• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Satellite-measured water vapor isotopologues across the Tianshan Mountains,central Asia

    2021-02-12 03:12:50ShengJieWangYangSongMingJunZhangAthanassiosArgiriouYuDongShi
    Sciences in Cold and Arid Regions 2021年6期

    ShengJie Wang,Yang Song,MingJun Zhang*,Athanassios A.Argiriou,YuDong Shi

    1.College of Geography and Environmental Science,Northwest Normal University,Lanzhou,Gansu 730070,China

    2.Key Laboratory of Resource Environment and Sustainable Development of Oasis of Gansu Province,Lanzhou,Gansu 730070,China

    3.Laboratory of Atmospheric Physics,Department of Physics,University of Patras,GR-26500 Patras,Greece

    ABSTRACT The satellite-based water vapor stable isotope measurements have been widely used in modern hydrological and atmospheric studies.Their use is important for arid areas where the precipitation events are limited,and below-cloud evaporation is strong.This study presents the spatial and temporal characteristics of water vapor isotopologue across the Tianshan Mountains in arid central Asia using the NASA Aura Tropospheric Emission Spectrometer(TES).The near-surface water vapor stable isotopes are enriched in summer and depleted in winter,consistent with the seasonality of precipitation isotopes.From the surface to 200 hPa,the isotope values in water vapor show a decreasing trend as the atmospheric pressure decreases and elevation rises.The vapor isotope values in the lower atmosphere in the southern basin of the Tianshan Mountains are usually higher than that in the northern basin,and the seasonal difference in vapor isotopes is slightly more significant in the southern basin.In addition,bottom vapor isotopologue in summer shows a depletion trend from west to east,consistent with the rainout effect of the westerly moisture path in central Asia.The isotopic signature provided by the TES is helpful to understand the moisture transport and below-cloud processes influencing stable water isotopes in meteoric water.

    Keywords:water vapor isotopes;satellite measurement;Tianshan Mountains;central Asia

    1 Introduction

    The stable hydrogen and oxygen isotopes (2H and18O) have been widely applied in modern hydrological and atmospheric studies (Aggarwalet al.,2016;Bowenet al.,2019;Jasechko,2019).Compared to precipitation which does not occur every day,water vapor provides all-weather records of the stable isotopologues all year round (Galewskyet al.,2016;Weiet al.,2019;Tianet al.,2020).In arid regions,the number of rain and snow events may not be sufficient for hydrological and atmospheric studies using isotopologues (Liuet al.,2014;Wanget al.,2016c).Additionally,the strong below-cloud evaporation may significantly modify the raindrop stable isotope composition,leading to isotopically enriched surface precipitation (Salamalikiset al.,2016;Zhang and Wang,2016;Crawfordet al.,2017).Therefore,it is clear that the water vapor isotopes measurements are of great importance,especially for arid climates.

    The traditional method of assessing water vapor isotope composition is to condense atmospheric water vapor using a cold trap and determine the isotopic ratio of the condensate.This method is rather complex so it is not easy to acquire time series of vapor isotopologues with high sampling frequency for an extended period and extensive spatial coverage (Rahulet al.,2016;Wuet al.,2019).In the past one or two decades,laser-based isotope spectrometry greatly increased the temporal resolution of vapor isotope measurements,and can acquire vapor isotope data at a frequency of approximately 1 Hz (Yaoet al.,2018;Leroy-Dos Santoset al.,2020;Liet al.,2020;Munksgaardet al.,2020).However,this is costly equipment,and therefore the available time series worldwide are scarce (Weiet al.,2019).The satellite-based vapor isotope measurement is a viable alternative,which can provide concurrent water vapor isotopologues at a larger spatial coverage,although the temporal and spatial resolutions are usually low (Liuet al.,2014;Baileyet al.,2017;Wordenet al.,2019;Schneideret al.,2020).Among the available instruments,the Tropospheric Emission Spectrometer(TES),an infrared spectrometer aboard the NASA Aura spacecraft,has been widely used because of its long-term operation and data accuracy (Wordenet al.,2011;Leeet al.,2012;Fieldet al.,2014;Lacouret al.,2018;Shiet al.,2020).

