• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GranatumX: A Community-engaging, Modularized, and Flexible Webtool for Single-cell Data Analysis

    2021-02-24 03:06:00DavidGarmireXunZhuAravindMantravadiQianhuiHuangBreckYunitsYuLiuThomasWolfgruberOlivierPoirionTianyingZhaodricArisdakessianStefanStanojevicLanaGarmire
    Genomics,Proteomics & Bioinformatics 2021年3期

    David G. Garmire, Xun Zhu, Aravind Mantravadi, Qianhui Huang, Breck Yunits, Yu Liu, Thomas Wolfgruber, Olivier Poirion, Tianying Zhao,Cédric Arisdakessian,, Stefan Stanojevic, Lana X. Garmire,

    1Department of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

    2Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA

    3Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

    4Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA

    5Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA

    Abstract We present GranatumX,a next-generation software environment for single-cell RNA sequencing(scRNA-seq)data analysis. GranatumX is inspired by the interactive webtool Granatum. GranatumX enables biologists to access the latest scRNA-seq bioinformatics methods in a web-based graphical environment. It also offers software developers the opportunity to rapidly promote their own tools with others in customizable pipelines. The architecture of GranatumX allows for easy inclusion of plugin modules, named Gboxes, which wrap around bioinformatics tools written in various programming languages and on various platforms. GranatumX can be run on the cloud or private servers and generate reproducible results. It is a community-engaging, flexible, and evolving software ecosystem for scRNA-seq analysis,connecting developers with bench scientists. GranatumX is freely accessible at http://garmiregroup.org/granatumx/app.

    KEYWORDS Single-cell RNA sequencing;Analysis;Pipeline;Webtool;Module

    Introduction

    Single-cell RNA sequencing (scRNA-seq) technologies have advanced our understanding of cell-level biology significantly [1]. Many exciting scientific discoveries are attributed to new experimental technologies and sophisticated computational methods[2,3].Despite the progress in cultivating professionals with cross-discipline training, a gap continues to exist between the wet-lab biology and the bioinformatics community. Moreover, with the rapid development of many varieties of modules handling different parts of scRNA-seq analysis[4–6],it becomes increasingly challenging for bioinformaticians themselves to decide which method to choose. Although some analytical packages such as SINCERA[7],Seurat[8],and Scanpy[9]provide complete scRNA-seq pipelines, they require users to be familiar with their corresponding programming language (typically R or Python), installation platform, and command-line interface. This overhead hinders wide adoption by experimental biologists,especially those newly adopting scRNA-seq technologies. A few platforms, such as ASAP [10] and our own previous tool Granatum [11],provide intuitive graphical user interfaces(GUIs)and may be useful for a first-hand exploratory check. However,Granatum does not allow for modularity, while ASAP lacks flexibility and restricts the user to a set number of computational tools.Here we present GranatumX,the new generation of scRNA-seq analysis platform that aims to solve these issues systematically. Its architecture facilitates the rapid incorporation of cutting-edge tools and enables the efficient handling of large datasets aided by virtualization [12].

    Method

    Architectural overview

    GranatumX consists of three independent components:central data storage (CDS), user interface (UI), and task runner (TR). CDS stores all data and metadata in GranatumX,including the uploaded files,processed intermediate data, and final results. The other two components of GranatumX both have controlled access to CDS, which allows them to communicate with each other. CDS is implemented using a PostgreSQL database and a secure file system-based data warehouse. UI is the component with which wet-lab biologists interact. The layout is intuitive with Gbox settings while providing a flexible and customizable analysis pipeline. UI also allows for the asynchronous submission of tasks before they can be run by the backend. UI is implemented using JavaScript, with the ReactJS framework. The submitted jobs queue up in the database and can be retrieved in real time by TR. TR monitors the task queue in the CDS in real time, actively retrieves the high-priority tasks(based on submission time),initializes the corresponding Gboxes,and prepares the input data by retrieving relevant data from CDS.

    Deployment

    GranatumX uses Docker to ensure that all Gboxes can be installed reproducibly with all their dependencies. As a result,GranatumX can be deployed in various environments including personal computers (PCs), dedicated servers,high-performance computing (HPC) platforms, and cloud services. The installation instructions are detailed in the README file of the source code.

    Responsive UI

    The web-based UI offers different device-specific layouts to suit a wider range of screen sizes. On desktop computers,the UI takes advantage of the screen space and uses a panelbased layout,and maximizes the on-screen information.On small tablets and mobile devices with limited screen space,a collapsible sidebar-based layout is used to allow the most important information (the results of the current step) to show up on the screen.

    Recipe system

    Most studies can use similarly structured pipelines, which typically consist of data entry (upload and parsing), data processing(imputation,gene filtering,normalization,etc.),and finally data analysis functionalities(clustering,differential expression and marker gene identification, pseudotime construction,etc.). GranatumX allows users to save a given pipeline into a “recipe” for the future. GranatumX comes with a set of built-in recipes, which cover many of the most common experiment pipelines.

    Software development kits

    Software development kits(SDKs)in GranatumX are made for Python and R.These SDKs provide a set of application programming interfaces (APIs) and helper functions that connect Gbox developer’s own code with the core of GranatumX. The detailed documentation can be found in the Github repository.

