• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery

    2021-02-24 13:16:24XingruiChenYonghuiJiQichiLeHennWngXiongZhouFuxioYuAndrejAtrens
    Journal of Magnesium and Alloys 2021年6期

    Xingrui Chen ,Yonghui Ji ,Qichi Le,? ,Henn Wng ,Xiong Zhou ,Fuxio Yu ,Andrej Atrens

    aKey Lab of Electromagnetic Processing of Materials,Ministry of Education,Northeastern University,314 Mailbox,Shenyang 110819,People’s Republic of China

    b School of Mechanical and Mining Engineering,The University of Queensland,St.Lucia,QLD 4072,Australia

    Abstract In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical behaviors and surface morphologies after discharge have been discussed to connect the discharge properties.The results indicate that the modified AZ80-La-Gd is an outstanding candidate for anode for Mg-air batter,which has high cell voltage,stable discharge curves,good specific capacity and energy,and good anodic efficiency.It exhibits the best anodic efficiency,specific capacity and energy of 76.45%,1703.6 mAh?g?1 and 2186.3 mWh?g?1,respectively,which are 20.24%,18.92% and 25.71% higher than values for AZ80 anode.Such excellent discharge performance is attributed to the Al-RE particles.They refine the Mg17Al12 phase and therefore improve the self-corrosion resistance and desorption ability of AZ80 anode.

    Keywords: Mg-air batteries;Magnesium anode;Discharge performance;Electrochemical behaviors;RE compound.

    1.Introduction

    Environmental issues such as global warming have attacked a lot of attention,which are mainly caused by CO2emission from the burning of fossil fuel [1–4].With the encouragement of governments and the awareness of environmental protection,there is a trend to electric vehicles(EVs)[5–7].Generally,there are two crucial parts in EVs,namely,the electric machine and the electric battery.In recent years,the challenge of EVs mainly comes from the lack of battery with good discharge performance.The Mg is not only the widely used structural material but also the important energy material [8–15].The Mg-air battery is a promising candidate for the future generation of EVs because it uses oxygen from the air as one of the battery’s main reactants,reducing the weight of the battery and freeing up more space devoted to energy storage [16,17].The exchangeable Mg anode ensures the endurance of EVs.The Mg-air battery also has outstanding energy properties than others,such as high theoretical specific capacity(2200 mAh?g?1),discharge voltage(3.03V)[18–21].

    The Mg-air battery is designed by a Mg anode,an air cathode,and an electrolyte.The performance of Mg anode usually holds the key to discharge propertied of Mg-air battery.The Mg anode faces two major problems,namely the high self-corrosion rate and adherent discharge products [18].The poor self-corrosion resistance gives rise to extra mass and energy loss which reduces anodic efficiency.Discharge products act as barriers to the direct connection between fresh Mg and electrolyte [22].The chemical composition,phase morphology and distribution strongly affect the discharge performance of Mg-air battery.Therefore,researchers are strugglingto develop advanced Mg anode using several methods such as alloying,deformation and external field treatment [23].Although external processing has the ability to change the grain size and phase distribution,the alloying method is the primary modification for phase composition,which is also an easy method to implement.Many elements such as Al,Li,Pb,Ca and RE are proposed to improve the discharge properties of magnesium anode[24–27].For example,the addition of Ca can refine the grain size and improve the electrochemical activity of anode,promoting the discharge performance[27,28].The RE elements are popular candidates to improve the strength and corrosion resistance of magnesium alloy.Researchers also used RE elements to promote the discharge performance of Mg anode.Liu et al.reported the combinative Ca,Sm and La additions to as-extruded AZ91 anodes could improve the discharge performance of Mg-air batteries[29].The modified AZ31-Gd anode outputs both high specific capacity and energy density than AZ31 [30].

    Such studies indicate both La and Gd are useful elements for Mg anode to improve its discharge performance.However,the effects of combination addition of La and Gd in Mg-Al based anodes on the discharge performance of Mg-air battery has not been investigated.In addition,recent researches on the role of La and Gd on Mg corrosion [31–35]have indicated that these elements seem to be good choices to solve the problem of high self-corrosion of the Mg anode.Therefore,this work systematically investigated the discharge performance and electrochemical behaviors of AZ80-La-Gd anode.This work aims to provide the basic data for the design of advanced Mg anode for Mg-air batteries.

    2.Experimental

    2.1.Casting method and material observation

    Table 1 lists the chemical composition of two AZ80-La-Gd and AZ80(set as the control group).Ingots were made by the semi-continuous casting method.The casting system was the same as our previous work[36]with a ring of 120 in diameter.The pure Mg(99.95%),pure Al(99.99%),pure Zn(99.95%),anhydrous MnCl2,Mg-30% wt.% Gd and Mg-25% wt.% La master alloys were melted in an iron crucible with the heating of a resistance furnace.The melt was then transported to the casting system at 680°C with the protection of CO2+0.5%SF6atmosphere.With the downward movement of the casing machine,ingots were cast.Samples for microstructure observation were cut from the ingots as longitude direction.They were ground,polished,and etched using the mixture of 4.2g picric acid,glacial acetic acid,and alcohol.Microstructure observation was carried out in optical microscopy(OLYMPUS BX53)and scanning electron microscopy(SEM,Zeiss ULTRA55)with EDS.Phase identification was done using X-ray diffraction(XRD).