    In central Asia,where the marine moisture can be hardly transported inland,the annual precipitation is usually less than 200 mm (Yanget al.,2020).Consequently,the meteoric water availability and the hydrological cycle are always a hot topic for this region(Yaoet al.,2019,2020).The Tianshan Mountains is a westeast mountain range located in arid central Asia.The Tianshan Mountains,with much higher annual precipitation than that across the surrounding basins or plains,are the origins of many rivers.For the oases along the northern and southern slopes of the Tianshan Mountains,precipitation is the critical resource for regional sustainability,and the stable isotopologue in precipitation and water vapor is helpful to understand the moisture source and sink (Zhang and Wang,2018;Yaoetal.,2021).In addition,the Tianshan Mountains lie at the core region of the westerlies Asia as opposed to monsoonal Asia (Chenet al.,2019),and the modern isotopic measurements are also needed to explain the isotopic signals in climate proxies acquired from this region(Raoet al.,2019,2020;Wanget al.,2021).

    During the past decades,a number of precipitation isotope measurement campaigns were carried out across the Tianshan Mountains in central Asia (Wanget al.,2016c;Bershaw,2018;Juhlkeet al.,2019;Yaoet al.,2021),to understand the moisture transport path(Wanget al.,2017,2020;Shiet al.,2021),the local moisture recycling (Kong and Pang,2016;Wanget al.,2016a) and the below-cloud secondary evaporation(Kong and Pang,2016;Wanget al.,2016b)in the westerlies-dominated region.However,the in-situ observation of isotopic ratios in water vapor is still limited in arid central Asia (Yuet al.,2016;Weiet al.,2019),and it is significant to assess the essential characteristics of water vapor isotopologues using satellite-based measurements.In this paper,the TES database is used to investigate the spatial pattern and temporal variability of stable hydrogen isotope composition in water vapor across the Tianshan Mountains in arid central Asia.

    2 Data and methods

    This study focuses on the rectangle area within 75°E to 95°E and 38°N to 48°N (Figure 1).Because of the geomorphology,the Tianshan Mountains roughly divide this region into the northern part (including the Balkhash-Alakol Basin and the Junggar Basin)and the southern part (including the Tarim Basin and the Turpan-Hami Basin).Furthermore,due to the rain shadow effect of the Qinghai-Tibet Plateau,the southern basin of the Tianshan Mountains is much drier than the northern basin(Huet al.,2018;Yaoet al.,2020).

    Figure 1 Location of the Tianshan Mountains in central Asia

    The TES Level 3 (L3) product comes from an infrared spectrometer aboard the NASA Aura spacecraft.In this study,we used a compiled database of TES L3 available at the Giovanni version 3(Goddard Earth Sciences Data and Information Services Center,Interactive Online Visualization and Analysis Infrastructure).The algorithm for obtaining this data is Delaunay triangulations on a latitude and longitude plane,which is followed by 2-D interpolations for fixed pressure levels(Wordenet al.,2006).The water vapor and deuterium oxide measurements are available for 15 pressure levels,namely,825 hPa,681 hPa,464 hPa,316 hPa,215 hPa,146 hPa,100 hPa,68 hPa,46 hPa,32 hPa,22 hPa,15 hPa,10 hPa,7 hPa,and 5 hPa.The TES data can describe the main spatial pattern of vapor isotopologues,especially on a large spatial scale with acceptable accuracy (Wordenet al.,2011;Zhanget al.,2012;Hermanet al.,2014).In this study,considering the data availability,the period from September 2004 to December 2010 is selected.

    The isotopic ratio in water vapor is expressed as a delta (δ) notation with respect to Vienna Standard Mean Ocean Water(VSMOW):

    whereq(1H2HO) andq(1H2O) stand for the specific humidity of1H2HO and1H2O in water vapor,respectively,andRthe isotopic ratio of1H2HO/1H2O in VSMOW.

    3 Results and discussions

    3.1 Vertical profile of isotopologues in water vapor

    Figure 2 shows the monthly variations of precipitable water amount across the Tianshan Mountains in central Asia from September 2004 to December 2010 provided by the TES L3 database.In the study region,the atmospheric moisture loading exhibits seasonal variability.On an intra-annual basis,the atmospheric precipitable water shows a maximum in summer (July)and a minimum in winter(January).