    There are three steps to build a new Gbox from the existing code.1)An entry point is written in the language of the developer’s choice.The entry point uses the SDK to retrieve necessary input from the core of GranatumX and send back output to the core after the results are computed. 2) The entry point, the original package source code, and any dependencies are packed into a Docker image using a Docker file and the“docker build”command.3)A UI specification is written for the Gbox.The specification is a simple YAML file that declares the data requirements of the Gbox.

    Pipeline customization

    GranatumX allows for full customization of the analysis pipeline. An analysis pipeline has a number of Gboxes organized in a series of steps.Note that two different steps can have the same underlying Gbox. For example, two principal component analysis (PCA) Gboxes can appear before and after imputation,to evaluate its effect.Because the data are usually processed in a streamlined fashion,later steps in the pipeline usually depend on data generated by the earlier steps.Steps can be added from the App store into the current project and can be removed from the pipeline at any time.A newly added step can be inserted at any point in the pipeline and can be reordered in any way,as long as such re-arrangement does not violate the dependency relationships.

    Current GranatumX cloud server setup

    The current GranatumX web version is hosted on OVHcloud,with specs:Intel Haswell vCPU 128 GB RAM Xeon E5-1650 4GHz. Additionally the https protocol is verified with Let’s Encrypt(https://letsencrypt.org)with an Apache 2 server(https://httpd.apache.org/)and a site registered with No-IP (https://www.noip.com/). This server uses a proxy implementation to pass a user to the Node.js web service.In this manner,Node does not have to manage the security or https connections which allows setup to occur efficiently in an enterprise system.Additionally,an optional fast compute system may be connected to the OVH cloud server through ssh tunneling which allows the local port to be mapped to the remote connection.In this manner,a high-speed rig can be connected—in this case, the AMD 3590x can be connected without having to procure a new cloud system.

    Project management

    The studies in GranatumX are organized as projects. Each user can manage multiple concurrent projects. The automatic customer’s report can be generated per project using the parameters and results stored in the CDS.

    Example datasets

    Three datasets are used in this report. One dataset is downloaded from Gene Expression Omnibus (GEO:GSE117988), a study on a patient with metastatic Merkel cell carcinoma,treated using T cell immunotherapy as well as immune-checkpoint inhibitors (anti-PD1 and anti-CTLA4) but later developed resistance [13]. A second dataset isTabula Murisdataset, which contains 54,865 cells from 20 organs and tissues of mouse [14]. Another dataset is the 1.3 Million Brain Cells from E18 Mice,downloaded from 10x Genomics website: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons(accessed on date 05/09/2020).This dataset contains 1,308,421 cells from embryonic mouse brains, done by Chromium?Single Cell 3′ Solution (v2 Chemistry).

    GranatumX plugin development

    The detailed instruction document and the tutorial YouTube or Youku videos for writing Gbox plugin are on the project website: http://garmiregroup.org/granatumx/app. Additionally, we created a slack group named “GranatumXDeveloper” to facilitate plugin development from the 3rd party.

    Results

    Overview of GranatumX

    The objective of GranatumX is to provide scRNA-seq biologists better access to bioinformatics tools and the ability to conduct single-cell data analysis independently(Figure 1). Currently other scRNA-seq platforms usually only provide a fixed set of methods implemented by the authors themselves. It is difficult to add new methods developed by the community due to programming language lock-in as well as monolithic code architectures. If a pipeline is assembled between heterogeneous tools, it is manually crafted and inhibits a repeatable execution of data analysis tools by other wet-lab scientists. As a solution,GranatumX uses the plugin and virtualized framework that provides an easy and unified approach to add new methods in a data-analysis pipeline.The plugin system is agnostic to developer code and the choice of the original scripting language.It also eliminates inter-module incompatibilities,by isolating the dependencies of each module(Figure 2A).As a data portal, GranatumX provides a GUI that requires no programming experience.

    Deployment of GranatumX

    The web-based GUI can be accessed on various devices including desktops, tablets, and smartphones (Figure 2A).In addition to the web-based format, GranatumX is also deployable on a broad variety of computational environments, such as PCs, cloud services, servers, and HPC platforms with minimal effort by system administrators.The deployment process is unified on all platforms because all components of GranatumX are containerized in Docker[15] (also portable to Singularity [16]). GranatumX can handle larger-scale scRNA-seq datasets coming online,with an adequate cloud configuration setup and appropriate Gboxes. For example, after uploading data, it took GranatumX~12 min to finish the recommended pipeline with xxx modules on an AMD 3950x with 16 cores and 128 GB of DRAM memory running Ubuntu 20.04, using 10,000 cells downsampled from the dataset of “1.3 Million Brain Cells from E18 Mice” on the 10x Genomics website. The most time-consuming step is imputation using neural-network model DeepImpute (~ 2/5 time), and the detailed breakdown of time consumption is shown in Table S1.

    Unique Gbox modules

    Gbox is a unique concept of GranatumX. It represents a containerized version of a scientific package that handles its input and output by a format understood by the GranatumX core (Figure 2B). GranatumX has a set of pre-installable Gboxes that enable complete scRNA-seq analysis out of the box.Various Gboxes for data entry,processing,and analysis can be customized and organized together,to form a complete analysis pipeline (Figure 2C). One highlight feature of the Gbox is that it stands alone, and the user can assume any Gbox without the need to restart the full pipeline,in case one implemented by the user fails.Another highlight of the Gbox feature is that the entire GranatumX platform is fully interactive,with addition or removal of some Gboxes or parameter changes on the go, while some other Gboxes are being executed.

