• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮磷比對(duì)長(zhǎng)江中下游地區(qū)淺水湖泊群浮游植物類群的影響

    2015-11-25 03:59:42吳世凱謝平倪樂(lè)意張
    集成技術(shù) 2015年6期
    關(guān)鍵詞:中等水平長(zhǎng)江中下游地區(qū)淺水

    吳世凱謝 平倪樂(lè)意張 琳

    1(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(廣東省膜材料與膜分離重點(diǎn)實(shí)驗(yàn)室 廣州中國(guó)科學(xué)院先進(jìn)技術(shù)研究所 廣州 511458)

    3(東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站 淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 中國(guó)科學(xué)院水生生物研究所 武漢 430072)

    氮磷比對(duì)長(zhǎng)江中下游地區(qū)淺水湖泊群浮游植物類群的影響

    吳世凱1,2謝 平3倪樂(lè)意3張 琳1,2

    1(中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院 深圳 518055)

    2(廣東省膜材料與膜分離重點(diǎn)實(shí)驗(yàn)室 廣州中國(guó)科學(xué)院先進(jìn)技術(shù)研究所 廣州 511458)

    3(東湖湖泊生態(tài)系統(tǒng)試驗(yàn)站 淡水生態(tài)與生物技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室 中國(guó)科學(xué)院水生生物研究所 武漢 430072)

    2003年夏和 2004年夏對(duì)中國(guó)長(zhǎng)江中下游地區(qū)的 30 個(gè)淺水湖泊的浮游植物類群進(jìn)行調(diào)查。為了研究不同氮磷比(TN/TP)對(duì)浮游植物組成的影響,將浮游植物的六個(gè)門,分別在 TN/TP>30、12<TN/TP<30、TN/TP<12 三個(gè)區(qū)間隨總磷的變化規(guī)律進(jìn)行研究。當(dāng) TN/TP 從高水平(>30)降到中等水平(12~30)時(shí),除藍(lán)藻門外的其他五個(gè)浮游植物門的斜率均隨總磷的升高而增加。但是當(dāng) TN/TP從中等水平(12~30)降到低水平(<12)時(shí),除綠藻和隱藻門外,其他浮游植物門的斜率均隨總磷的升高呈下降趨勢(shì)。當(dāng) TN/TP 從高水平(>30)降到降至低水平(<12)時(shí),藍(lán)藻門的斜率不斷降低,說(shuō)明藍(lán)藻在較高 TN/TP 有更好的生長(zhǎng)潛力。同樣發(fā)現(xiàn),綠藻和隱藻門則隨 TN/TP 的降低有更好的生長(zhǎng)潛力。當(dāng) TN/TP 在高水平(>30)和低水平(<12)時(shí),硅藻、甲藻和裸藻門的斜率均發(fā)生下降,說(shuō)明這三個(gè)門的藻類在 TN/TP 為中等水平(12~30)的環(huán)境中有更好的生長(zhǎng)潛力。

    氮磷比;浮游植物;淺水湖泊;類群;長(zhǎng)江

    1 Introduction

    Transitions between nitrogen and phosphorus limitation for phytoplankton growth are common in lakes[1,2]noted that the chlorophyll in Japanese lakes was a logarithmic function of both total phosphorus(TP) and total nitrogen (TN), and concluded that over the range of 10TN/TP17, chlorophyll was very nearly balanced with respect to both TP and TN but that chlorophyll was dependent only on TN when TN/TP ratio was below 10, and only on TP when TN/TP ratio was above 17 (>17). Dillon and Rigler[3]dealt with the problem of nitrogen limitation by restricting their analysis to lakes where TN/TP ratios were above 12. Thus, variability of the TN/TP ratios may provide an explanation for the variability in phosphorus-chlorophyll relationships.

    Numerous corresponding studies have shown the TN/TP ratios were related with structure of phytoplankton community. Smith[4]found that cyanobacteria dominated when the epilimnetic TN/TP ratios had values less than 29:1 and when TN/TP ratios had values greater than 29:1, noncyanobacteria became the dominated species. Bulgakow and Levich[5]reported that high TN/TP ratio (20-50) was benefit for the growth of Chlorococcales, whereas Cyanophyta dominated in the community when TN/TP ratios decreased to 5-10. Yang et al.[6]proved that Cyanophyta subjoined with the increase of nitrogen and phosphorus when TN/TP ratios had values greater than 28:1 and Euglenophyta dominated in the community with higher content of nitrogen and phosphorus.

    Several studies have described the biomass of cyanobacteria and other groups increased with the increase of total phosphorus in north temperate[7-10]and subtropical lakes[11]. And some other studies have measured the changes of the average proportions of some algal groups with TP[12-14]. Furthermore,the balance of TN, TP and SRSi-ratios was used to determine whether the phytoplankton communities are influenced by nutrient stoichiometry[15].

    However, there are limited information about the quantitative comparisons of the changes of phytoplankton taxonomic groups affected by TP in different TN/TP ratios[16], especially in subtropical shallow lakes.

    The purpose of this paper is to investigate six predominance phytoplankton taxonomic groups of 30 shallow Chinese lakes changed with different TN/TP ratios. So, the data of the study were divided into three groups according to three TN/TP ratios intervals: >30, 12-30 and <12.

    2 Materials and Methods

    2.1 Study area

    The Yangtze River is the biggest river in China and the third biggest river in the world. Thirty shallow lakes (28.5°N-32.5°N, 113.7°E-119.2°E) included in this study ranged in size from about 1 to 3 914 km2in the middle and lower reaches of the Yangtze River area (Fig. 1). The climate is generally subtropical monsoon, and the climate is divided into dry season(November to April) and rainy season (May to October) commonly.