    Figure 3 shows the vertical profiles ofδ2H in water vapor in January and July across the study region.The months with less than five daily values are not included;we selected the years of 2005 (14 days in January),2006 (15 days),2007 (15 days) and 2008(14 days) for the January profile (Figure 3a) and 2005(14 days in July),2007 (15 days),2008 (15 days) and 2010 (15 days) for the July profile (Figure 3b).For these four years' data shown,the vertical profiles of water vapor isotopologues are generally similar,especially for the lower part of the air column.From the surface to 200 hPa,the isotope values in water vapor show a decreasing trend as the atmospheric pressure decreases and elevation rises.The isotope ratio reaches a minimum at heights around 100 hPa,but increases at higher elevations,revealing enriched water vapor.At the lower atmosphere,i.e.,around 825 hPa,the meanδ2H value in water vapor is lower than-100‰ in January and larger than -100‰ in July,which is consistent with the seasonal variability of stable isotopes in precipitation (enriched in summer and depleted in winter) (Wanget al.,2016c).This known seasonal variation reflects the influence of the westerlies'moisture(Tianet al.,2007;Yaoet al.,2013;Wanget al.,2017).According to the daily counts of valid TES data for each year,2007 (179 days) has the best temporal coverage.We selected this year to obtain a continuous annual profile (Figure 4).At the lower atmosphere,water vapor isotope ratios shows a clear seasonal variation,which weakens as the elevation rises.Near 825 hPa,theδ2H value in water vapor is higher than-100‰from May to September.

    Figure 2 Box plot showing the monthly variations of precipitable water amount(PW)across the Tianshan Mountains(The top and bottom of a box represent the 25th and 75th percentiles,and the horizontal line within a box represents the median;the whiskers show the 90th and 10th percentiles,and the empty points above and below the whiskers are the 95th and 5th percentiles)

    3.2 Spatial pattern of isotopologues in water vapor

    To understand the spatial pattern of water vapor stable isotope composition across the study area,we focus on the two tropospheric pressure levels,i.e.,at 825 hPa (approximately 1,700 m a.s.l.) and 681 hPa(approximately 3,000 m a.s.l.)(Figure 5).Considering the pressure near the surface at some mountainous regions drops,we masked the areas with an elevation higher than 1,700 m and 3,000 m (in white shades) in the respective charts.At the 825 hPa level(Figure 5a),a low-value belt (less than about -126‰ forδ2H)along the Tianshan Mountains appears in January.This low belt withδ2H <-170‰ remains at the 681 hPa level (Figure 5d).In contrast,the high-value region is observed at the southern margins.In July,the low-value region moves at the northeastern part for both the 825 hPa (Figure 5b) and the 681 hPa (Figure 5e) level,while the high-value region is observed at the southwestern corner.Regarding the intra-annual variations,the difference between January and July(January minus July) shows very negative values at the southwestern part of the study region (Figures 5c and 5f),indicating a significant seasonal difference in this region where the rain shadow effect manifests clearly.

    Figure 3 Vertical profiles of δ2H in water vapor across the Tianshan Mountains:(a)January 2005,2006,2007 and 2008,(b)July 2005,2007,2008 and 2010

    Figure 4 Monthly variation of the vertical profile of δ2H in water vapor in 2007 across the Tianshan Mountains

    In many stable isotopologue studies in precipitation in arid central Asia or over a larger domain,including high mountain Asia (Liuet al.,2008;Wanget al.,2016c;Zhang and Wang,2018),the stable isotope ratios in precipitation over the Tianshan Mountains is usually low.The strong below-cloud evaporation in the low-lying basins increases the isotope ratios in precipitation,which is more significant at the southern basin where the air temperature is higher and humidity is lower than at the northern basin (Kong and Pang,2016;Wanget al.,2016b).Generally,the isotopologues in atmospheric water vapor in this study are consistent with those observed in precipitation near the ground.In a previous isotopic modelling study along the northern and southern oasis belts near the Tianshan Mountains (Wanget al.,2016b),the raindrops below cloud base were found to have similar isotope values over the various sub-regions,and that below-cloud evaporation greatly modifies the isoscapes in surface precipitation.In this study,spatial incoherence across arid central Asia does exist.However,if only the narrow oasis belts are considered,the isotopic pattern may confirm the previous prediction to some degree (Wanget al.,2016b).The great seasonal difference of stable isotopes in precipitation in arid central Asia is observed in some nationwide and continental studies(Araguás-Araguáset al.,1998;Liuet al.,2014),which is generally consistent with the findings of this study.