    Figure 1 Overview of the Granatum X platformGranatum X aims to bridge the gap between the computational method developers(the bioinformaticians)and the experiment designers(the biologists).It achieves this by building end-to-end infrastructure including the packaging and containerization of the codes(Gbox packaging),organization and indexing of the Gboxes (Apps), customization of the analysis steps (pipeline building), visualization and result downloading (interactive analysis), and finally the aggregation and summarization of the study (report generation).

    A comprehensive set of over 30 Gboxes are implemented in GranatumX to perform tasks all the way from data entry and processing to downstream functional analysis.The data processing tasks help to minimize the biases in the data and increase the signal-to-noise ratio. For each of these quality improvement categories, GranatumX provides multiple popular methods from which users can pick. To assist functional analysis, GranatumX provides a core list of methods for dimension reduction, visualization [including PCA, t-distributed stochastic neighbor embedding (t-SNE),and uniform manifold approximation and projection(UMAP)], clustering, differential expression, marker gene identification, gene set enrichment analysis (GSEA), network analysis,and pseudo-time construction.Versioning for each of these Gboxes has been implemented so that users can use a specific tested version of a Gbox. Developers on the other hand can work on newer versions separately before the official upgrade. Gboxes can be stored on Docker Hub for public use which maintains its own versioning system(https://hub.docker.com/u/granatumx).Detailed step-by-step tutorials for writing and building Gboxes are on GranatumX website http://garmiregroup.org/granatumx/app.

    Input files

    The input files of GranatumX include expression matrices and optional sample metadata tables,acceptable in a variety of formats such as CSV,TSV,or Excel format.GranatumX even accepts zip files and GNU zip(gz)files,which the user can choose for large expression matrices. Expression matrices are raw read counts for all genes (rows) in all cells(columns). The sample metadata tables annotate each cell with a pre-assigned cell type, state, or other quality information.The parsing step creates a sparse matrix using the coordinate list (COO) format, and this representation ensures swift upload onto the backend,even for large input datasets (> 10,000 cells). Such information will either be used to generate computational results(such as GSEA or be mapped onto the PCA, t-SNE, or UMAP plot for visualization (see Figure 2C for the workflow). Once the user uploads the gene expression matrix,the data are read into a dataframe usingPandas,and the step updates the user with a“preview”,consisting of the first few rows and columns of the gene expression matrix,along with the number of genes and samples present.

    Figure 2 GranatumX deployment, data management, and analysis flowA. Granatum X can be deployed on various computational environments, from PCs, servers, HPC systems, to cloud services. Granatum X’s web UI is adaptable to devices with various screen sizes, which allows desktop and mobile access. B. Granatum X’s data management. Each Gbox (labeled by a particular color to represent a certain functionality)with order dependency on the pipeline,may take some project data and some user-specified parameters as input and may generate results(interactive visualization,plots,tables,or even plain text)and new project data.All project data and results,as well as the specified parameters, are recorded and saved into the CDS and can be used for reproducibility control. C. A scRNA-seq computational study typically consists of three phases:the upload and parsing of the expression matrices and metadata(data entry),the quality improvement and signal extraction of the data(data processing),and finally the assorted analyses on the processed data which offer biological insights(data analysis).PC,personal computer;HPC,high-performance computing; UI, user interface; CDS, central data storage; GSEA, gene set enrichment analysis.

    User-centric design

    As a user-friendly tool,GranatumX allows multiple users to be affiliated with the same project for data and result sharing, while restricting one user to run the pipeline at a time to avoid data conflicts. It allows dynamically adding,removing, and reordering pipeline steps on the go. It also allows users to reset the current step.All relevant data in the analysis pipeline and all results generated by each module are stored in a database, allowing users to access and download them.To ensure reproducibility,GranatumX can automatically generate a human-readable report detailing the inputs, running arguments, and the results of all steps(see examples in Files S1 and S2).All of these features are designed with the mindset of “consumer reports” to facilitate research in experimental labs or genomics cores.

    Case studies using GranatumX

    In the following section,we demonstrate two case studies of GranatumX. The first dataset was downloaded from Gene Expression Omnibus (GEO: GSE117988), including 7431 single cells generated by the 10x Genomics 3′ Chromium platform. It was obtained from a patient with metastatic Merkel cell carcinoma,treated using T cell immunotherapy as well as immune-checkpoint inhibitors (anti-PD1 and anti-CTLA4)but later developed resistance[13].We used a customized pipeline to analyze the scRNA-seq data(Figure3A). The pipeline comprises all common analysis steps,including 1) file upload, 2) imputation (based on DeepImpute[6]),3)cell normalization,4)gene filtering,5)log transformation, 6) PCA, 7) t-SNE/UMAP visualization, 8)clustering, 9) sample coloring, 10) marker gene identification, 11) GSEA, and 12) pseudo-time construction. The analysis report of the entire pipeline is included as File S1.The clustering step identifies 7 clusters on the UMAP plot(Figure 3B). The exemplary GSEA results (Table 1)show the significance in many important immune-related pathways, including the MAPK signaling pathway and antigen processing and presentation pathway(cluster 5vs.rest),cell cycle genes (cluster 3vs. rest), and ubiquitin-mediated proteolysis(cluster 3vs.rest).