    Table 1 Chemical composition of experimental alloys(wt.%).

    Table 2 Fitting results of the polarization curves.

    2.2.Electrochemical measurement

    The ChenHua CHI660E electrochemistry workstation was employed to measure the electrochemical properties of two investigated alloys,using a platinum foil,the saturated calomel electrode(SCE)and the magnesium alloys as the counter electrode,reference electrode and working electrode,respectively.The tested samples with the dimension of 10mm×10mm×6mm were ground with a 3000 grade SiC paper and then put into 3.5wt.% NaCl aqueous solution at room temperature(25°C).The polarization curves were recorded with a scan rate of 1mV s?1.The electrochemical impedance(EIS)was measured with the voltage amplitude of 5mV and the frequency range from 100 kHz to 0.1 Hz.At least three replicates were tested to ensure repeatability.The EIS patterns were finally fitted by ZSimpWin software

    2.3.Mg-air battery tests

    The NEWARE battery testing system was used to record the discharge curves of investigated anodes during the 10 h discharge process at room temperature.The anodes were set in a self-designed battery system,as described in Ref [23].The cathode was the commercial MnO2/C catalyst.The electrolyte was the 3.5wt.% NaCl solution.The tested current densities were 2.5,5,10,20,40 and 80mA cm?2,respectively.The reaction areas of the anode and cathode were 2 and 9 cm2,respectively.The anodes were washed in the chromic acid solution containing 180g/l CrO3after the discharge process to remove the surface products.Discharge surfaces were then observed by SEM.The discharge capacity and anodic efficiency were calculated using the mass loss method.At least three replicated were tested for reproducibility.

    3.Results and discussion

    3.1.Microstructures evolution

    Fig.1 shows the OM images of as-cast AZ80 and AZ80-La-Gd.There are developed dendrites in both two alloys.The addition of La and Gd reduces the average grain size of AZ80 from 712±30 μm to 489±25 μm.SEM images present the distribution and morphology of compounds in Mg matrix,as shown in Fig.2a and Fig.2b.There are coarse bar-like particles in AZ80 alloy with some dot-like phases.These particles are identified as theβ-phase(Mg17Al12)associated with the XRD results in Fig.2c.Typical eutectic feature(seen in the partial enlarged image of Fig.2a)further confirms the identification ofβ-phase.In the case of modified AZ80-La-Gd,the number and the size ofβ-phase are both reduced.Some needle-like particles appear in the Mg matrix.According to the XRD results,the modified alloy contains another two phases except forβ-phase,which are Al11La3and Gd2Al.The element distribution sweep by EDS is carried out to identify the phase composition,as shown in the partial enlarged image of Fig.2b.All the bright particles contain Al element.The La element is detected in the needle-like particles,while the Gd element only distributes in some points.Thus,the needle-like particles are Al11La3and the tiny dot-like particles are Al2Gd.The Al2Gd particles also refine theα-Mg grains by particle-stimulated nucleation(PSN)mechanism.They act as nucleation sites during the solidification and promote heterogeneous nucleation [37].

    Fig.1.Optical microscopy metallographs of as-cast(a)AZ80 alloy and(b)AZ80-La-Gd alloy.

    Fig.2.The SEM images of as-cast(a)AZ80 alloy and(b)AZ80-La-Gd alloy;(c)XRD patterns of investigated alloys.

    Fig.3.Polarization curves(a)and linear sweep voltammetry of the polarization curves(b)of investigated anodes in 3.5wt.% NaCl solution.

    3.2.Electrochemical tests

    Fig.3a exhibits the polarization curves of two investigate alloys.The corrosion potential(Ecorr)of the original AZ80 alloy is?1.299V(vs.SCE),which shifts negatively to?1.362V in case of AZ80-La-Gd,implying the modified alloy has higher electrochemical activity.The more negative potential makes the alloy respond to the current actively during the discharge process as an anode.The cathodic branch of polarization of AZ80 alloy shifts downward with the addition of La and Gd.The cathode branch of polarization curves refers to the hydrogen reaction [27].This shift represents the weakening of cathodic kinetics.Table 2 listed the self-corrosion current density(Icorr)of two investigated alloys,using Tafel extrapolation.It should be noticed that both two alloys have low levels ofIcorrvalue compared with other Mg-Al-Zn alloys [30,38].TheIcorrvalue of AZ80 alloy is 7.98×10?6A cm?2,which reduces to 5.34×10?6A cm?2in case of modified AZ80-La-Gd alloy.Although the value of corrosion current densities cannot represent the corrosion rate accurately of many Mg alloy,it reflects corrosion resistance qualitatively [39].Thus,the modified alloy has higher corrosion resistance.Fig.3b presents the linear sweep voltammetry of the anodic branch of polarization curves.The potential raises sharply with the tiny increase of current density at the beginning in both two alloys.The increasing rate of potential of AZ80 alloy slows down to 12.33V A?1cm2at the current range between 0.2mA to 6.18mA,which is further reduced to 3.35V A?1cm2and keeps this level.The increasing rate of modified AZ80-La-Gd alloy decreases its increasing rate to 3.07V A?1cm2at 2.57mA and keeps this value with the further increase of current density.These current-potential curves can help understand the discharge performance of anodes,which will be discussed in detail in Section 3.3 with the results of discharge curves.

