄色视频在线免费观看| 亚洲第一青青草原| 中亚洲国语对白在线视频| 老司机福利观看| 亚洲三区欧美一区| 国产一卡二卡三卡精品| av超薄肉色丝袜交足视频| 一级片'在线观看视频| 亚洲 欧美 日韩 在线 免费| av视频免费观看在线观看| 久久精品国产亚洲av高清一级| 黄色片一级片一级黄色片| 日韩大尺度精品在线看网址 | 欧美精品一区二区免费开放| 精品欧美一区二区三区在线| 咕卡用的链子| 欧美日本亚洲视频在线播放| 国产成人精品在线电影| 在线观看免费午夜福利视频| av网站在线播放免费| 在线观看舔阴道视频| 欧美日韩瑟瑟在线播放| 天天影视国产精品| 久久99一区二区三区| 91老司机精品| 亚洲一区二区三区色噜噜 | 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲| 日本黄色日本黄色录像| 中国美女看黄片| 国产成人免费无遮挡视频| 色哟哟哟哟哟哟| 老汉色av国产亚洲站长工具| 一进一出抽搐动态| 成人特级黄色片久久久久久久| av在线播放免费不卡| 久久久久久久精品吃奶| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 99久久人妻综合| 亚洲久久久国产精品| 极品教师在线免费播放| 超色免费av| 国产麻豆69| 级片在线观看| 在线观看66精品国产| 在线永久观看黄色视频| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 搡老熟女国产l中国老女人| 大型黄色视频在线免费观看| 女性生殖器流出的白浆| 国产国语露脸激情在线看| 脱女人内裤的视频| 国产成人系列免费观看| 18美女黄网站色大片免费观看| 久久亚洲精品不卡| 亚洲av电影在线进入| 美女 人体艺术 gogo| 热re99久久国产66热| 亚洲专区中文字幕在线| 精品一区二区三卡| 久9热在线精品视频| 正在播放国产对白刺激| 老熟妇乱子伦视频在线观看| 亚洲国产精品999在线| 国产一区二区激情短视频| 日本vs欧美在线观看视频| 一级毛片女人18水好多| 精品少妇一区二区三区视频日本电影| 亚洲专区中文字幕在线| 国产午夜精品久久久久久| 日韩欧美免费精品| 国产精品亚洲av一区麻豆| a级毛片黄视频| 欧美精品亚洲一区二区| 黄色女人牲交| 国产黄色免费在线视频| www.熟女人妻精品国产| a级毛片黄视频| 精品电影一区二区在线| 婷婷六月久久综合丁香| 两性夫妻黄色片| 中文字幕av电影在线播放| 97碰自拍视频| 露出奶头的视频| 成人国语在线视频| 欧美日韩亚洲高清精品| 午夜福利免费观看在线| 日本wwww免费看| 又黄又粗又硬又大视频| 久久精品aⅴ一区二区三区四区| www.999成人在线观看| 69精品国产乱码久久久| 黄色a级毛片大全视频| 亚洲精品国产区一区二| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 人妻久久中文字幕网| 亚洲五月色婷婷综合| 国产精品二区激情视频| 国产成人av教育| 不卡av一区二区三区| 亚洲精品一区av在线观看| av在线天堂中文字幕 | 成在线人永久免费视频| 69av精品久久久久久| 亚洲第一欧美日韩一区二区三区| av网站在线播放免费| 美国免费a级毛片| 免费少妇av软件| 亚洲aⅴ乱码一区二区在线播放 | 成人三级做爰电影| 欧美不卡视频在线免费观看 | 这个男人来自地球电影免费观看| 在线观看日韩欧美| 真人做人爱边吃奶动态| 韩国精品一区二区三区| 91av网站免费观看| 亚洲精品国产一区二区精华液| 国产亚洲精品一区二区www| 久久婷婷成人综合色麻豆| 十八禁网站免费在线| av福利片在线| 欧美日韩国产mv在线观看视频| 亚洲 国产 在线| 51午夜福利影视在线观看| 欧洲精品卡2卡3卡4卡5卡区| 九色亚洲精品在线播放| 老熟妇仑乱视频hdxx| 99国产精品免费福利视频| 女警被强在线播放| 亚洲专区字幕在线| 亚洲片人在线观看| 成人手机av| 欧美日韩亚洲国产一区二区在线观看| 91九色精品人成在线观看| 在线观看一区二区三区激情| 母亲3免费完整高清在线观看| 婷婷丁香在线五月| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| 一区二区三区精品91| 淫妇啪啪啪对白视频| 男人舔女人的私密视频| av有码第一页| 成年人黄色毛片网站| 日本三级黄在线观看| 国产精品一区二区精品视频观看| 大型黄色视频在线免费观看| 99国产综合亚洲精品| 亚洲欧美精品综合久久99| 激情在线观看视频在线高清| 午夜福利,免费看| 18禁黄网站禁片午夜丰满| 亚洲午夜理论影院| 天天影视国产精品| 这个男人来自地球电影免费观看| 亚洲国产欧美网| 日本欧美视频一区| 麻豆av在线久日| 午夜成年电影在线免费观看| 亚洲精品成人av观看孕妇| 五月开心婷婷网| 精品久久蜜臀av无| 老汉色∧v一级毛片| 高清黄色对白视频在线免费看| 搡老乐熟女国产| 国产乱人伦免费视频| 亚洲成人免费电影在线观看| 亚洲中文av在线| www国产在线视频色| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区在线臀色熟女 | 一区二区日韩欧美中文字幕| 这个男人来自地球电影免费观看| 久久久久精品国产欧美久久久| 精品福利观看| 琪琪午夜伦伦电影理论片6080| 亚洲成a人片在线一区二区| 亚洲五月色婷婷综合| 在线天堂中文资源库| 国产区一区二久久| 午夜两性在线视频| 国产成人精品在线电影| 国产精品秋霞免费鲁丝片| 超碰成人久久| 午夜免费观看网址| 真人一进一出gif抽搐免费| 久久草成人影院| 夜夜看夜夜爽夜夜摸 | 老司机福利观看| 亚洲欧美日韩另类电影网站| 99在线人妻在线中文字幕| 一个人观看的视频www高清免费观看 | 激情在线观看视频在线高清| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 日韩免费高清中文字幕av| 免费av毛片视频| 日韩一卡2卡3卡4卡2021年| 国产精品98久久久久久宅男小说| 1024香蕉在线观看| 在线看a的网站| 老司机福利观看|