    Table 1 GSEA results on clusters from UMAP plot in Figure 3B

    We also used GranatumX to analyzeTabula Murisdataset,which contains 54,865 cells from 20 organs and tissues of mouse[14].Again,we used the same pipeline as shown in Figure 3A. GranatumX offers multiple popular clustering algorithms, and for this dataset we used the Louvain algorithm.For illustration purposes,we focus on the viewing and clustering of this large graph-based clustering method implemented by Scanpy.A total of 44 clusters are assigned on the UMAP plot (Figure 3C). We also superimposed the metadata that contain tissue types for each cell on the same plot for visualization (Figure S1). The complete analysis report of this dataset is included as File S2.

    Figure 3 Case studies using an exemplary workflow of GranatumXA.An exemplary workflow of a customized scRNA-seq pipeline set by the user.B.UMAP plot showing clusters on metastatic Merkel cell carcinoma data from the 10x Genomics platform[13].C.UMAP plot showing clusters of Tabula Muris Consortium data[14].PCA,principal component analysis;t-SNE,t-distributed stochastic neighbor embedding; UMAP, uniform manifold approximation and projection.

    Discussion

    With the ever-increasing popularity of scRNA-seq, more and more experimental biologists will adopt this technology. At the same time, new bioinformatics tools are being developed rapidly.The development of GranatumX fills in a unique niche that enables both scientific and technical advancements.It is a“common ground”that connects scRNAseq tool developers with the end-users, together for new discoveries. Domain experts can use GranatumX for the initial exploratory analysis.Additionally,with more Gboxes to be implemented on model performance metrics, GranatumX could be a vessel to enable benchmark studies to compare existing computational modules and pipelines, as well as assess the performance of a new method or pipeline relative to the existing ones.Moreover,it can also serve as the test engine to probe the source of variations in different modules, so as to optimize a pipeline for given datasets.

    To demonstrate the uniqueness of GranatumX, we also compare it with other similar tools for comprehensive scRNA-seq analysis, such as SC1 [17], ASAP [10] and Single Cell Explorer [18] inTable 2.While all these tools aim for simple report and interaction with biologists,GranatumX is the only framework that supports bioinformatics developers to contribute their own plugins(Table 2).This significantly enhances the adaptability of GranatumX among the developer community. The web-tool that is closest to GranatumX is Single Cell Explorer, still with significant differences in the functionalities. Single Cell Explorer begins from raw data processing including reading mapping alignment. GranatumX is a much lighter-weight tool that starts from a cell read count table since the alignment/tag counting step is readily done by the popular Cell Ranger software of the 10x Genomics platform. Instead,GranatumX put more efforts on downstream analysis,such as gene enrichment analysis,protein-protein interaction and pseudo-time construction (Table 2). For ASAP, besides lacking modules to perform functions such as imputation,protein-protein interaction and pseudo-time construction,it also does not allow reconfiguration of the pipeline like GranatumX. SC1 lacks the flexibility and functionalities similar to ASAP and is restricted by Shiny,an R programming language-based web-interface, whereas GranatumX accepted containerized Gboxes packaged written in R, Python, or other languages.

    As an inclusive and open software environment that employs other third-party tools, GranatumX has some challenges. One of them is handling the upgrade of underlying 3rd party libraries and resources.Accompanying with updated 3rd party tools which may not be tested extensively by the original developers,errors from these packages may propagate into GranatumX. To deal with this issue, we implement versioning through the use of Docker which helps to maintain system-level dependencies as well as software dependencies in a complete package. The Gbox Docker containers for this release are listed in the Table S2 with a version number of 1.0.0.New versions can update the minor and major revision numbers so that users know exactly which code is being executed for a given pipeline.The source code for the Docker containers which represent the Gboxes are stored in the corresponding GitHub repositories.For example, https://hub.docker.com/r/granatumx/gboxdifferentialexpression is stored in https://github.com/granatumx/gbox-differentialexpression. Such an endeavor provides safety and reliability in maintaining the stability of the software not just in the source of the software but in the configuration of the system required to run the computational elements. Due to its openness, GranatumX cannot prevent p-hacking or manipulating data analysis to improve the statistical significance of the desired result [19]. One way to discourage p-hacking is to suggest using standard pipeline and default parameters. If the user chooses values other than defaults, the reproducible design of GranatumX allows one to compare the outputs from the users(if they are recorded) with those from the default setting.

    Table 2 Comparison on multiple user-friendly webtools

    Conclusion

    We present an open-source,shareable and evolvable single cell analysis tool called GranatumX.It not only enables the domain experts to independently conduct single cell analysis, but also promotes bioinformatics tool developers to contribute and develop their own single cell analysis methods through Gbox plugin setup. We hope that GranatumX will engage the single cell analysis community broadly and continuously for scientific discoveries.

    Code availability

    The webtool of GranatumX can be found at http://garmiregroup.org/granatumx/app. On this website, users can also find YouTube or Youku tutorial videos that demonstrate how to use GranatumX webtool. The source code for GranatumX is available at https://github.com/granatumx under MIT license.All builds are deployed via Docker Hub at https://hub.docker.com/u/granatumx.