    The EIS results of AZ80 and modified AZ80-La-Gd alloys are shown in Fig.4.One large and other smaller semicircles are observed in Fig.4a.The EIS patterns of both two alloys have impedance located in the fourth-quadrant.Therefore,each EIS pattern is made of two semi-circles.The phase angle vs.frequency in the Bode plot in Fig.4c confirms this proposal.Thus,the EIS patterns of these two alloys contain a high-frequency capacitive loop and a low-frequency inductive loop.Fig.4b shows the Bode plot in terms of the modulus value of impedance vs.frequency.The modulus of two alloys increases from high frequency to the peak value and reduces at low frequency.The modulus of modified AZ80-La-Gd is higher than the AZ80,suggesting the higher corrosion resistance,which agrees with theIcorrvalue in Table 2.Fig.4d shows the EIS pattern of two investigated alloys at potential 150mV more positive than OCPs(OCP+150mV).The EIS patterns significantly shrink at a more positive potential.

    Table 3 Electrochemical parameters of the fitted equivalent circuits.

    Based on the analysis above,a proposed equivalent circuit is given in Fig.5,which includes a capacitor,an inductor and three electric resistances.TheRsrepresents the solution resistance between the Luggin capillary and the specimen.TheRtis the charge transfer resistance.TheCPEdlpresents the double-layer structure as a capacitor which has two parameters,Y0andn,describing the properties of the capacitor [40].The value ofnvaries from 0 to 1,representing the tendency between the pure resistance and capacitor [41].The inductor andRLare employed to present the EIS spectra located in the forth quadrant.

    Fig.4.Electrochemical impedance spectra of investigated alloys in 3.5wt.% NaCl solution:(a)Nyquist plots;(b)Bode plots of impedance modulus vs.frequency and(c)Bode plots of phase angle vs.frequency;(d)EIS patterns of investigated alloys at the potential 150mV more positive than OCPs;(e)charge transfer resistance and the low frequency inductive reactance of the investigated alloys.

    Table 3 exhibits the fitting results based on the equivalent circuit.TheRtof AZ80 alloy is 631.5Ωcm2,which increases to 1317Ωcm2with the addition of La and Gd elements.The charge transfer resistance generally has a positive relationship with the self-corrosion resistance[42,43].Therefore,the modified AZ80 alloy has a higher self-corrosion resistance,which agrees with the results ofIcorrvalue in Table 2.It is also worth noting that theLvalue of AZ80-La-Gd is higher than the original AZ80 alloy at both OCP and OCP+150mV(seen in Fig.4e),suggesting the better desorption ability which is discussed with discharge curves and morphologies in behind.

    Table 4 Average discharge potential during the discharge tests.

    According to the results above,the modified AZ80-La-Gd alloy has higher self-corrosion resistance than the original AZ80 alloy.The phase composition of AZ80 alloy isα-Mg andβ-Mg17Al12compound.Theβphase dominates the corrosion process of the AZ80 alloy.The Mg17Al12compound has higher electrode potential than Mg matrix in both neutral and alkaline solution [44],which builds the galvanic couples with Mg matrix and accelerates the corrosion process of AZ80 alloy [45].With the addition of La and Gd elements to the AZ80 alloy,the phase composition and morphology ofβphase are changed dramatically.As shown in Fig.2b,the coarseβphases are replaced by small-sized dots and short rods because of the addition of La and Gd.Thus,the adverse influence ofβphases is weakened.In addition,the RE elements also help form more protective corrosion product film to improve the corrosion resistance of modified alloy [31,46].

    Fig.5.The equivalent circuit for the investigated Mg based anodes fitted based on the EIS.

    3.3.Discharge performance of Mg-air batteries with LPSO contained anodes

    Fig.6 presents the discharge curves of assembled Mgair batteries with AZ80 and AZ80-La-Gd anodes at different current density in 3.5wt.% NaCl solution for 10h.Table 4 shows the average discharge cell voltages.The average cell voltages of modified AZ80-La-Gd are higher than the original AZ80 anode at every tested current density.For example,the average cell voltage of AZ80 and AZ80-La-Gd anode at 2.5mA cm?2is 1.375V and 1.397V,respectively.At low current density,both two anodes show stable discharge voltages without evident turbulence and drop.However,the discharge curve of AZ80 anode at 80mA cm?2shows a dramatic drop from 0.911V to 0.449V with a decrease rate of 0.0462V h?1.In contrast,the modified AZ80-La-Gd anode still remains stable cell voltages even at large current density(80mA cm?2).A slight voltage recovery from 0.875V to 0.982V is observed in the first 2.5h,and then the cell voltage reduces slightly to 0.879V in the next 7.5h with the decrease rate of only 0.0146V h?1.