    Figure 6 shows the seasonal isotopic variation in water vapor along the meridional and zonal gradients.Generally,the seasonality of water vapor isotopologues is more obvious at lower latitudes (Figures 6a and 6c)and lower longitudes (Figures 6b and 6d).For example,at 825 hPa,the summer vapor isotopes are much enriched (>-80‰)at latitudes lower than 42°N,but the summer vapor isotope values in the northern areas are much lower.In addition,different latitudes usually correspond to different isotopologues within the study region.In contrast,the variation for different longitudes is not so pronounced.

    Figure 5 Spatial distribution of δ2H in water vapor at 825 hPa(a,b and c)and 681 hPa(d,e and f)in January 2007(a and d)and July 2007(b and e)and their difference(c and f)across the Tianshan Mountains

    Figure 6 Monthly variations of δ2H in water vapor at 825 hPa(a and b)and 681 hPa(c and d)in 2007 for different latitudes(a and c)and longitudes(b and d)across the Tianshan Mountains

    We also showed the vertical profiles of water vapor isotopologues along the meridional and zonal gradients (Figure 7;the layers higher than 316 hPa are not shown).The upper atmosphere usually presents a relatively stable condition all year round,while the lower atmosphere shows the well-known seasonal variability.In Figure 7b,as an air mass moves from south to north in summer,that is,when the latitude increases,the stable isotopes in water vapor at the lowest air column show a depleting trend.In contrast(Figure 7a),the variation is generally weak in winter when the moisture flux is low.Regarding the westerlies path,as an air mass moves from west to east,that is,the longitude increases,the water vapor stable isotopes near the surface also show a depleting trend in summer (Figure 7d).Still,there is no apparent lapse rate in winter (Figure 7c).The latitude and longitude gradient of stable isotopes in vapor in Figure 7d corresponds to the main moisture trajectories as well as the rainout effect in arid central Asia (Wanget al.,2017,2020);stronger moisture transport in summer corresponds to a more obvious depleting trend in heavy isotopes,which may be very weak in winter with low moisture loading (Wanget al.,2017).The depleting trend in precipitation isotopes along the trajectories of westerlies have been observed across the Tianshan Mountains (Wanget al.,2017),and similar trends in water vapor isotopes are also detected here.

    Figure 7 Variations of the vertical profile of δ2H in water vapor in 2007 for different north latitudes(a and c)and east longitudes(b and d)across the Tianshan Mountains

    4 Conclusions

    Although the traditional methods based on mass or laser spectrometry may provide isotope values and hydrological information at a high temporal resolution,they are not always suitable in describing the large-scale isotopologue patterns.This study analyzes the essential characteristics of water vapor isotopes across the Tianshan Mountains in arid central Asia using data from the NASA Aura Tropospheric Emission Spectrometer.The stable isotopes in water vapor are enriched in summer and depleted in winter,consistent with the seasonality of precipitation isotopes.The vapor isotopes of the near-surface water vapor in the southern basin are usually more enriched than that in the northern basin,and the seasonal difference in vapor isotopes is slightly larger in the southern basin.Similar to the previously observed depleting trend in precipitation isotopes along the westerlies path,the summer isotopologue in water vapor also exhibits a depleting trend from west to east.The satellite-based isotopic series are useful to detect the moisture transport and below-cloud effects and to understand the isotopic fractionation in meteoric water from vapor to precipitation.

    Acknowledgments:

    This research was supported by the National Natural Science Foundation of China (Nos.41971034 and 41701028),the Foundation for Distinguished Young Scholars of Gansu Province (No.20JR10RA112),and the Northwest Normal University (No.NWNULKZD2021-04).We thankfully acknowledge that Giovanni (GES-DISC Interactive Online Visualization and Analysis Infrastructure) version 3 provided the TES Level 3 data.The background map was based on Natural Earth(http://www.naturalearthdata.com).