    CRediT author statement

    David G.Garmire:Software,Methodology,Visualization,Writing - original draft, Writing - review & editing, Investigation, Validation, Resources, Data curation, Supervision.Xun Zhu:Conceptualization, Methodology,Software, Investigation, Formal analysis, Validation, Writing - original draft, Data curation, Visualization.Aravind Mantravadi:Software, Investigation.Qianhui Huang:Investigation, Data curation, Validation.Breck Yunits:Software, Validation, Data curation.Yu Liu:Software,Validation,Data curation.Thomas Wolfgruber:Software,Validation, Data curation.Olivier Poirion:Software, Validation, Data curation.Tianying Zhao:Software, Validation, Data curation.Cédric Arisdakessian:Software,Validation,Data curation.Stefan Stanojevic:Investigation,Validation,Writing-review&editing.Lana X.Garmire:Conceptualization, Methodology, Formal analysis, Resources,Writing-original draft,Writing-review&editing,Supervision, Project administration, Funding acquisition.All authors have read and approved the final manuscript.

    Competing interests

    The authors have no potential competing interests.

    Acknowledgments

    We thank Dr.Larry Reiter for providing valuable feedback while using GranatumX to test his single-cell dataset.This research was supported by grants from the National Institute of Environmental Health Sciences (NIEHS) through funds

    provided by the trans-NIH Big Data to Knowledge(BD2K)initiative (www.bd2k.nih.gov; Grant No. K01ES025434),the National Institutes of Health / National Institute of General Medical Sciences (NIH/NIGMS; Grant No. P20 COBRE GM103457), the National Library of Medicine(NLM; Grant No. R01 LM012373), and the National Institute of Child Health and Human Development (NICHD;Grant No.R01 HD084633)awarded to LXG.Cartoon icons in Figures 1 and 2 are downloaded from https://www.flaticons.com/.

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2021.07.005.

    ORCID

    0000-0002-6913-6550 (David G.Garmire)

    0000-0001-9097-7824 (Xun Zhu)

    0000-0001-9217-913X (Aravind Mantravadi)

    0000-0002-3292-7519 (Qianhui Huang)

    0000-0001-7033-3538 (Breck Yunits)

    0000-0002-8631-4347 (Yu Liu)

    0000-0001-8770-1800 (Thomas Wolfgruber)

    0000-0002-0429-7003 (Olivier Poirion)

    0000-0002-0103-1867 (Tianying Zhao)

    0000-0001-5255-0942 (Cédric Arisdakessian)

    0000-0002-9692-5301 (Stefan Stanojevic)

    0000-0002-4654-2126 (Lana X.Garmire)