    The above results show that the modified AZ80-La-Gd anode has a higher and more stable cell voltage during the discharge process.In general,the internal resistance of battery,electrode polarization and discharge products usually hold the key to the discharge performance of Mg-air battery[47].The cell voltage of AZ80 and AZ80-La-Gd at 0 current density(the no-load condition,seen in Table 4)are 1.765V and 1.809V,respectively.Although the modified anode has higher transfer resistance(seen in Table 3),namely higher initial resistance of the battery,the AZ80-La-Gd anode can keep higher cell voltage during the discharge process.The linear sweep voltammetry of the anodic branch of polarization curves also provides the evidence for the better discharge performance of modified AZ80-La-Gd alloy.During the anodic polarization,the potential increases with the augment of current density,which agrees with the voltage decrease due to the increase of discharge current.The potential-current respond curve of modified AZ80 alloy locates under the original AZ80 anode despite the variation of current density,suggesting the higher potential modulus of AZ80-La-Gd anode at every certain current density.

    Fig.7 summarizes the discharge properties of investigated Mg-air batteries with original and modified AZ80 anodes in 3.5wt.% NaCl solution.,including average cell voltage,discharge capacity,specific energy and anodic efficiency.Continuously decreasing trends of average cell voltage are observed in two anodes with the augment of current density.There is a considerate drop of voltage between no-load condition and 2.5mA cm?2current density.This phenomenon is attributed to the formed discharge products during the discharge process,which hinders the direct contact between fresh Mg and electrolyte.The discharge capacity of the AZ80 anode rises to the peak value of 1432.6 mAh·g?1at 40mA cm?2,while the modified AZ80-La-Gd anode reaches its peak discharge capacity at 20mA cm?2,with the value of 1703.6 mAh·g?1.The anodic efficiency shows the same tendency as the discharge capacity,displaying peak figures of 63.58% and 76.45% for AZ80 and AZ80-La-Gd anodes,respectively.Although it is difficult to directly compare these values reported in the literature and obtained in this work because of the different chemical composition and battery testing systems,the anodic efficiency of modified AZ80-La-Gd is high [29,30,48].The specific energy of modified AZ80-La-Gd anode is higher than the original AZ80 anode at each tested current density.The peak specific energy output of modified AZ80-La-Gd is 2186.3 mWh·g?1,which is 25.7% higher than the original AZ80 anode(1739.3 mWh·g?1).

    The magnesium anode is proposed to become Mg2+and provide electric energy without extra energy loss during the discharge process in the ideal circumstance.However,the presence of hydrogen evolution reaction(HER)and negative differential effect(NDE)usually cause extra mass loss except for energy transformation.

    The HER(as shown in Eq.(1))occurs on the surface of magnesium anode and produces Mg(OH)2,which not only prevents the contact between fresh Mg and electrolyte but also causes extra mass loss.The NDE amplifies this adverse effect in the discharge process.In the case of the original AZ80 anode,the self-corrosion resistance is deteriorated due to coarse Mg17Al12particles which accelerates the HER,and consequently,the anodic efficiency and specific energy are quite poor.In addition,the existence of HER also produces a net corrosion potential,leading to the great deviation of experimental cell voltage(0.71–1.76V)from the theoretical potential(3.09V)[49].The electrochemical tests indicate that the addition of La and Gd reduces the corrosion rate and restrict HER(weak cathodic kinetics in polarization curves).In response,more Mg participates in energy output,resulting in the promotion of discharge capacity and anodic efficiency.In addition,the modified AZ80-La-Gd anode has small sizedgrain than AZ80.The refined grains bring a large number of grain boundaries,which usually have higher energy and can be disintegrated preferentially [50].This mechanism also improves discharge performance.

    Fig.6.Discharge curves of investigated(a)AZ80 and(b)AZ80-La-Gd anodes in 3.5wt.% NaCl solution at different current density for 10h.

    Fig.7.Discharge performance of investigated Mg-air batteries with different anodes in 3.5wt.% NaCl solution:(a)average cell voltage and discharge capacity;(b)anodic efficiency and specific energy.

    3.4.Discharge surface morphologies

    Fig.8 presents surface morphologies of AZ80 and AZ80-La-Gd anodes after 10h discharge in 3.5wt.% NaCl electrolyte at 2.5mA cm?2current density.Large and deep discharge pits with many coralliform ridges are observed on the surface of the original AZ80 anode after the discharge process.This structure acts as a porous container for Mg(OH)2,preventing the contact between Mg matrix and electrolyte.The complicated structure also increases the difficulty of the detachment of discharge products,resulting in the rough and fibrous surface on the bottom of discharge pits(seen in Fig.8b).In contrast,the discharge pits of modified AZ80-La-Gd are shallower and smaller.The surface is also smoother than the original AZ80 anode(as shown in 8d).The smooth surface makes discharge products fall off from Mg matrix easily.In addition,some small grooves are seen,which is associated with the release of hydrogen gas,and therefore,discharge products can be detached from Mg matrix due to the shock of gas bubbles.These two mechanisms give the modified AZ80-La-Gd anode good desorption ability during the discharge process.They also respond to the higherLvalue of EIS results(seen in Table 3).The inductor is employed to describe the impedance located in the fourth quadrant,which reflects the inductance of Mg2+reaction on the breaking area of the partial protective film[31].The higher value of inductance presents the larger area without the cover of discharge products,namely better desorption ability.Thus,the discharge curve of the modified AZ80-La-Gd anode is stable even at large current density.The voltage recovery(seen in Fig.6b)also responds to the good desorption ability of AZ80-La-Gd anode.Some Al11La3particles are on the ridges of the discharge surface,suggesting that they are weak cathodes and had small lightly adverse effects,unlike the Mg17Al12particles.