    校园人妻丝袜中文字幕| 九九久久精品国产亚洲av麻豆| 五月伊人婷婷丁香| 亚洲av美国av| 哪里可以看免费的av片| 久久久国产成人免费| 日本在线视频免费播放| 免费无遮挡裸体视频| 久久人人精品亚洲av| 国产男人的电影天堂91| 能在线免费观看的黄片| 麻豆一二三区av精品| 我的老师免费观看完整版| 久久99热这里只有精品18| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av天美| 国产黄色视频一区二区在线观看 | 欧美在线一区亚洲| 97超级碰碰碰精品色视频在线观看| 男女那种视频在线观看| av在线蜜桃| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 成年av动漫网址| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久亚洲av鲁大| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 国产aⅴ精品一区二区三区波| 免费无遮挡裸体视频| 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 极品教师在线视频| h日本视频在线播放| 国产男靠女视频免费网站| 成人特级av手机在线观看| 99久国产av精品国产电影| 一本精品99久久精品77| 色哟哟哟哟哟哟| 日韩欧美三级三区| 国产精品一区www在线观看| 成人综合一区亚洲| 久久精品人妻少妇| 日韩欧美免费精品| 亚洲久久久久久中文字幕| 欧美激情久久久久久爽电影| www.色视频.com| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 久久精品91蜜桃| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| 日韩大尺度精品在线看网址| av在线蜜桃| 国产av不卡久久| 最近在线观看免费完整版| 午夜精品一区二区三区免费看| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品国产精品| 亚洲av二区三区四区| 久久精品久久久久久噜噜老黄 | 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 天天躁夜夜躁狠狠久久av| 亚洲精品粉嫩美女一区| 97超级碰碰碰精品色视频在线观看| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 国产色爽女视频免费观看| 插逼视频在线观看| 99热只有精品国产| 最近的中文字幕免费完整| 国产在线男女| 18禁黄网站禁片免费观看直播| 欧美zozozo另类| 精品99又大又爽又粗少妇毛片| 国语自产精品视频在线第100页| 国产精品av视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 精品人妻一区二区三区麻豆 | 亚洲av第一区精品v没综合| 性欧美人与动物交配| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 又粗又爽又猛毛片免费看| or卡值多少钱| 欧美另类亚洲清纯唯美| 国产成人精品久久久久久| 欧美精品国产亚洲| 国产69精品久久久久777片| 国产成人freesex在线 | 97超碰精品成人国产| 亚洲精品一区av在线观看| 18禁在线播放成人免费| 久久久久精品国产欧美久久久| 熟女电影av网| 嫩草影院精品99| 欧美丝袜亚洲另类| 亚洲aⅴ乱码一区二区在线播放| 在线看三级毛片| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 一本久久中文字幕| 日韩欧美在线乱码| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频| 人人妻人人看人人澡| 国产精品无大码| 日日摸夜夜添夜夜爱| 国产久久久一区二区三区| 女同久久另类99精品国产91| 哪里可以看免费的av片| 国产69精品久久久久777片| 国产精品乱码一区二三区的特点| 99热网站在线观看| 非洲黑人性xxxx精品又粗又长| 欧美+日韩+精品| 黄片wwwwww| 欧美xxxx黑人xx丫x性爽| 真实男女啪啪啪动态图| 婷婷精品国产亚洲av在线| 国产黄色小视频在线观看| 亚洲久久久久久中文字幕| 久久精品91蜜桃| 亚洲国产欧美人成| 欧美成人精品欧美一级黄| 国产黄片美女视频| 有码 亚洲区| 亚洲成a人片在线一区二区| 人妻制服诱惑在线中文字幕| 99久久中文字幕三级久久日本| 国产欧美日韩一区二区精品| 91在线观看av| 亚洲综合色惰| 亚洲国产精品成人久久小说 | 村上凉子中文字幕在线| 日韩高清综合在线| 欧美日本视频| 国产精品一及| 久久精品夜色国产| 亚洲欧美日韩东京热| 