    久久精品国产亚洲av天美| 亚洲最大成人中文| 禁无遮挡网站| 国产一级毛片七仙女欲春2| 午夜精品一区二区三区免费看| 人妻系列 视频| 久久99热6这里只有精品| 99久国产av精品| 亚洲天堂国产精品一区在线| av在线亚洲专区| 亚洲av日韩在线播放| 日本免费一区二区三区高清不卡| 国产一区二区在线观看日韩| 国产av在哪里看| 天堂√8在线中文| a级毛片免费高清观看在线播放| 成人漫画全彩无遮挡| 日本av手机在线免费观看| 校园人妻丝袜中文字幕| 最近手机中文字幕大全| 一级二级三级毛片免费看| 国产白丝娇喘喷水9色精品| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 一夜夜www| 汤姆久久久久久久影院中文字幕 | 久久久国产成人精品二区| 嫩草影院新地址| 日本wwww免费看| 亚洲成人中文字幕在线播放| 午夜福利高清视频| 国产精品久久久久久精品电影| 美女黄网站色视频| 亚洲av成人精品一二三区| 久久亚洲精品不卡| 国产一区二区在线av高清观看| 国产高清国产精品国产三级 | 丰满少妇做爰视频| 久久久色成人| 日本三级黄在线观看| 2022亚洲国产成人精品| 国产伦在线观看视频一区| 欧美激情国产日韩精品一区| 欧美三级亚洲精品| 亚洲精品日韩av片在线观看| 淫秽高清视频在线观看| 能在线免费看毛片的网站| 禁无遮挡网站| av在线老鸭窝| 在线播放无遮挡| 熟妇人妻久久中文字幕3abv| 午夜免费男女啪啪视频观看| 国产免费一级a男人的天堂| 自拍偷自拍亚洲精品老妇| 国产一区二区在线观看日韩| 有码 亚洲区| 国内精品宾馆在线| 日韩视频在线欧美| 97人妻精品一区二区三区麻豆| 一区二区三区高清视频在线| 亚洲自拍偷在线| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| 欧美色视频一区免费| 男人狂女人下面高潮的视频| 日韩,欧美,国产一区二区三区 | 久久人妻av系列| 精品免费久久久久久久清纯| 五月伊人婷婷丁香| 天堂网av新在线| 中文字幕制服av| АⅤ资源中文在线天堂| 色网站视频免费| 精品久久久久久久人妻蜜臀av| 18禁动态无遮挡网站| 亚洲av不卡在线观看| 国产亚洲一区二区精品| 真实男女啪啪啪动态图| 欧美不卡视频在线免费观看| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 日本免费a在线| 卡戴珊不雅视频在线播放| 亚洲欧美日韩高清专用| 久久精品久久久久久久性| 大又大粗又爽又黄少妇毛片口| 国产精品不卡视频一区二区| 边亲边吃奶的免费视频| 日本与韩国留学比较| 亚洲国产欧美在线一区| av卡一久久| 熟女电影av网| 九九爱精品视频在线观看| 国产欧美日韩精品一区二区| 日本黄色视频三级网站网址| 久久久成人免费电影| 日韩成人av中文字幕在线观看| 亚洲va在线va天堂va国产| 少妇熟女欧美另类| 观看免费一级毛片| 国产av码专区亚洲av| 午夜福利在线在线| 一级毛片电影观看 | 欧美成人午夜免费资源| 欧美人与善性xxx| 国产午夜福利久久久久久| 久久久久久久久久黄片| 好男人视频免费观看在线| 青春草国产在线视频| 别揉我奶头 嗯啊视频| 国语自产精品视频在线第100页| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 嫩草影院精品99| 国产亚洲精品久久久com| 成人二区视频| 欧美潮喷喷水| 成年女人永久免费观看视频| 乱系列少妇在线播放| 成人午夜精彩视频在线观看| 身体一侧抽搐| 国产老妇女一区| 久久久久久久久久成人| 男女啪啪激烈高潮av片| 国产av不卡久久| 青春草亚洲视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产在线一区二区三区精 | 黄色欧美视频在线观看| 永久网站在线| 国产一区亚洲一区在线观看| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 真实男女啪啪啪动态图| 日本免费在线观看一区| 高清av免费在线| 国产亚洲av嫩草精品影院| 亚洲精品一区蜜桃| 久久久久久久久久成人| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 久久精品夜色国产| 九草在线视频观看| 亚洲怡红院男人天堂| 观看美女的网站| 欧美成人免费av一区二区三区| 国产成人一区二区在线| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 蜜桃亚洲精品一区二区三区| www.av在线官网国产| 亚洲av.av天堂| 丰满少妇做爰视频| 中文字幕熟女人妻在线| 国产中年淑女户外野战色| 国产一区有黄有色的免费视频 | 国产久久久一区二区三区| 国产在线男女| 蜜臀久久99精品久久宅男| 久久精品久久精品一区二区三区| 18禁动态无遮挡网站| 亚洲精华国产精华液的使用体验| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 九九久久精品国产亚洲av麻豆| www日本黄色视频网| 亚洲精品成人久久久久久| 久久精品91蜜桃| 亚洲真实伦在线观看| 丰满人妻一区二区三区视频av| 国产黄a三级三级三级人| 国模一区二区三区四区视频| 欧美成人精品欧美一级黄| 免费看av在线观看网站| 伦精品一区二区三区| 久久精品国产亚洲网站| 欧美激情久久久久久爽电影| 99热精品在线国产| 毛片女人毛片| 亚洲自偷自拍三级| 国产色爽女视频免费观看| 国产亚洲av片在线观看秒播厂 | 久久精品夜色国产| 韩国av在线不卡| 人人妻人人澡人人爽人人夜夜 | 国产单亲对白刺激| 日本一二三区视频观看| 午夜福利视频1000在线观看| 一边摸一边抽搐一进一小说| 国内精品宾馆在线| 久久人人爽人人爽人人片va| 亚洲av成人精品一二三区| 美女黄网站色视频| 亚洲婷婷狠狠爱综合网| 国产真实乱freesex| 99热这里只有是精品在线观看| 丝袜喷水一区| 久久人妻av系列| 啦啦啦观看免费观看视频高清| 伊人久久精品亚洲午夜| av在线蜜桃| 搡女人真爽免费视频火全软件| 美女国产视频在线观看| 少妇的逼好多水| 日本免费a在线| 99久久精品国产国产毛片| 老司机影院成人| 