    Fig.8.Surface morphologies of(a)-(b)AZ80 and(c)-(d)AZ80-La-Gd anodes after the discharge in 3.5wt.% NaCl solution at 2.5mA cm?2 for 10h without discharge products.

    4.Conclusion

    In this work,the discharge properties and electrochemical behaviors of modified as-cast AZ80-La-Gd anode for Mg-air battery have been investigated.The needle-like Al11La3and dot-like Al2Gd particles are detected as well as the Mg17Al12phase.The modified AZ80-La-Gd anode has high cell voltage,stable discharge curves,good specific capacity and energy and good anodic efficiency.It can output the best specific capacity and energy of 1703.6 mAh·g?1and 2186.3 mWh·g?1,respectively with the anodic efficiency of 76.45%.Such outstanding discharge performance is attributed to the Al-RE particles.They refine the Mg17Al12phase and therefore improve the self-corrosion resistance and desorption ability of AZ80 anode.In contrast,the original AZ80 anode exhibits poor peak specific capacity and energy of 1432.6 mAh·g?1and 1739.3 mWh·g?1,respectively with the highest anodic efficiency of 63.58%.The modified AZ80-La-Gd can be regarded as a good anode for the Mg-air battery.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was financially supported by the National Natural Science Foundation of China(Grant No.51974082),and the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project of China 2.0,No.BP0719037).Special thanks are due to the instrumental or data analysis from Analytical and Testing Center,Northeastern University.