一进一出好大好爽视频| 久久久久性生活片| av天堂中文字幕网| 日本精品一区二区三区蜜桃| 一级黄片播放器| 欧美日韩国产亚洲二区| 亚洲av免费在线观看| 三级毛片av免费| 欧美人与善性xxx| 久久久成人免费电影| 最近在线观看免费完整版| 日日摸夜夜添夜夜添av毛片| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 亚洲成av人片在线播放无| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 亚洲无线观看免费| 我的女老师完整版在线观看| 女人被狂操c到高潮| 亚洲av二区三区四区| 免费高清视频大片| 亚洲成a人片在线一区二区| 国产白丝娇喘喷水9色精品| 日韩欧美一区二区三区在线观看| 久久久久性生活片| av天堂中文字幕网| 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 国产精品无大码| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 国产精品av视频在线免费观看| 在线免费十八禁| 一个人看视频在线观看www免费| 免费电影在线观看免费观看| 中出人妻视频一区二区| 中文亚洲av片在线观看爽| 久久久精品94久久精品| 中文在线观看免费www的网站| 日本免费一区二区三区高清不卡| 欧美zozozo另类| 啦啦啦观看免费观看视频高清| 国产一区二区三区av在线 | 亚洲人成网站高清观看| 日韩中字成人| 国产黄色视频一区二区在线观看 | 日日摸夜夜添夜夜添av毛片| 精品乱码久久久久久99久播| 中出人妻视频一区二区| av在线蜜桃| 日本a在线网址| 天堂网av新在线| 无遮挡黄片免费观看| 日本一二三区视频观看| 内射极品少妇av片p| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站| 老女人水多毛片| 日本五十路高清| 中国美女看黄片| 亚洲中文日韩欧美视频| 精品午夜福利在线看| 成年免费大片在线观看| 日本-黄色视频高清免费观看| 日韩欧美免费精品| 午夜视频国产福利| 国产一区亚洲一区在线观看| 国产91av在线免费观看| 人人妻人人澡欧美一区二区| 久久九九热精品免费| 欧美人与善性xxx| 99热只有精品国产| 亚洲不卡免费看| 日韩av不卡免费在线播放| 夜夜爽天天搞| 国产伦一二天堂av在线观看| 国产一区二区在线av高清观看| 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影| 可以在线观看的亚洲视频| 看十八女毛片水多多多| 美女xxoo啪啪120秒动态图| av在线老鸭窝| 久久久成人免费电影| a级毛色黄片| 永久网站在线| 午夜老司机福利剧场| 91狼人影院| 国产成年人精品一区二区| 免费看av在线观看网站| 日韩欧美 国产精品| av视频在线观看入口| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美 国产精品| 久久韩国三级中文字幕| 特级一级黄色大片| 亚洲精品国产成人久久av| 级片在线观看| 婷婷六月久久综合丁香| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 成人高潮视频无遮挡免费网站| 国产精品三级大全| 亚洲av成人精品一区久久| 精华霜和精华液先用哪个| 国产美女午夜福利| 国产精品亚洲一级av第二区| 亚洲七黄色美女视频| 看片在线看免费视频| 久久久成人免费电影| 日本黄色片子视频| 中文字幕av成人在线电影| 最后的刺客免费高清国语| 成人欧美大片| 国产av在哪里看| 最后的刺客免费高清国语| 成人一区二区视频在线观看| 99国产极品粉嫩在线观看| 美女cb高潮喷水在线观看| 国产成人freesex在线 | 波野结衣二区三区在线| 观看美女的网站| 成人欧美大片| 少妇的逼好多水| 久久久久精品国产欧美久久久| 亚洲精品日韩av片在线观看| 夜夜夜夜夜久久久久| 插逼视频在线观看| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品人妻久久久久久| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 午夜久久久久精精品| 天天躁夜夜躁狠狠久久av| 免费看美女性在线毛片视频| 亚洲美女搞黄在线观看 | 亚洲精品国产av成人精品 | 床上黄色一级片| a级毛色黄片| 亚洲色图av天堂| 长腿黑丝高跟| 最新在线观看一区二区三区| 亚洲色图av天堂| 国产成人福利小说| 免费人成在线观看视频色| 国产精品免费一区二区三区在线| 国内久久婷婷六月综合欲色啪| 亚洲成人中文字幕在线播放| 久久精品国产99精品国产亚洲性色| 天天躁夜夜躁狠狠久久av| 性欧美人与动物交配| 