99热6这里只有精品| 午夜精品国产一区二区电影 | 免费大片18禁| 欧美高清成人免费视频www| 国产高清三级在线| 国产麻豆成人av免费视频| 欧美3d第一页| 国内精品宾馆在线| 亚洲av免费高清在线观看| 99久久精品国产国产毛片| 最近手机中文字幕大全| 一区二区三区乱码不卡18| 国产精品久久视频播放| 美女内射精品一级片tv| 国产欧美另类精品又又久久亚洲欧美| 日韩欧美三级三区| 亚洲成人精品中文字幕电影| 国产av码专区亚洲av| 黄色一级大片看看| 高清午夜精品一区二区三区| 1000部很黄的大片| 亚洲欧美日韩无卡精品| 中文字幕av在线有码专区| 99久久精品一区二区三区| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 精品国产露脸久久av麻豆 | 免费电影在线观看免费观看| 看非洲黑人一级黄片| 免费大片18禁| 欧美成人一区二区免费高清观看| 三级毛片av免费| 蜜桃亚洲精品一区二区三区| 亚洲av不卡在线观看| 午夜久久久久精精品| 国产伦理片在线播放av一区| 亚洲欧美精品自产自拍| 国产真实伦视频高清在线观看| 26uuu在线亚洲综合色| 五月玫瑰六月丁香| 亚洲伊人久久精品综合 | 精品午夜福利在线看| 亚洲怡红院男人天堂| 亚洲18禁久久av| 亚洲国产欧美在线一区| 国产成人精品婷婷| 欧美性感艳星| videossex国产| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 一级毛片久久久久久久久女| 欧美色视频一区免费| 久久精品熟女亚洲av麻豆精品 | 国产精品福利在线免费观看| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 亚洲美女视频黄频| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 激情 狠狠 欧美| 久久草成人影院| 欧美一区二区精品小视频在线| 99九九线精品视频在线观看视频| 精品人妻一区二区三区麻豆| 色噜噜av男人的天堂激情| 日韩成人av中文字幕在线观看| 99热精品在线国产| 欧美精品国产亚洲| 国产一级毛片在线| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | 白带黄色成豆腐渣| 国产精品久久久久久精品电影| 超碰97精品在线观看| 精品酒店卫生间| 日产精品乱码卡一卡2卡三| 亚洲精品国产av成人精品| 久久久久久久久久久丰满| 亚洲中文字幕一区二区三区有码在线看| 国产高清国产精品国产三级 | 欧美一级a爱片免费观看看| 九九在线视频观看精品| 久久久久久九九精品二区国产| av在线亚洲专区| 亚洲国产成人一精品久久久| 亚洲人成网站在线播| 免费看av在线观看网站| 国产乱人偷精品视频| 亚洲国产精品合色在线| 精品国产一区二区三区久久久樱花 | 亚洲av一区综合| 亚洲av电影在线观看一区二区三区 | 中文精品一卡2卡3卡4更新| a级毛片免费高清观看在线播放| 最近手机中文字幕大全| 欧美极品一区二区三区四区| 午夜日本视频在线| 成人毛片60女人毛片免费| 国产激情偷乱视频一区二区| 亚洲国产日韩欧美精品在线观看| 久久久久国产网址| 久久99精品国语久久久| 少妇丰满av| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 在线免费观看不下载黄p国产| 十八禁国产超污无遮挡网站| 精品少妇黑人巨大在线播放 | 午夜福利在线在线| 久久亚洲精品不卡| 国产亚洲5aaaaa淫片| 哪个播放器可以免费观看大片| 成人特级av手机在线观看| 亚洲精品影视一区二区三区av| 国产精品久久久久久精品电影小说 | 日本黄大片高清| 欧美日韩精品成人综合77777| 色哟哟·www| 97热精品久久久久久| 成年免费大片在线观看| 精品久久久久久久久久久久久| 日韩欧美在线乱码| 成人毛片60女人毛片免费| 青青草视频在线视频观看| 99久久人妻综合| 国产精品不卡视频一区二区| 国产精品一及| 中文字幕制服av| 色网站视频免费| 亚洲精品国产成人久久av| 亚洲不卡免费看| 日韩人妻高清精品专区| 性色avwww在线观看| av天堂中文字幕网| 一级毛片久久久久久久久女| 三级国产精品片| 神马国产精品三级电影在线观看| 亚洲国产最新在线播放| 赤兔流量卡办理| 久久久久久国产a免费观看| 亚洲精品一区蜜桃| 精品少妇黑人巨大在线播放 | 成人午夜高清在线视频| 国产伦一二天堂av在线观看| 久久久久久久久久黄片| 一卡2卡三卡四卡精品乱码亚洲| 黄片无遮挡物在线观看| 午夜爱爱视频在线播放| 99视频精品全部免费 在线| 午夜福利在线观看吧| 欧美变态另类bdsm刘玥| 国产高清视频在线观看网站| 色尼玛亚洲综合影院| 日产精品乱码卡一卡2卡三| 嫩草影院入口| 亚洲成av人片在线播放无| www日本黄色视频网| 麻豆av噜噜一区二区三区| 日本免费在线观看一区| 亚洲最大成人手机在线| 熟女电影av网| 精品酒店卫生间| kizo精华| 国产黄a三级三级三级人| 一级爰片在线观看| 国产 一区精品| 一级毛片电影观看 | 在线观看66精品国产| 狂野欧美激情性xxxx在线观看| 成年av动漫网址| 欧美bdsm另类| 日韩 亚洲 欧美在线| 99热精品在线国产| 99在线人妻在线中文字幕| 久久久久久久国产电影| 欧美日本亚洲视频在线播放| 亚洲欧美一区二区三区国产| 国产熟女欧美一区二区| 99久久精品国产国产毛片| 日韩国内少妇激情av| 我的女老师完整版在线观看| 十八禁国产超污无遮挡网站| 热99在线观看视频| 人妻系列 视频| 久久99蜜桃精品久久| 禁无遮挡网站| 国产一区有黄有色的免费视频 | 亚洲最大成人中文| 观看美女的网站| 99热精品在线国产| 免费播放大片免费观看视频在线观看 | 中文字幕亚洲精品专区| 我的老师免费观看完整版| 丝袜美腿在线中文| 国产精品1区2区在线观看.| 国产视频首页在线观看| 在线播放国产精品三级| www.