    All of the 30 shallow lakes are located in five provinces (Hubei, Hunan, Jiangxi, Anhui and Jiangsu) and most of these lakes are eutrophic or hypereutrophic[17]and manipulated (e.g. fertilized,dredged, acidifi ed, stocked, etc.).

    2.2 Sample collection and analysis

    Fig. 1 Geographic location of the lakes surveyed

    Considering environmental heterogeneity and surface area of the lakes, sampling sites were set from 2 to 22 in each lake. The positions were directed by a GPS system. These lakes were sampled from July to September in 2003 and 2004. Water samples in these lakes were collected each site with tygon tubing fitted with a one-way valve. Samples collected from a combination of surface, middle and bottom layers. Water samples collected were analyzed for TN, TP and phytoplankton biomass.Total nitrogen was determined by alkaline potassium persulfate digestion[18]with absorbance measured at 220 nm[19]. TP was analyzed by colorimetric methods after potassium persulfate digestion[20,21]. The water was filtered through a membrane filter(?=0.45 μm) for dissolved inorganic nitrogen and phosphorus, ammonium ion (NH4-N) by the Nessler method[22], nitrite (NO2-N) by the a-naphthylamine method[23], nitrate (NO3-N) by the UV spectro photometric method[23], and orthophosphate (PO4-P)were determined by the molybdenum blue reaction described by Koroleff[24].

    Phytoplankton were preserved in Lugol's solution from the mixed water samples. Phytoplankton were identified based on descriptions of Prescott[25]and enumerated with a microscope equipped with a calibrated micrometer[26].

    2.3 Statistics

    Data of all sites were used to analysis. STATISTICA for Windows statistical software (version 6.0) was used for all analyses. To characterize the effects of the six taxonomic groups by TP in different TN/ TP ratios, polynomial curve was used. In order to stabilize the variance for correlation and regression analysis, all the variables were log-transformed.

    3 Results

    The mean nutrient values were high in these lakes(Table 1). Linear correlation analyses show that over the entire TP range, the summer biomass of each phytoplankton taxonomic group and total phytoplankton biomass were significantly and positively related to TP. However, through the polynomial regression analysis, six mainly taxonomic groups increased differently with TP in different TN/TP ratios (Fig. 2 and 3). There are three growth fashions: exponential growth, logarithmic growth and linear growth.

    Table 1 Nutrient characteristics for the data sets of the study lakes

    Table 2 Linear correlation between phytoplankton biomass and TP in different TN/TP

    Fig. 2 Ploynolmial regression analysis in six mainly taxonomic group summer biomass with total phosphorus (TP)

    Cyanophyta showed lower biomass but distinctly sharp exponential growth with TP when TN/TP were above 30 (Table 2, Fig. 2). The exponential growth of Cyanophyta biomass changed more evenly with TP in the mediate TN/TP (12-30) (Fig. 2 and 3). When TN/TP ratio was below 12, the increase of Cyanophyta changed to a logarithmic growth fashion, although the change was not significant in slope (Fig. 2). Linear correlation shows similar tendency about the change of Cyanophyta with TP. The slope of cyanobacterial biomass decreases from 1.604 (TN/TP>30) to 0.971 (12<TN/TP<30) and further to 0.461 (TN/TP<12).

    Fig. 3 Contribution(%) of phytoplankton taxonomic groups to total summer biomass

    Bacillariophyta showed more interestingchange with TN/TP ratios: when TN/TP>30,Bacillariophyta showed a quick exponential growth with TP, but when TN/TP ratios were between 12-30,the increase of Bacillariophyta biomass were faster;however, when TN/TP<12, Bacillariophyta showed a slower logarithmic growth with TP. In contrast, the linear correlation showed a similar tendency with TP. The slope of Bacillariophyta biomass increased from 0.758 (TN/TP>30) to 1.490 (12<TN/TP<30) and then decreases to 1.215 (TN/TP<12).

    However, in linear correlation mode, Chlorophyta showed a steady increase with TP from high TN/ TP ratio (>30) to low TN/TP ratio (<12), and the biomass of Chlorophyta showed exponential growth when TN/TP ratio was above 12, and linear growth with TP when TN/TP ratio was less than 12.

    As to linear correlation model, Pyrrophyta and Euglenophyta showed similar change with diatom, Cryptophyta showed similar change with Chlorophyta. However, from the polynomial curve,the three groups increased more quickly in mediate TN/TP ratios (12-30) than in high TN/TP ratios(>30). When TN/TP ratios were less than 12, these three groups all showed exponential growth with TP.

    Under different TN/TP ratios, the changes of the relative proportions about phytoplankton taxonomic groups show how summer phytoplankton community composition was relative to TP (Table 2, Fig. 3). Some groups maintained a fairly constant representation in the community. Among these,Bacillariophyta accounted for a consistently large proportion (30%-40%) of summer phytoplankton biomass from TN/TP ratios above 30 to TN/ TP ratios below 12. Crytophyta and Pyrrophyta showed constant fractions of the total biomass with increasing TP in the three TN/TP intervals, although the fraction was much smaller (<10%).

    On the other hand, the relative proportion of cyanobacteria increased at first and dominated when TN/TP ratios were in mediate (12-30) and low (<12)levels with TP, but tended to decrease in high TP concentrations. Chlorophyta maintained a constant representation in the community when TN/TP ratios were above 12, but when TN/TP ratios were below 12, Chlorophyta tended to dominate in phytoplankon groups. Euglenophyta decreased its proportion from high TN/TP ratios (>30) to mediate TN/TP level(12-30) and showed only a smaller fraction (<10%)when TN/TP was high (>30).