男女啪啪激烈高潮av片| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 国产精品嫩草影院av在线观看| 大香蕉久久网| 丝袜美腿在线中文| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 十八禁国产超污无遮挡网站| 久久中文看片网| 久久草成人影院| 亚洲成人av在线免费| 露出奶头的视频| 级片在线观看| 国产精品福利在线免费观看| 色播亚洲综合网| 国内精品久久久久精免费| 久久精品国产自在天天线| 午夜福利视频1000在线观看| av在线亚洲专区| 精品乱码久久久久久99久播| 99久国产av精品| 免费无遮挡裸体视频| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看 | 在线观看一区二区三区| 性色avwww在线观看| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 国产精品一及| 麻豆精品久久久久久蜜桃| 小说图片视频综合网站| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 97碰自拍视频| 国产成人影院久久av| 久久久久久久久久成人| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看 | 国产精品国产高清国产av| 一夜夜www| 欧美日韩国产亚洲二区| 亚洲av第一区精品v没综合| 欧美+日韩+精品| 国产精品女同一区二区软件| 欧美绝顶高潮抽搐喷水| 欧美zozozo另类| 亚洲国产精品合色在线| 少妇猛男粗大的猛烈进出视频 | 国产伦精品一区二区三区视频9| 校园春色视频在线观看| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 少妇丰满av| 99热这里只有精品一区| 99久久精品热视频| 国产aⅴ精品一区二区三区波| av免费在线看不卡| 日韩欧美国产在线观看| 99热只有精品国产| 成人美女网站在线观看视频| 亚洲内射少妇av| 欧美最黄视频在线播放免费| 亚洲精品国产成人久久av| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 久久久久久大精品| 日韩成人伦理影院| 午夜亚洲福利在线播放| 免费无遮挡裸体视频| 天天躁日日操中文字幕| 国产精品久久久久久久电影| 亚洲欧美日韩高清专用| 亚洲精品亚洲一区二区| 欧美色欧美亚洲另类二区| 自拍偷自拍亚洲精品老妇| 成人鲁丝片一二三区免费| 美女大奶头视频| 国产精品久久久久久久久免| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 香蕉av资源在线| 国产色爽女视频免费观看| 天堂动漫精品| 国产激情偷乱视频一区二区| 深爱激情五月婷婷| 婷婷亚洲欧美| 亚洲精品国产av成人精品 | 亚洲一区高清亚洲精品| 国产不卡一卡二| 国产精品久久电影中文字幕| 国产精品一及| 欧美潮喷喷水| 99九九线精品视频在线观看视频| 看免费成人av毛片| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 成人性生交大片免费视频hd| 日日啪夜夜撸| 成年女人毛片免费观看观看9| 久久精品人妻少妇| 国产黄色小视频在线观看| 久久精品综合一区二区三区| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| a级毛片免费高清观看在线播放| 校园春色视频在线观看| 身体一侧抽搐| 性色avwww在线观看| 久久鲁丝午夜福利片| 欧美性感艳星| 亚洲三级黄色毛片| 免费不卡的大黄色大毛片视频在线观看 | 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区 | 乱码一卡2卡4卡精品| 日韩中字成人| 久久久久性生活片| 麻豆久久精品国产亚洲av| videossex国产| 国产探花极品一区二区| 亚洲精品国产成人久久av| 精品久久久噜噜| 久久久久久伊人网av| 成人亚洲精品av一区二区| 婷婷精品国产亚洲av在线| 成人av在线播放网站| 高清午夜精品一区二区三区 | 亚洲最大成人手机在线| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| 搡老熟女国产l中国老女人| 亚洲国产欧美人成| 亚洲三级黄色毛片| 我的女老师完整版在线观看| 99久久精品一区二区三区| 美女xxoo啪啪120秒动态图| 少妇高潮的动态图| 男人和女人高潮做爰伦理| 亚洲av中文av极速乱| 国产伦在线观看视频一区| 亚州av有码| 国产探花在线观看一区二区| av中文乱码字幕在线| 国产69精品久久久久777片| 国内揄拍国产精品人妻在线| 亚洲人成网站高清观看| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 