    亚洲国产看品久久| av国产免费在线观看| 成人一区二区视频在线观看| 观看免费一级毛片| 久久国产精品人妻蜜桃| 99热精品在线国产| 成人精品一区二区免费| 欧美乱码精品一区二区三区| 国产亚洲精品av在线| 免费看光身美女| 亚洲色图av天堂| 免费av不卡在线播放| 日韩国内少妇激情av| 窝窝影院91人妻| 日本三级黄在线观看| 亚洲欧美激情综合另类| 国产成人av教育| 精品熟女少妇八av免费久了| 狂野欧美激情性xxxx| 最新在线观看一区二区三区| 久久久久国产一级毛片高清牌| 亚洲国产精品久久男人天堂| 黄色丝袜av网址大全| 啦啦啦观看免费观看视频高清| 一级毛片高清免费大全| 国产成+人综合+亚洲专区| 熟妇人妻久久中文字幕3abv| 又紧又爽又黄一区二区| av天堂中文字幕网| 国产精品一区二区免费欧美| 国产欧美日韩一区二区精品| 99精品久久久久人妻精品| 18禁黄网站禁片午夜丰满| 中出人妻视频一区二区| 制服人妻中文乱码| 法律面前人人平等表现在哪些方面| 色尼玛亚洲综合影院| 成人欧美大片| 欧美绝顶高潮抽搐喷水| 欧美激情久久久久久爽电影| 麻豆成人av在线观看| 三级国产精品欧美在线观看 | 欧美黄色片欧美黄色片| 亚洲av成人av| or卡值多少钱| 中亚洲国语对白在线视频| 久久久国产成人免费| 99热6这里只有精品| 午夜成年电影在线免费观看| 精品国产乱子伦一区二区三区| 俄罗斯特黄特色一大片| 亚洲狠狠婷婷综合久久图片| 亚洲五月天丁香| 在线免费观看不下载黄p国产 | 国模一区二区三区四区视频 | 欧美三级亚洲精品| 国产av在哪里看| 热99在线观看视频| 成人特级av手机在线观看| 国产精品久久久久久人妻精品电影| 麻豆成人午夜福利视频| 欧美极品一区二区三区四区| 欧美最黄视频在线播放免费| 手机成人av网站| 成人国产一区最新在线观看| 免费av毛片视频| 露出奶头的视频| 这个男人来自地球电影免费观看| 免费在线观看亚洲国产| 观看免费一级毛片| 超碰成人久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲片人在线观看| 90打野战视频偷拍视频| 又大又爽又粗| 热99re8久久精品国产| 精品久久久久久久久久久久久| 亚洲成av人片在线播放无| 国产亚洲精品久久久久久毛片| 亚洲真实伦在线观看| 99精品欧美一区二区三区四区| 最近最新免费中文字幕在线| 97超级碰碰碰精品色视频在线观看| 成年免费大片在线观看| 长腿黑丝高跟| 狠狠狠狠99中文字幕| 操出白浆在线播放| 精品日产1卡2卡| 久久久精品大字幕| 91在线观看av| 在线观看66精品国产| 国内精品美女久久久久久| 国产精品久久久av美女十八| 免费av毛片视频| 我要搜黄色片| 后天国语完整版免费观看| 国产精品亚洲av一区麻豆| 国产高清三级在线| 久久久久免费精品人妻一区二区| 婷婷精品国产亚洲av| 99国产极品粉嫩在线观看| 国产免费av片在线观看野外av| 九色成人免费人妻av| 日韩av在线大香蕉| 精品熟女少妇八av免费久了| 中出人妻视频一区二区| 久久久久久久久中文| 国产黄片美女视频| 神马国产精品三级电影在线观看| 香蕉av资源在线| 国内毛片毛片毛片毛片毛片| 一本久久中文字幕| 国产精品亚洲av一区麻豆| 日韩大尺度精品在线看网址| 亚洲无线观看免费| 亚洲熟女毛片儿| 亚洲欧美日韩无卡精品| 五月玫瑰六月丁香| 老鸭窝网址在线观看| 欧美色欧美亚洲另类二区| 亚洲av免费在线观看| 哪里可以看免费的av片| 啪啪无遮挡十八禁网站| 国产成人aa在线观看| 精品久久久久久久久久久久久| 搡老熟女国产l中国老女人| 亚洲中文日韩欧美视频| 在线a可以看的网站| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出| 久久久久久久精品吃奶| 久9热在线精品视频| 亚洲男人的天堂狠狠| 亚洲国产欧美网| 全区人妻精品视频| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出| 69av精品久久久久久| 中文字幕精品亚洲无线码一区| 色尼玛亚洲综合影院| 亚洲国产欧美网| 成人特级黄色片久久久久久久| www日本黄色视频网| 90打野战视频偷拍视频| 真人一进一出gif抽搐免费| 国产久久久一区二区三区| 小蜜桃在线观看免费完整版高清| 悠悠久久av| 亚洲激情在线av| 男女视频在线观看网站免费| 两人在一起打扑克的视频| 亚洲 欧美一区二区三区| 国产黄片美女视频| 村上凉子中文字幕在线| 床上黄色一级片| 欧美xxxx黑人xx丫x性爽| 国产亚洲欧美98| 午夜日韩欧美国产| 熟女电影av网| 岛国在线观看网站| 国产欧美日韩精品一区二区| 亚洲成人久久爱视频| 搡老妇女老女人老熟妇| 在线观看美女被高潮喷水网站 | 国产熟女xx| 国产高清videossex| 免费在线观看亚洲国产| 国产欧美日韩一区二区精品| 精品欧美国产一区二区三| 黄片大片在线免费观看| 色尼玛亚洲综合影院| 午夜两性在线视频| 精华霜和精华液先用哪个| 成人特级av手机在线观看| 真人一进一出gif抽搐免费| 男女那种视频在线观看| 欧美日韩精品网址| 日韩成人在线观看一区二区三区| 国产精品九九99| 香蕉国产在线看| 99久国产av精品| 欧美乱码精品一区二区三区| 午夜福利高清视频| 国产欧美日韩精品亚洲av| 日韩高清综合在线| 亚洲欧美精品综合久久99| 男人和女人高潮做爰伦理| 99久久国产精品久久久| 观看免费一级毛片| 99视频精品全部免费 在线 | 人妻久久中文字幕网| 国产欧美日韩一区二区精品| 禁无遮挡网站| 色av中文字幕| 亚洲欧美日韩东京热| 天天躁狠狠躁夜夜躁狠狠躁| 露出奶头的视频| 首页视频小说图片口味搜索| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 一进一出抽搐动态| 免费看日本二区| 欧美丝袜亚洲另类 | 最好的美女福利视频网| 91麻豆精品激情在线观看国产| 18禁美女被吸乳视频| 最近在线观看免费完整版| 亚洲精品乱码久久久v下载方式 | 高潮久久久久久久久久久不卡| 午夜视频精品福利| 亚洲精品美女久久av网站| 久9热在线精品视频| 99久久99久久久精品蜜桃| 中文资源天堂在线| 午夜免费成人在线视频| 国产精品av久久久久免费| 免费在线观看成人毛片| 搞女人的毛片| www日本黄色视频网| 日本a在线网址| a级毛片在线看网站| 欧美极品一区二区三区四区| 欧美乱色亚洲激情| 国产精品 欧美亚洲| 国产熟女xx| 欧美又色又爽又黄视频| 国产高清视频在线观看网站| 亚洲五月天丁香| 亚洲av电影不卡..