    Strongly significant relationships existed between TP and PO4, and between TN and NH4in these lakes(Fig. 4).

    Fig.4 Correlations between TP and PO4-P, TN and NH4-N. The circle area shows the low values of PO4-P and NH4-N

    4 Discussion

    The results of this study, as well as Downing and Mccauley[27], suggest that the sites with lower TN/ TP ratios often have higher TP concentration. Enrichment-related changes in the taxonomic composition of summer phytoplankton communities are widely documented[9,28-31]. However, the present study shows that the biomass of taxonomic groups changed in summer with different TN/TP ratios:when TN/TP ratios were high (>30), Cyanophyta,Bacillariophyta and Cholophyta showed positive regression with TP(Cyanophyta exhibited the most rapid increase), but Crytophyta, Pyrrophyta and Euglenophyta showed little TP-related change; in contrast, when TN/TP ratios were in mediate level(12-30), all taxonomic groups increased sharply with TP except Crytophyta; and when TN/TP ratios were below 12, Cyanophyta showed little TP-related changes, but others groups increased with TP,especially for Crytophyta (r=0.74, P<0.001).

    In the present study, the proportion of Cyanophyta showed different change with other groups in the three TN/TP ratios intervals. Species of this taxa are frequently responsible for noxious bloom in eutrophic lakes but are also an important component of phytoplankton in summer[4,5,32]. The TN/TP theory which suggests that cyanobacteria dominate in low TN/TP lakes, has been widely used to explain why cyanobacteria dominate in lakes. Also, Bulgakov and Levich[5]reported that high TN/TP ratios (20-50) favor the development of chlorococcales, while a reduction of the ratios to 5-10 frequently leads to a community dominated by Cyanophyta. Our results show that, in the mediate TN/TP ratios (12-30), cyanobacteria dominates in the phytoplankton groups, but as TN/TP ratios were below 12,proportion and increasing rate of cyanobacteria had a decrease trend. Similar results can be found in recent research by Liu, that found when N/P= 3.84, Dactylococcopsis sp. showed lowest growth rate than others higher N/P[33]. Therefore, our results may suggest that cyanobacteria tend to be restricted by TP as TN/TP ratios are above 30 and by nitrogen as TN/TP ratios are below 12. Although it is commonly accepted that cyanobacteria are abundant in hypereutrophic lakes, cyanobacteria are poor competitors in nutrient replete system, because of less light in hypereutrophic lakes and competition with bacteria for nutrition[34,35].

    As with cyanbacteria, nutrition (especially P and Si)[36]may select for the predominant diatom morphology. Diatoms generally predominate summer phytoplankton communities at intermediate TP levels[9], and efficient nutrient uptake may favor pinnate diatoms in oligotrophic environments[37]. The experiment results show that Bacillariophyta dominate as TN/TP ratios are above 30, which also indicates that Bacillariophyta tends to dominate in lower TP values.

    Chlorophyta, on the other hand, is a very diverse group[38], with a broad range of morphotypes,including both edible and inedible forms for herbivorous zooplankton. Nevertheless, this group rarely dominates in phytoplankton communities of temperate lakes, except at nutrient extremes[38],and the results also show that in low TN/TP ratio(<12), Chlorophyta increases quickly with TP, and dominates when TP>1.0 mg/L.

    Because actual limitation of phytoplankton growth will be determined by the concentrations of available dissolved inorganic nitrogen and phosphorus, theTN/TP ratios may be very important when the dissolved inorganic forms falls below limiting level. Although, in the present study, many values of NH4and PO4concentrations are very low in summer,probably due to active assimilation by phytoplankton and water bacteria in this season, the significant correlations between TN and NH4, and between TP and PO4show that the TN/TP ratio can reflect the dissolved inorganic nutrient limitation in a sense.

    In our study, Cryptophyta were abundant in oligotrophic and eutrophic waters, which in agreement with the observations of Ilmavirta[39]. Cryptophyta were found in different types of waters,with a tendency for small-sized cells to occur in less productive waters[36,40]. The result shows that Cryptophyta increases quickly as the TN/TP ratios decrease from above 30 to below 30, indicating that Cryptophyta is favoured by low TN/TP ratio(especially <12) and suggesting Cryptophyta prefers to live in high nutrition level if it don't be restricted by nitrogen and light intensity.

    Though Euglenophyta are almost entirely restricted to eutrophic lakes[41-43], our result shows that Dinophycease and Euglenophyceae increase quickly in the mediate TN/TP ratios (12-30),indicating that these taxa prefer to the middle TN/TP ratios.

    It is beyond our scope to examine the many factors that affect individual taxonomic group dynamics. A number of these factors, however, which influence phytoplankton growth and loss rate (e.g. light,nutrition uptake, division rates, motility, sinking,and grazing losses), interact with both taxon size and morphology[44].

    The ratios of TN/TP are one of the most commonly used methods to assess phytoplankton limitation in aquatic ecosystems[45]. Our study firstly applies this method in evaluating the phytoplankton taxonomic composition in different nutrient level,and the data suggest that the water column TN/ TP ratio can be an effective tool for assessing the structure of phytoplankton taxonomic composition.

    [1] Rhee GY. Effect of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake [J]. Limnology and Oceanography,1978, 23(1): 10-25.

    [2] Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth [J]. Archiv für Hydrobiologie, 1966, 62: 1-28.

    [3] Dillon PJ, Rigler FH. The chlorophyll-phosphorous relationship in lakes [J]. Limnology and Oceanography, 1974, 19: 767-773.