国产成人影院久久av| 国内少妇人妻偷人精品xxx网站| 久久99热6这里只有精品| 日韩中字成人| 成人美女网站在线观看视频| 听说在线观看完整版免费高清| 看免费成人av毛片| 久久国内精品自在自线图片| 神马国产精品三级电影在线观看| 99热这里只有精品一区| 长腿黑丝高跟| 精品少妇黑人巨大在线播放 | 男女之事视频高清在线观看| 插逼视频在线观看| 国产中年淑女户外野战色| 一a级毛片在线观看| 99热这里只有是精品50| 欧美性感艳星| 女同久久另类99精品国产91| 美女 人体艺术 gogo| 亚洲精品成人久久久久久| 丝袜喷水一区| av在线天堂中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 一本久久中文字幕| 日产精品乱码卡一卡2卡三| 校园春色视频在线观看| 久久精品影院6| 久久久久久久久久成人| 日本一二三区视频观看| 最好的美女福利视频网| 国内久久婷婷六月综合欲色啪| 亚洲内射少妇av| 伊人久久精品亚洲午夜| 日本欧美国产在线视频| 国产真实伦视频高清在线观看| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 三级男女做爰猛烈吃奶摸视频| 精品人妻熟女av久视频| 最新中文字幕久久久久| 99精品在免费线老司机午夜| av视频在线观看入口| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品影视一区二区三区av| 成人av一区二区三区在线看| 老司机午夜福利在线观看视频| 国产精品国产三级国产av玫瑰| 97超碰精品成人国产| 美女内射精品一级片tv| 国产爱豆传媒在线观看| 久久久国产成人精品二区| 99久久中文字幕三级久久日本| 欧美高清成人免费视频www| 亚洲精品影视一区二区三区av| 午夜福利高清视频| 亚洲av电影不卡..在线观看| 天堂√8在线中文| 国产免费男女视频| 免费观看的影片在线观看| 日本与韩国留学比较| 国产aⅴ精品一区二区三区波| 嫩草影院精品99| 国产老妇女一区| 在线看三级毛片| 香蕉av资源在线| 在线播放无遮挡| 99riav亚洲国产免费| av中文乱码字幕在线| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区三区在线臀色熟女| 精品不卡国产一区二区三区| 久久人人爽人人片av| 婷婷六月久久综合丁香| 欧美高清成人免费视频www| 欧美成人一区二区免费高清观看| 99国产极品粉嫩在线观看| av黄色大香蕉| 免费看美女性在线毛片视频| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 久久精品影院6| 大香蕉久久网| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 18+在线观看网站| 欧美成人一区二区免费高清观看| 国产av在哪里看| 国产色爽女视频免费观看| 日韩成人av中文字幕在线观看 | 欧美3d第一页| 精品午夜福利在线看| 少妇熟女aⅴ在线视频| 成人av在线播放网站| 国产高清激情床上av| 看片在线看免费视频| 久久天躁狠狠躁夜夜2o2o| 人人妻,人人澡人人爽秒播| 国产又黄又爽又无遮挡在线| 欧美日韩乱码在线| 亚洲成人久久性| 免费黄网站久久成人精品| 91久久精品国产一区二区三区| 精品不卡国产一区二区三区| 亚洲一区高清亚洲精品| 免费高清视频大片| 亚洲av五月六月丁香网| 最近2019中文字幕mv第一页| 久久99热这里只有精品18| 搡老熟女国产l中国老女人| 99久国产av精品国产电影| eeuss影院久久| 午夜视频国产福利| 插阴视频在线观看视频| 亚洲国产精品sss在线观看| 国产探花在线观看一区二区| 亚洲五月天丁香| 天天躁夜夜躁狠狠久久av| 尤物成人国产欧美一区二区三区| 在线观看美女被高潮喷水网站| 1000部很黄的大片| 国产久久久一区二区三区| 18禁在线播放成人免费| 国产免费一级a男人的天堂| 精品99又大又爽又粗少妇毛片| 九九热线精品视视频播放| 亚洲中文字幕日韩| 老司机福利观看| 久久久精品94久久精品| 成人特级黄色片久久久久久久| 91精品国产九色| 久久久精品94久久精品| 成人特级黄色片久久久久久久| 老司机福利观看| 狂野欧美激情性xxxx在线观看| 高清午夜精品一区二区三区 | 看十八女毛片水多多多| 亚洲成a人片在线一区二区| 亚洲av成人av| 变态另类成人亚洲欧美熟女| 女人被狂操c到高潮| 国产精品三级大全| 欧美区成人在线视频| 99久国产av精品| a级毛片a级免费在线| 你懂的网址亚洲精品在线观看 | a级毛色黄片| 久久精品影院6| 女同久久另类99精品国产91| 99久国产av精品| 国产一区二区三区在线臀色熟女| 国内精品美女久久久久久| 亚洲不卡免费看| 国产黄色小视频在线观看|