在线观看| 亚洲无线观看免费| 精品电影一区二区在线| 亚洲,欧美精品.| 亚洲欧美日韩卡通动漫| 色视频www国产| 国产伦在线观看视频一区| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 久久久国产成人精品二区| 岛国在线观看网站| 国产精品,欧美在线| 国产亚洲欧美在线一区二区| 99久久综合精品五月天人人| 国产一级毛片七仙女欲春2| 久久久国产精品麻豆| 国产美女午夜福利| 亚洲午夜精品一区,二区,三区| 88av欧美| 无人区码免费观看不卡| 婷婷亚洲欧美| 99热只有精品国产| 免费在线观看亚洲国产| 精品福利观看| 九九热线精品视视频播放| 亚洲avbb在线观看| 国产亚洲精品久久久久久毛片| 深夜精品福利| 免费在线观看亚洲国产| 欧美激情久久久久久爽电影| 久久精品影院6| 久久精品国产99精品国产亚洲性色| 国产精品99久久久久久久久| 丁香欧美五月| 一本久久中文字幕| 久久精品国产综合久久久| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清| avwww免费| 99精品久久久久人妻精品| 亚洲午夜理论影院| 97人妻精品一区二区三区麻豆| 欧美xxxx黑人xx丫x性爽| netflix在线观看网站| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 好男人在线观看高清免费视频| 精品日产1卡2卡| 每晚都被弄得嗷嗷叫到高潮| 18禁裸乳无遮挡免费网站照片| 青草久久国产| 99国产精品99久久久久| 亚洲国产精品sss在线观看| 成在线人永久免费视频| 法律面前人人平等表现在哪些方面| 熟妇人妻久久中文字幕3abv| 亚洲18禁久久av| 99久久精品国产亚洲精品| 国产精品乱码一区二三区的特点| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 人人妻人人看人人澡| 精品国产三级普通话版| 一本一本综合久久| 99热精品在线国产| 男人舔女人的私密视频| or卡值多少钱| 又爽又黄无遮挡网站| 国产熟女xx| 国产一区在线观看成人免费| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 91字幕亚洲| 国产精品 国内视频| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 十八禁网站免费在线| 亚洲欧美精品综合久久99| 亚洲精品在线美女| 久久香蕉国产精品| 美女 人体艺术 gogo| 白带黄色成豆腐渣| 九九热线精品视视频播放| 亚洲天堂国产精品一区在线| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| 毛片女人毛片| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 成人av在线播放网站| 超碰成人久久| 男女做爰动态图高潮gif福利片| 欧美色视频一区免费| 久久精品亚洲精品国产色婷小说| 欧美黑人欧美精品刺激| 久9热在线精品视频| 色老头精品视频在线观看| 亚洲精品美女久久久久99蜜臀| 精品午夜福利视频在线观看一区| 国产高清视频在线播放一区| 亚洲av第一区精品v没综合| svipshipincom国产片| 日韩免费av在线播放| 男女之事视频高清在线观看| 观看免费一级毛片| 日本黄大片高清| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| 神马国产精品三级电影在线观看| 他把我摸到了高潮在线观看| 久9热在线精品视频| 国产精品一区二区精品视频观看| 午夜免费观看网址| 真人一进一出gif抽搐免费| 国产精品一区二区三区四区免费观看 | 亚洲av日韩精品久久久久久密| 两人在一起打扑克的视频| 变态另类成人亚洲欧美熟女| 久久久久久久午夜电影| 精品久久蜜臀av无| 国产精品1区2区在线观看.| 偷拍熟女少妇极品色| 99久久成人亚洲精品观看| 成人三级黄色视频| 欧美色视频一区免费| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸| 青草久久国产| 日韩精品中文字幕看吧| 床上黄色一级片| 亚洲精品乱码久久久v下载方式 | 国产又色又爽无遮挡免费看| 免费在线观看成人毛片| 国产极品精品免费视频能看的| 听说在线观看完整版免费高清| 国产精品永久免费网站| 不卡一级毛片| 亚洲av熟女| 真人做人爱边吃奶动态| 色噜噜av男人的天堂激情| 老司机午夜十八禁免费视频| 亚洲av成人一区二区三| 在线观看一区二区三区| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 精品人妻1区二区| 嫁个100分男人电影在线观看| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 最近最新免费中文字幕在线| 99国产精品99久久久久| 99re在线观看精品视频| 中亚洲国语对白在线视频| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久| 无人区码免费观看不卡| 在线a可以看的网站| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 亚洲av免费在线观看| 色综合欧美亚洲国产小说| 久久久久久九九精品二区国产| 高清毛片免费观看视频网站| 不卡av一区二区三区| or卡值多少钱| 啦啦啦观看免费观看视频高清| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 午夜福利在线观看吧| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 99久久综合精品五月天人人| 亚洲av成人不卡在线观看播放网| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| а√天堂www在线а√下载| 亚洲午夜理论影院| 成年女人永久免费观看视频| 国产成人av激情在线播放| www日本黄色视频网| 