    [4] Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton [J]. Science, 1983, 221(4611): 669-671.

    [5] Bulgakov NG, Levich AP. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure: nutrient ratios [J]. Archiv für Hydrobiologie, 1999, 146(1): 3-22.

    [6] Yang J, Yu XQ, Liu LM, et al. Algae community and trophic state of subtropical reservoirs in southeast Fujian, China [J]. Environmental Science and Pollution Research, 2012, 19(5): 1432-1442.

    [7] Smith VH. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(1): 148-153.

    [8] McQueen DJ, Lean DRS. Influence of water temperature and nitrogen to phosphorus ratios on the dominanceof blue-green algae in Lake St.George, Ontario [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44(3): 598-604.

    [9] Watson SB, McCauley E, Downing JA. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status [J]. Limnology and Oceanography, 1997, 42(3): 487-495.

    [10] Eggert A, Schneider B. A nitrogen source in spring in the surface mixed-layer of the Baltic Sea:Evidence from total nitrogen and total phosphorus data [J]. Journal of Marine Systems, 2015, 148:39-47.

    [11] Canfield Jr DE, Philips E, Duarte CM. Factors influencing the abundance of blue-green algae in Florida lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46(7): 1232-1237.

    [12] Smith VH. Phytoplankton responses to eutrophication in inland waters [J]. Introduction to Applied Ecology, 1990: 231-249.

    [13] Duarte CM, Agusti S, Canjield Jr DE. Patterns in phytoplankton community structure in Florida lakes[J]. Limnology and Oceanography, 1992, 37(1):155-161.

    [14] Chow-Frazer P, Trew DO, Findlay D, et al. A test of hypotheses to explain the sigmoidal relationship between total phosphorus and chlorophyll a concentrations in Canadian lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994,51(9): 2052-2065.

    [15] Teubner K, Dokulil MT. Ecological stoichiometry of TN: TP: SRSi in freshwaters: nutrient ratios and seasonal shifts in phytoplankton assemblages[J]. Archiv für Hydrobiologie, 2002, 154(4):625-646.

    [16] Rojo C. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps [J]. Hydrobiologia, 1998, 369: 1-9.

    [17] Wu SK, Xie P, Wang SB, et al. Changes in the patterns of inorganic nitrogen and TN/TP ratio and the associated mechanism of biological regulation in the shallow lakes of the middle and lower reaches of the Yangtze River [J]. Science in China Series D,2006, 49(1): 126-134.

    [18] Steudler PA, Corwin N. Determination of total nitrogen in aqueous samples using persulfate digestion [J]. Limnology and Oceanography, 1977,22(4): 760-764.

    [19] Rand MC, Greenberg AE, Taras MJ. Standard Methods for Examination of Water and Wastewater[M] American: American Public Health Association, 1985.

    [20] Menzel DW, Corwin N. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation[J]. Limnology and Oceanography, 1965, 10(2):280-282.

    [21] Prepas EE, Rigler FH. Improvements in quantifying the phosphorus concentration in lake water[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(6):822-829.

    [22] Ebina J, Tsutsui T, Shirai T. Simulaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation [J]. Water Research, 1983, 17(12): 1721-1726.

    [23] Eaton AD, Clesceri LS, Greenberg AE. Standard Methods for the Examination of Water and Wastewater [M].Washington: American Public Health Association, 1995.

    [24] Gresshoff K, Ehrhardt M, Kremling K. Methods in Seawater Analysis [M]. Germany: Verlag Chemie,1976.

    [25] Prescott GW. How to Know the Freshwater Phytoplankton [M]. Cambridge: Cambridge University Press, 1978.

    [26] Kotak BG, Lam AKY, Prepas EE, et al. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes [J]. Journal of Phycology, 1995, 31: 248-263.

    [27] Downing JA, Mccauley E. The nitrogen:phosphorus relationship in lakes [J]. Limnology and Oceanography, 1992, 37(5): 936-945.

    [28] Reynolds CS. The Ecology of Freshwater Phytoplankton [M]. Cambridge: Cambridge Unversity Press, 1984.

    [29] Reynolds CS. What factors influence the species composition of phytoplankton in lakes of different status [J]. Hydrobiologia, 1998, 369: 11-26.

    [30] Reynolds CS, Petersen AC. The distribution ofplanktonic Cyanobacteria in Irish lakes in relation to their trophic states [M] // The Trophic Spectrum Revisited. Springer Netherlands, 2000: 91-99.

    [31] Izaguirre I, Vinocur A, Mataloni P. Phytoplankton communities in relation to trophic status in lakes from Hope Bay (Antarctic Peninsula) [J]. Hydrobiologia, 1988, 369: 73-87.

    [32] Reynolds CS. Non-determinism to probability, or N: P in the community ecology of phytoplankton:Nutrient ratios [J]. Archiv für Hydrobiologie, 1999,146(1): 23-35.

    [33] Liu L, Zhou XY, Zhao LJ, et al. Effect of nitrogen and phosphorus ratios on the growth of cyanobacteria and chlorophyta [J]. Journal of Shanghai Ocean University, 2014, 23(4): 574-581.

    [34] Blomqvist P, Petterson A, Hyenstrand P. Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems [J]. Archiv für Hydrobiologie, 1994, 132(2): 141-164.

    [35] Jensen JP, Jeppesen E, Olrik K. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(8): 1692-1699.

    [36] Willén E. Planktonic diatoms-an ecological review[J]. Algological Studies, 1991, 62: 69-106.

    [37] Sterner RW. Resource competition and the autecology of pennate diatoms [J]. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 1990, 24(1): 518-523.