色视频.com| 少妇熟女欧美另类| 午夜福利在线观看免费完整高清在| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 舔av片在线| 成人一区二区视频在线观看| 草草在线视频免费看| 亚洲国产精品久久男人天堂| 91av网一区二区| 51国产日韩欧美| 汤姆久久久久久久影院中文字幕 | 日本黄色片子视频| 身体一侧抽搐| 卡戴珊不雅视频在线播放| 99久久成人亚洲精品观看| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 特大巨黑吊av在线直播| 九草在线视频观看| 成人特级av手机在线观看| 桃色一区二区三区在线观看| 春色校园在线视频观看| 晚上一个人看的免费电影| 国语自产精品视频在线第100页| 国产私拍福利视频在线观看| 成人性生交大片免费视频hd| 欧美成人午夜免费资源| 国产真实伦视频高清在线观看| 丝袜美腿在线中文| 免费黄网站久久成人精品| 亚洲精品乱码久久久v下载方式| 非洲黑人性xxxx精品又粗又长| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 深爱激情五月婷婷| 亚洲欧美精品综合久久99| 亚洲经典国产精华液单| 久久久久久伊人网av| 嘟嘟电影网在线观看| 欧美激情久久久久久爽电影| 伊人久久精品亚洲午夜| 国产欧美另类精品又又久久亚洲欧美| 直男gayav资源| www日本黄色视频网| 99久久成人亚洲精品观看| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 一二三四中文在线观看免费高清| 日韩av不卡免费在线播放| 亚洲av福利一区| 国产精品电影一区二区三区| 99九九线精品视频在线观看视频| 国语自产精品视频在线第100页| 日本欧美国产在线视频| 日韩精品青青久久久久久| 嘟嘟电影网在线观看| 少妇丰满av| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看 | 亚洲经典国产精华液单| 亚洲国产色片| 亚洲精品日韩av片在线观看| 乱码一卡2卡4卡精品| 久久久久久久午夜电影| 国产毛片a区久久久久| 午夜福利视频1000在线观看| 国产熟女欧美一区二区| 国产精品美女特级片免费视频播放器| 成人毛片60女人毛片免费| 中文精品一卡2卡3卡4更新| 亚洲国产日韩欧美精品在线观看| 国产精品爽爽va在线观看网站| 日韩视频在线欧美| 噜噜噜噜噜久久久久久91| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 看十八女毛片水多多多| 日日摸夜夜添夜夜爱| 熟女电影av网| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 在线免费观看不下载黄p国产| 在线观看av片永久免费下载| 亚洲国产精品成人综合色| 天堂影院成人在线观看| 欧美成人免费av一区二区三区| 又爽又黄a免费视频| 少妇人妻一区二区三区视频| 我要搜黄色片| 国产综合懂色| 精品人妻视频免费看| 熟女人妻精品中文字幕| 亚洲人成网站在线观看播放| 最新中文字幕久久久久| 成人亚洲精品av一区二区| 天天躁夜夜躁狠狠久久av| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品自产自拍| 男插女下体视频免费在线播放| 国产午夜精品一二区理论片| 精品福利永久在线观看| 成人漫画全彩无遮挡| 如何舔出高潮| 黄色配什么色好看| 波多野结衣一区麻豆| 性色av一级| 久久国产精品大桥未久av| av国产精品久久久久影院| 久久久久久久久久久免费av| xxxhd国产人妻xxx| 午夜免费观看性视频| 久久久久人妻精品一区果冻| a级片在线免费高清观看视频| 成人国产av品久久久| 在线观看一区二区三区激情| 一区二区三区精品91| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 国产又色又爽无遮挡免| 精品第一国产精品| 精品人妻一区二区三区麻豆| 97在线视频观看| 国产淫语在线视频| 人妻少妇偷人精品九色| 欧美日韩成人在线一区二区| 高清在线视频一区二区三区| 三上悠亚av全集在线观看| 亚洲精品日韩在线中文字幕| 精品一区二区三区视频在线| 国产精品 国内视频| 国产精品久久久久久精品电影小说| 十八禁网站网址无遮挡| 国产综合精华液| 亚洲丝袜综合中文字幕| 最黄视频免费看| 国产精品久久久久久久久免| 日本与韩国留学比较| 9热在线视频观看99| 亚洲一码二码三码区别大吗| 午夜老司机福利剧场| 永久网站在线| 亚洲精品日本国产第一区| 成人毛片a级毛片在线播放| 国产 精品1| 巨乳人妻的诱惑在线观看| 综合色丁香网| 五月开心婷婷网| a 毛片基地| 亚洲av中文av极速乱| 久久人人爽人人片av| 国产精品国产三级专区第一集| 咕卡用的链子| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 免费女性裸体啪啪无遮挡网站| 99久国产av精品国产电影| 欧美日韩一区二区视频在线观看视频在线| 日韩av免费高清视频| 欧美97在线视频| av有码第一页| 美女国产视频在线观看| 中文字幕人妻熟女乱码| 久久99热这里只频精品6学生| 一个人免费看片子| 国产精品国产三级专区第一集| 丰满少妇做爰视频| 亚洲欧美一区二区三区黑人 | 制服人妻中文乱码| www.av在线官网国产| 丝袜人妻中文字幕| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 久久精品国产鲁丝片午夜精品| 久久国产精品大桥未久av| 欧美人与性动交α欧美精品济南到 | 日韩一本色道免费dvd| 少妇猛男粗大的猛烈进出视频| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 国产精品一二三区在线看| 免费观看av网站的网址| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 国产精品人妻久久久久久| 十分钟在线观看高清视频www| 精品99又大又爽又粗少妇毛片| 久久精品国产自在天天线| 亚洲精品日本国产第一区| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 中国三级夫妇交换| 9热在线视频观看99| 超色免费av| 欧美xxxx性猛交bbbb| 满18在线观看网站| 成人无遮挡网站| 男女免费视频国产| 美女内射精品一级片tv| 在线天堂中文资源库| 中文字幕最新亚洲高清|