性欧美人与动物交配| 精品国产亚洲在线| 久久精品91无色码中文字幕| 搡老熟女国产l中国老女人| 国产三级黄色录像| 一级毛片女人18水好多| 精品国产美女av久久久久小说| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 欧美丝袜亚洲另类 | 99久久久亚洲精品蜜臀av| 精品免费久久久久久久清纯| 国产在线精品亚洲第一网站| 他把我摸到了高潮在线观看| 黄色丝袜av网址大全| 精品国产三级普通话版| 欧美成人免费av一区二区三区| 男女午夜视频在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品99久久99久久久不卡| 日日干狠狠操夜夜爽| 亚洲午夜理论影院| 国产av不卡久久| 日本一本二区三区精品| 久久天堂一区二区三区四区| 欧美国产日韩亚洲一区| 亚洲片人在线观看| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧洲精品卡2卡3卡4卡5卡区| 精品久久蜜臀av无| 久久久久久九九精品二区国产| 久久久国产精品麻豆| 国产日本99.免费观看| 久久久久亚洲av毛片大全| 香蕉国产在线看| 不卡一级毛片| 毛片女人毛片| 亚洲 欧美 日韩 在线 免费| 丝袜人妻中文字幕| 亚洲色图av天堂| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 免费观看人在逋| 一区二区三区国产精品乱码| a级毛片a级免费在线| 在线播放国产精品三级| 久久亚洲精品不卡| 精品日产1卡2卡| 一区福利在线观看| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 黑人操中国人逼视频| 免费大片18禁| 在线国产一区二区在线| 老汉色av国产亚洲站长工具| 欧美一级a爱片免费观看看| 99re在线观看精品视频| 校园春色视频在线观看| 午夜福利欧美成人| 精品久久蜜臀av无| 村上凉子中文字幕在线| 女人被狂操c到高潮| 国产极品精品免费视频能看的| 国产淫片久久久久久久久 | 一夜夜www| 亚洲国产精品合色在线| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 中亚洲国语对白在线视频| av天堂中文字幕网| АⅤ资源中文在线天堂| 国模一区二区三区四区视频 | 亚洲欧美日韩高清专用| 国产高潮美女av| 国产精品美女特级片免费视频播放器 | 免费av毛片视频| 亚洲第一电影网av| 色综合亚洲欧美另类图片| 中文在线观看免费www的网站| 色吧在线观看| 国产av一区在线观看免费| 亚洲激情在线av| 亚洲在线自拍视频| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 麻豆国产97在线/欧美| 亚洲中文日韩欧美视频| 国产一区二区三区在线臀色熟女| 中文在线观看免费www的网站| 欧美午夜高清在线| 99热这里只有是精品50| 99在线人妻在线中文字幕| 亚洲av中文字字幕乱码综合| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 99在线人妻在线中文字幕| 一级毛片女人18水好多| 国产av不卡久久| 9191精品国产免费久久| 国产精品精品国产色婷婷| 免费在线观看视频国产中文字幕亚洲| 久久久久久久精品吃奶| 曰老女人黄片| 丝袜人妻中文字幕| 亚洲一区二区三区色噜噜| 久久久国产成人免费| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 精品人妻1区二区| 精品久久蜜臀av无| 丁香欧美五月| 黄色丝袜av网址大全| 国产精品一区二区三区四区久久| 天堂av国产一区二区熟女人妻| 久久精品综合一区二区三区| 成人永久免费在线观看视频| 欧美激情在线99| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 美女被艹到高潮喷水动态| 亚洲av电影在线进入| 757午夜福利合集在线观看| 亚洲精品久久国产高清桃花| 亚洲精品在线美女| 亚洲人与动物交配视频| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色| av欧美777| 制服人妻中文乱码| 国产精品一及| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 亚洲欧美日韩高清在线视频| 淫秽高清视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜亚洲福利在线播放| 麻豆成人av在线观看| 久久亚洲真实| 黄色成人免费大全| 香蕉国产在线看| 日本五十路高清| 特大巨黑吊av在线直播| 丰满人妻一区二区三区视频av | 一个人观看的视频www高清免费观看 | 免费看光身美女| 欧美在线一区亚洲| 成年版毛片免费区| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 1024手机看黄色片| 日韩精品青青久久久久久| 久久久国产成人精品二区| 午夜a级毛片| 国产综合懂色| 视频区欧美日本亚洲| 欧美绝顶高潮抽搐喷水| 亚洲精品久久国产高清桃花| 午夜两性在线视频| 久久精品91无色码中文字幕| 欧美一区二区精品小视频在线| 久久这里只有精品19| 最好的美女福利视频网| www.精华液| 亚洲激情在线av| 欧美大码av| 露出奶头的视频| 国产精品98久久久久久宅男小说| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 精品熟女少妇八av免费久了| 久久欧美精品欧美久久欧美| 欧美日韩亚洲国产一区二区在线观看| 十八禁网站免费在线| 在线国产一区二区在线| 亚洲欧美一区二区三区黑人| 久久香蕉精品热| 黄片大片在线免费观看| 国内精品美女久久久久久| 欧美3d第一页| 草草在线视频免费看| 国产成人av激情在线播放| 露出奶头的视频| 欧美绝顶高潮抽搐喷水| 国产精品久久视频播放| 大型黄色视频在线免费观看| 99久国产av精品| 婷婷六月久久综合丁香| 亚洲欧美日韩高清在线视频| 女生性感内裤真人,穿戴方法视频| 又黄又粗又硬又大视频| 俺也久久电影网| 伊人久久大香线蕉亚洲五| 老司机午夜福利在线观看视频| 1024香蕉在线观看| 久久久久久久久中文|