    [38] Happey-Wood CM. Ecology of freshwater planktonic green algae [J]. Growth and Reproduc-Tive Strategies of Freshwater Phytoplankton, 1988:175-226.

    [39] Ilmavirta V. The role of flagellated phytoplankton in chains of small brown-water lakes in Southern Finland [C] // Fennici Botanical Publishing Board,1983: 187-195.

    [40] Brettum P.Algae as indicators of water quality [J]. Phytoplankton. Norsk instiut for vannforskning,1989: 1-111.

    [41] Hutchinson GE. A Treatise on Limnology. Volume II. Introduction to Lake Biology and the Limnoplankton [M]. New York: John Wiley & Sons, 1967.

    [42] Tikkanen T, Willen T. Vaxtplanktonflora [Z]. Eskilstuna: Naturv?rdsverket, 1992.

    [43] Jiang YJ, He W, Liu WX, et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu) [J]. Ecological Indicators, 2014, 40: 58-67.

    [44] Hecky RE, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment [J]. Limnology and Oceanography, 1988, 33(4): 796-822.

    [45] Dzialowski AR, Wang SH, Lim NC, et al. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA [J]. Journal of Plankton Research,2005, 27(6): 587-595.

    Patterns of Phytoplankton Taxonomic Composition Affected by Different Nitrogen Phosphorus Ratios in Shallow Lakes of the Yangtze River Area

    WU Shikai1,2XIE Ping3NI Leyi3ZHANG Lin1,2

    1( Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China )
    2( Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China )
    3( Donghu Experimental Station of Lake Ecosystems, The State Key Laboratory for Freshwater Ecology and Biotechnology of China,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China )

    The phytoplankton groups were investigated in 30 shallow Chinese lakes in the middle and lowerreaches of the Yangtze River area in the summer of 2003 and 2004. To explore the effects of different nitrogen phosphorus ratios (TN/TP ratios) on the phytoplankton taxonomic composition of these study sites, six main taxonomic groups were studied with three TN/TP ratios intervals: TN/TP>30, 12<TN/TP<30 and TN/ TP<12. The biomass curves of these taxonomic groups showed corresponding increases or decreases with different TN/TP ratios. When TN/TP ratios declined from high (>30) to medium (12-30), the slopes of the total biomass curve increased, as did the relative abundances of all groups except Cyanophyta. But when the TN/TP declined from medium (12-30) to low (<12) levels, the slopes of most groups decreased except Chlorophyta and Cryptophyta. The amount of Cyanophyta increased with TP when TN/TP ratios declined from above 30 to below 12, suggesting that cyanobacteria adapted to higher TN/TP ratios. However, Chlorophyta and Cryptophyta tended to be restricted by phosphorus when TN/TP ratios declined from above 30 to below 12, and these groups adapted to lower TN/TP ratios. The biomass of Bacillariophyta, Pyrrophyta and Euglenophyta tended decreased when TN/TP ratios were above 30 and below 12, suggesting that medium TN/ TP ratios (12-30) favoured these groups.

    nitrogen phosphorus ratio, phytoplankton, shallow lakes, taxonomic groups, the Yangtze River

    X 524

    A

    Received: 2015-08-28 Revised: 2015-10-08

    Foundation: Shenzhen Science and Technology Innovation Committee Funds(Shenfagai[2014]1857);Guangdong Provincial Department of Science and Technology Funds(2013B091300015)

    Author: Wu Shikai(corresponding author), Senior Engineering. His research interests include ecological restoration and the application of algae resources,E-mail: sk.wu@giat.ac.cn; Xie Ping, Research Professor. His research interests include freshwater ecosystems and ecotoxicology of microcystins; Ni Leyi, Research Professor. Her research interests are aquatic plants and ecology; Zhang Lin, Assistant Engineer. Her research interest is water ecological restoration.

    猜你喜歡
    中等水平長(zhǎng)江中下游地區(qū)淺水
    新型淺水浮托導(dǎo)管架的應(yīng)用介紹
    云南化工(2021年10期)2021-12-21 07:33:40
    2017年長(zhǎng)江中下游地區(qū)一次持續(xù)性異常降水過(guò)程分析
    “1萬(wàn)小時(shí)定律”不靠譜?
    長(zhǎng)江中下游地區(qū)梅雨期異常年降水及大氣熱源分布特征
    青藏高原春季土壤濕度對(duì)長(zhǎng)江中下游地區(qū)初夏短期氣候影響的數(shù)值模擬
    帶阻尼的隨機(jī)淺水波方程的隨機(jī)吸引子
    意神吐槽
    意林繪閱讀(2016年5期)2016-06-13 09:52:52
    論青藏高原溫度對(duì)長(zhǎng)江中下游地區(qū)降水的影響
    (2+1)維廣義淺水波方程的Backlund變換和新精確解的構(gòu)建
    找不同
    亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 19禁男女啪啪无遮挡网站| 夜夜爽天天搞| 精品久久蜜臀av无| 男男h啪啪无遮挡| av免费在线观看网站| 亚洲国产精品999在线| 久久久国产精品麻豆| 久久性视频一级片| 国产成人啪精品午夜网站| 国产伦在线观看视频一区| 18禁观看日本| 九色成人免费人妻av| 一本久久中文字幕| 黄色丝袜av网址大全| 亚洲欧美日韩东京热| 日本五十路高清| 久久香蕉国产精品| av福利片在线| 黄色a级毛片大全视频| 免费看a级黄色片| 亚洲人成网站在线播放欧美日韩| 一本精品99久久精品77| 国产伦在线观看视频一区| 国产精品综合久久久久久久免费| 巨乳人妻的诱惑在线观看| 国产一区二区激情短视频| 欧美日韩亚洲综合一区二区三区_| 中亚洲国语对白在线视频| 亚洲人与动物交配视频| 亚洲第一电影网av| 国产亚洲精品综合一区在线观看 | av国产免费在线观看| 亚洲熟妇中文字幕五十中出| 精品久久久久久久毛片微露脸| 搡老妇女老女人老熟妇| 一边摸一边抽搐一进一小说| 性欧美人与动物交配| 国产熟女xx| 人人妻,人人澡人人爽秒播| videosex国产| aaaaa片日本免费| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站 | 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 日韩中文字幕欧美一区二区| 大型黄色视频在线免费观看| 欧美黄色片欧美黄色片| 国产伦人伦偷精品视频| tocl精华| 91老司机精品| 人妻夜夜爽99麻豆av| 天堂动漫精品| 午夜精品久久久久久毛片777| 高潮久久久久久久久久久不卡| 精品国产超薄肉色丝袜足j| 在线免费观看的www视频| 午夜免费激情av| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 91麻豆精品激情在线观看国产| 中亚洲国语对白在线视频| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 老司机午夜福利在线观看视频| 欧美精品啪啪一区二区三区| 国产又色又爽无遮挡免费看| 国产精品 国内视频| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 黄色女人牲交| 在线观看免费日韩欧美大片| 国产99久久九九免费精品| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 黄色女人牲交| 亚洲色图 男人天堂 中文字幕| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 哪里可以看免费的av片| 黄色片一级片一级黄色片| 一级毛片高清免费大全| 亚洲乱码一区二区免费版| 免费观看人在逋| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 午夜精品一区二区三区免费看| 12—13女人毛片做爰片一| 国产精品日韩av在线免费观看| 久久这里只有精品19| 国产1区2区3区精品| 又黄又爽又免费观看的视频| 色哟哟哟哟哟哟| 他把我摸到了高潮在线观看| 成年人黄色毛片网站| 脱女人内裤的视频| 最好的美女福利视频网| 亚洲黑人精品在线| 日韩欧美国产在线观看| 老熟妇仑乱视频hdxx| a级毛片a级免费在线| 操出白浆在线播放| 麻豆国产av国片精品| 999精品在线视频| 婷婷精品国产亚洲av| 熟女电影av网| 免费看a级黄色片| 亚洲精品色激情综合| 免费观看人在逋| 麻豆国产av国片精品| 日本在线视频免费播放| 中文字幕高清在线视频| 亚洲熟女毛片儿| 国产成人系列免费观看| 国产高清视频在线观看网站| 亚洲av第一区精品v没综合| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 久久精品亚洲精品国产色婷小说| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 国产精品久久久久久久电影 | 日韩精品青青久久久久久| 久久人妻福利社区极品人妻图片| 国产av一区在线观看免费| 精品国产超薄肉色丝袜足j| 色综合站精品国产| 欧美成人免费av一区二区三区| 成年版毛片免费区| 久久久水蜜桃国产精品网| 国内精品久久久久久久电影| 曰老女人黄片| 国产欧美日韩精品亚洲av| 精品一区二区三区四区五区乱码| 日本熟妇午夜| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 女警被强在线播放| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 中文资源天堂在线| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 国产午夜精品论理片| 午夜a级毛片| 给我免费播放毛片高清在线观看| 欧美高清成人免费视频www| 美女免费视频网站| 久久九九热精品免费| 欧美日本视频| 香蕉av资源在线| 精品熟女少妇八av免费久了| www日本在线高清视频| 亚洲,欧美精品.| 三级毛片av免费| 在线十欧美十亚洲十日本专区| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| 久久天堂一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 国产精品一区二区三区四区久久| 国产单亲对白刺激| 午夜两性在线视频| 天天添夜夜摸| 亚洲天堂国产精品一区在线| av天堂在线播放| 啪啪无遮挡十八禁网站| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 99在线视频只有这里精品首页| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 成年免费大片在线观看| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久5区| 国产高清videossex| 国产爱豆传媒在线观看 | 国产午夜福利久久久久久| 中文字幕熟女人妻在线| 中文在线观看免费www的网站 | www.精华液| 999精品在线视频| 黄频高清免费视频| 成人一区二区视频在线观看| 亚洲片人在线观看| 午夜激情福利司机影院| 久久国产精品影院| av在线天堂中文字幕| 中文字幕最新亚洲高清| 午夜影院日韩av| 91国产中文字幕| 亚洲专区字幕在线| 免费高清视频大片| 欧美另类亚洲清纯唯美| 久久精品人妻少妇| 这个男人来自地球电影免费观看| 久久久久免费精品人妻一区二区| 国产成年人精品一区二区| 国产精品亚洲av一区麻豆| 亚洲熟女毛片儿| 香蕉丝袜av| 九色国产91popny在线| 久久人人精品亚洲av| 亚洲成av人片免费观看| 日本熟妇午夜| 国产午夜精品久久久久久| 欧美成人免费av一区二区三区| 黄色 视频免费看| 岛国在线免费视频观看| 一级毛片女人18水好多| 久久99热这里只有精品18| 精品无人区乱码1区二区| 国产精品免费视频内射| 一个人免费在线观看电影 | 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看 | 午夜免费激情av| 国产成+人综合+亚洲专区| 亚洲精品色激情综合| 91麻豆av在线| 日本免费一区二区三区高清不卡| 亚洲精品久久国产高清桃花| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| 欧美成狂野欧美在线观看| 欧美精品啪啪一区二区三区| 天天添夜夜摸| 一级毛片精品| 少妇被粗大的猛进出69影院| 桃色一区二区三区在线观看| 少妇粗大呻吟视频| 久久久久国内视频| 国产成+人综合+亚洲专区| АⅤ资源中文在线天堂| 伦理电影免费视频| 五月伊人婷婷丁香| 夜夜夜夜夜久久久久| 日本黄大片高清| 亚洲人成77777在线视频| 久久草成人影院| 国产精品国产高清国产av| cao死你这个sao货| 国产日本99.免费观看| 久久精品91蜜桃| 亚洲一码二码三码区别大吗| 亚洲国产日韩欧美精品在线观看 | 国产一区在线观看成人免费| 老司机午夜十八禁免费视频| 人妻夜夜爽99麻豆av| 国产精品 国内视频| 久久久久免费精品人妻一区二区| 久久久久久久午夜电影| 91大片在线观看| 午夜福利欧美成人| 国产69精品久久久久777片 | 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 18禁观看日本| 麻豆成人午夜福利视频| 国产视频一区二区在线看| 51午夜福利影视在线观看| 亚洲中文日韩欧美视频| 亚洲av成人av| 九色国产91popny在线| avwww免费| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 操出白浆在线播放| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲av嫩草精品影院| 午夜激情av网站| 日本免费a在线| 一区二区三区国产精品乱码| 九色成人免费人妻av| 最新美女视频免费是黄的| 18禁黄网站禁片免费观看直播| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 香蕉国产在线看| 久久国产精品影院| 中亚洲国语对白在线视频| 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 精品国产乱子伦一区二区三区| 国产免费av片在线观看野外av| 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| 久久婷婷人人爽人人干人人爱| a级毛片在线看网站| 最新美女视频免费是黄的| 搡老熟女国产l中国老女人| 亚洲最大成人中文| 宅男免费午夜| 麻豆av在线久日| 国产亚洲精品av在线| 久久中文看片网| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看 | 亚洲在线自拍视频| 色哟哟哟哟哟哟| 国产黄色小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产午夜福利久久久久久| 制服丝袜大香蕉在线| 人妻久久中文字幕网| 999精品在线视频| 亚洲国产精品成人综合色| 女人爽到高潮嗷嗷叫在线视频| 国产精品日韩av在线免费观看| 日韩大尺度精品在线看网址| 国产高清视频在线观看网站| 免费观看精品视频网站| 变态另类丝袜制服| 国产精品电影一区二区三区| av有码第一页| 一区二区三区国产精品乱码| 中文字幕熟女人妻在线| 日日爽夜夜爽网站| 亚洲国产精品999在线| 亚洲欧美日韩高清专用| 国产一区二区三区视频了| a在线观看视频网站| 在线a可以看的网站| 亚洲精华国产精华精| 亚洲色图av天堂| 久久精品国产亚洲av高清一级| 男女那种视频在线观看| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| 757午夜福利合集在线观看| 91av网站免费观看| 岛国在线观看网站| a级毛片在线看网站| 免费无遮挡裸体视频| 两个人视频免费观看高清| 亚洲欧美日韩东京热| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 国产成人精品无人区| 欧美日韩瑟瑟在线播放| 人成视频在线观看免费观看| 久久国产精品影院| 91国产中文字幕| 亚洲精品在线美女| 国产av又大| 一边摸一边做爽爽视频免费| 91国产中文字幕| 精品一区二区三区视频在线观看免费| 99在线视频只有这里精品首页| 黄色 视频免费看| 久久香蕉激情| 日韩欧美国产一区二区入口| 亚洲免费av在线视频| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩 | 国产精品日韩av在线免费观看| 黄色毛片三级朝国网站| 琪琪午夜伦伦电影理论片6080| 成人欧美大片| 亚洲人成77777在线视频| netflix在线观看网站| 露出奶头的视频| 亚洲在线自拍视频| 床上黄色一级片| 精品国内亚洲2022精品成人| 九九热线精品视视频播放| 欧美最黄视频在线播放免费| 国产精品日韩av在线免费观看| 中文字幕av在线有码专区| 久久久久久久午夜电影| 国产精品亚洲美女久久久| 18禁美女被吸乳视频| 99国产精品一区二区三区| 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91| 亚洲色图 男人天堂 中文字幕| 午夜视频精品福利| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 国产精品亚洲av一区麻豆| 日韩成人在线观看一区二区三区| 特大巨黑吊av在线直播| av国产免费在线观看| 女人被狂操c到高潮| 国产真人三级小视频在线观看| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 老司机福利观看| 久久亚洲精品不卡| 观看免费一级毛片| 亚洲精品粉嫩美女一区| 亚洲一区二区三区不卡视频| 成人午夜高清在线视频| 在线a可以看的网站| 青草久久国产| 男人舔奶头视频| 久久久久久亚洲精品国产蜜桃av| 亚洲片人在线观看| 精品一区二区三区av网在线观看| 黄色视频不卡| 在线观看舔阴道视频| 黄色视频,在线免费观看| 天天一区二区日本电影三级| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品久久久久久毛片| a级毛片在线看网站| 在线a可以看的网站| www.www免费av| 我的老师免费观看完整版| 中文字幕精品亚洲无线码一区| 日本免费一区二区三区高清不卡| 三级毛片av免费| 亚洲 欧美 日韩 在线 免费| 极品教师在线免费播放| 国产v大片淫在线免费观看| 久久精品亚洲精品国产色婷小说| 露出奶头的视频| 国产一区二区在线av高清观看| 我的老师免费观看完整版| av视频在线观看入口| 亚洲成av人片在线播放无| 亚洲av成人av| 久久人妻av系列| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 久久欧美精品欧美久久欧美| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 九九热线精品视视频播放| 不卡av一区二区三区| 最近最新免费中文字幕在线| 亚洲一区二区三区色噜噜| 很黄的视频免费| 97人妻精品一区二区三区麻豆| 法律面前人人平等表现在哪些方面| 欧美黄色片欧美黄色片| 亚洲午夜理论影院| 一级片免费观看大全| 日本黄色视频三级网站网址| 精品一区二区三区四区五区乱码| 男女下面进入的视频免费午夜| 日韩欧美国产在线观看| videosex国产| 手机成人av网站| 91国产中文字幕| 日韩欧美国产一区二区入口| 国产精品久久电影中文字幕| 亚洲熟妇中文字幕五十中出| 国产伦一二天堂av在线观看| www.www免费av| 999久久久国产精品视频| 久久久久久亚洲精品国产蜜桃av| 一进一出好大好爽视频| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 小说图片视频综合网站| 午夜激情福利司机影院| 国产主播在线观看一区二区| 99精品在免费线老司机午夜| 一个人免费在线观看电影 | 国产精品久久久久久亚洲av鲁大| 亚洲avbb在线观看| АⅤ资源中文在线天堂| 99国产精品一区二区三区| 99riav亚洲国产免费| 18禁观看日本| 亚洲avbb在线观看| 九色成人免费人妻av| 免费在线观看视频国产中文字幕亚洲| 一边摸一边抽搐一进一小说| 亚洲av成人不卡在线观看播放网| 美女扒开内裤让男人捅视频| 亚洲国产欧洲综合997久久,| 国产成+人综合+亚洲专区| 亚洲精品久久国产高清桃花| 神马国产精品三级电影在线观看 | 哪里可以看免费的av片| 免费在线观看视频国产中文字幕亚洲| 在线观看免费日韩欧美大片| 国产三级在线视频| 国产人伦9x9x在线观看| 中文字幕熟女人妻在线| 日本成人三级电影网站| 99久久国产精品久久久| 一区福利在线观看| 窝窝影院91人妻| 性色av乱码一区二区三区2| 亚洲成人免费电影在线观看| 国产亚洲欧美98| 91麻豆精品激情在线观看国产| 看黄色毛片网站| 欧美黑人巨大hd| 亚洲专区中文字幕在线| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 欧美 亚洲 国产 日韩一| 俺也久久电影网| 女人高潮潮喷娇喘18禁视频| 天堂影院成人在线观看| 亚洲性夜色夜夜综合| 黑人巨大精品欧美一区二区mp4| 中文字幕精品亚洲无线码一区| 久久这里只有精品中国| 久久久久久久久中文| 国产精品久久视频播放| 99国产极品粉嫩在线观看| svipshipincom国产片| 国产黄a三级三级三级人| 久久久久免费精品人妻一区二区| 男人的好看免费观看在线视频 | 天堂影院成人在线观看| 亚洲性夜色夜夜综合| 国产亚洲精品久久久久久毛片| 在线看三级毛片| 国产91精品成人一区二区三区| 91在线观看av| 午夜福利视频1000在线观看| 欧美av亚洲av综合av国产av| 怎么达到女性高潮| cao死你这个sao货| 好男人电影高清在线观看| 亚洲国产精品久久男人天堂| a级毛片a级免费在线| 精品不卡国产一区二区三区| 国产视频内射| 国产精品免费一区二区三区在线| 熟妇人妻久久中文字幕3abv| 最近在线观看免费完整版| 国产一区在线观看成人免费| 国产精品野战在线观看| 日本 欧美在线| 嫩草影视91久久| 国产高清videossex| 黄色视频,在线免费观看| 动漫黄色视频在线观看| 国产v大片淫在线免费观看| 变态另类丝袜制服| 婷婷精品国产亚洲av| 免费在线观看成人毛片| 亚洲av美国av| 老司机深夜福利视频在线观看| 麻豆国产av国片精品| 一区福利在线观看| 欧美高清成人免费视频www| 一本久久中文字幕| 精华霜和精华液先用哪个| 免费观看精品视频网站| 国产精品 国内视频| 国产av在哪里看| 精品久久久久久久久久免费视频| 男女之事视频高清在线观看| 久久久久久九九精品二区国产 | 国产三级黄色录像| 久热爱精品视频在线9| 国产亚洲欧美98| 国产欧美日韩精品亚洲av| 欧美日韩精品网址| 在线看三级毛片| 天堂动漫精品| 国语自产精品视频在线第100页| 久久久久性生活片| 在线免费观看的www视频| 亚洲国产精品合色在线| 午夜老司机福利片| 国产精品免费一区二区三区在线| 日本熟妇午夜| 99久久国产精品久久久| 亚洲,欧美精品.| 欧美激情久久久久久爽电影| 亚洲人与动物交配视频| 免费在线观看完整版高清| 少妇熟女aⅴ在线视频| 操出白浆在线播放| 宅男免费午夜| 久久久久国产精品人妻aⅴ院| 久久久精品国产亚洲av高清涩受| 99re在线观看精品视频| 中文字幕最新亚洲高清| 国产午夜精品久久久久久| 日韩国内少妇激情av| 又大又爽又粗| 又粗又爽又猛毛片免费看| 精品第一国产精品| 人成视频在线观看免费观看| 国产男靠女视频免费网站| 一级毛片女人18水好多| 久久精品91无色码中文字幕| 少妇人妻一区二区三区视频| 可以在线观看毛片的网站| 丝袜人妻中文字幕| 啦啦啦免费观看视频1| 9191精品国产免费久久| 欧美成狂野欧美在线观看|